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a b s t r a c t

Shale gas gathering systems are of great importance in gas fields for the efficient and reliable trans-
portation of gas. In traditional design methods, pipeline layouts are optimized only from an economic
point of view, where reliability is evaluated after optimization. However, reliability can be enhanced by
spare pipelines so that both economic and reliable aspects are evaluated simultaneously. Based on the
idea of enhancing reliability, this research proposes a methodology for optimizing the pipeline layout
problem including well clustering, stations site selecting, and piping. Different topology arrangements
and spare pipelines are investigated to enhance the production efficiency and reliability of the pipeline
network under earthquake-related uncertainties. Reliability evaluation is converted into an economic
one so that the objective of this work is to minimize the total annual cost. To solve such a complex
problem, genetic algorithm, K-means algorithm, GeoSteiner algorithm, Kruskal algorithm, linear pro-
gramming and Monte Carlo simulations are combined. A real-world case study illustrates the effec-
tiveness of the proposed methodology and shows a 36.53% reduction in the total annual cost compared
with the initial scheme.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As a potential unconventional natural gas resource, shale gas has
a long exploitation life and a long stable production cycle. With the
continuous increase of energy demand, the status of shale gas in
energy consumption has gradually increased. Shale gas reserves are
abundant worldwide. According to the assessment of the Energy
Information Administration (EIA) (EIA and DoE, 2013), technically
recoverable shale gas resources can reach 2.21 � 1014 m3. By 2040,
the global daily natural gas productionwill rise from9.7� 109m3 in
2015 to nearly 1.57 � 1010 m3, in which shale gas production will
account for 30% of the global production (Wang, 2018). The initial
investment of shale gas mining is relatively large, so the proper
method for cutting down the investment is crucial. Among the
various investments, the one related to the pipe network in shale
gas gathering systems can account for more than 30% due to the
long transmission distance (Arredondo-Ramirez et al., 2016; Zhou
g).

y Elsevier B.V. on behalf of KeAi Co
et al., 2019a). Therefore, this work aims to optimize the pipe
network to make the system more economic and efficient.

Shale gas gathering system optimization is an NP-hard problem
(Zhou et al., 2014a). The problem is NP-hard when any problem
from NP is polynomial-time reducible to this problem. The opti-
mization of shale gas gathering system can be generally divided
into three sub-problems: well group division, site selection of gas
collection station and central processing facilities, and pipeline
optimization. For the well group division, Zhou et al., (2014b)
established a mixed integer linear programming (MILP) model to
optimize the well group division, the model is constrained to the
number of wells connected to a gathering station, the allowable
distance between well site and gathering station, and the number
of gathering stations. Then, Zhou et al., (2019b) proposed an opti-
mization scheme based on Delaunay triangulation to solve a real
case study. Moreover, K-means algorithm is commonly used (Li
et al., 2015; Qiang et al., 2016) to solve the problem of well clus-
tering. Although it cannot constrain the number of gas-gathering
station connections, it can simply and efficiently obtain the clus-
tering results and is suitable for the large-scale classification
problem. Its clustering process is sorted out by Larsson (2018). For
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the site selection, Kerzmann et al., (2014) used Monte Carlo algo-
rithm to optimize the location of gas stations in Pittsburgh ac-
cording to the flow demand. Hosseini and MirHassani (2015)
formulated a two-stage stochastic model considering the uncer-
tainty of traffic flow on the road network and developed a heuristic
algorithm based on core set and greedy algorithm to optimize the
gas station location in Arizona. Based on network data of gas sta-
tions and geographic information system (GIS) data, Lin et al.,
(2020) proposed a hybrid algorithm by using genetic algorithm
(GA), greedy algorithm and simulated annealing algorithm (SA).
The algorithmwas used to determine the site selection of hydrogen
stations in Beijing. For pipeline optimization, pipeline topology,
three-dimensional terrain, hydraulic characteristics (Hong et al.,
2019) and reliability are often studied in current research at-
tempts. However, there is a lack of synchronization among opti-
mization solutions for these problems. To reduce the complexity of
the model, most researchers tend to focus on solving one or two
such problems. Until now, many metaheuristics algorithms have
been applied, including ant colony optimization (ACO) (Baeza et al.,
2017), GA (Sanaye and Mahmoudimehr, 2013), particle swarm
optimization (PSO) (Zhang et al., 2017a), etc. Chan et al., (2007)
found that compared with exhaustive search algorithms, probabi-
listic search heuristic algorithms are more suitable for solving
pipeline network optimization problems. Zhang et al., (2017a)
considered the gathering radius, economic flowrate and terrain
obstacles and took the construction and operation costs as objec-
tive functions in the study of undersea oil pipeline optimization.
They came up with a MILP model and used the improved PSO to
optimize a real case. Hong et al., (2018) introduced an integrated
model to optimize a 3-D gathering system, coupling SA and Dijkstra
algorithm to solve the model. A recently published work (Meng
et al., 2021b) compared the performances of ten recent and pop-
ular metaheuristics algorithms through several engineering ex-
amples of reliability-based design optimization problems. Thework
pointed out that artificial bee colony, Multi-verse optimizer, grey
wolf optimizer, and water cycle algorithm are the most effective
algorithms. However, the application of these algorithms in engi-
neering is relatively lacking. In comparison, GA ismorewidely used.

Topology optimization plays an important role in pipeline
network optimization. It not only determines the investment and
energy loss of the pipeline network but also has a great impact on the
reliability of the system. In the work of Hong et al. 2018, 2019, the
optimal pipeline network has two levels and the topology types are
both star networks. Su et al., (2019) considered the tree topology
network and loop topology network to improve the reliability and
supply efficiency of the natural gas pipe network. They adopted
NSGA-II algorithm to optimize the pipe network system with mul-
tiple objectives. Zhang et al., (2017b) optimized the pipeline layout of
stellated pipeline network (star topology), cascade dendritic pipeline
network (tree topology) and insertion dendritic pipeline network
(Steiner tree topology). A MILP model was presented to optimize the
oil-gas collection pipeline system. Wu et al., (2020a) introduced the
GeoSteiner algorithm to obtain the cable layout with topologies of
Euclidean Steiner minimum tree (ESMT) and rectilinear Steiner
minimum tree (RSMT) to solve the cable routing problem in wind
farm layout. They emphasized that the cable length of these two
structures is shorter than that of the minimum spanning tree (MST)
topology. However, the influence of different pipeline network to-
pologies on optimization has not been studied in all the mentioned
researches. Therefore, this paper introduces two-level topology with
MST, STAR, ESMT and RSMT simultaneously into the optimization
and explores the influence of the combination of different topolog-
ical structures on the objective function.

Inaddition,manypiecesof research (Cenet al., 2016;Yuet al. 2018,
2019) incorporate economy and reliability into the network topology
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evaluation system. The economic performance (investment and
operation cost) (Sanaye andMahmoudimehr, 2013; Baeza et al., 2017)
is usually considered as the objective function. There are also a few
optimizations aimed at the environmental performance (Chen et al.,
2020). To consider reliability, Takagi et al., (2002) studied the reli-
ability of risk management of LNG receiving stations and pipe net-
works by using fault tree analysis. Recently, Alsharqawi et al., (2020)
applied this method to the water distribution network. Liu and Pan
(2003b) introduced flow reliability and unit importance in the reli-
ability evaluation of tree-shaped subsea oil and gas gathering and
transportationnetworks andcalculated the reliability viaMonteCarlo
simulations. The authors in (Liu and Pan, 2003a) also optimized the
systemwith a Minty algorithm to obtain the MST pipe network with
the lowest cost and a certain reliability index. Based on graph theory,
Christodoulou et al., (2018) used a Monte Carlo-based method to
calculate the seismic reliability of urban water distribution network
under the condition of given failure probability of pipeline and to-
pology structure. Meanwhile, compared with the path enumeration
method, theproposedmethodwasmoreuniversalwhen thenetwork
was expanded. Kim and Kang (2013) developed a non-simulation
network reliability analysis method based on a recursive decompo-
sition algorithm. This algorithm is suitable for rapid risk assessment,
but it needs additional implementation costs for defining complex
system events and high computational costs for large networks with
redundantpaths. In thecurrent research, there isa lackofstudy for the
consideration of earthquakes in pipeline network optimization. Yoon
et al., (2018) proposed a comprehensive framework to quantify the
impact of earthquakes on the connectivity of urban water trans-
missions. The framework is a pipeline failure probabilitymodel based
on the parameters of seismic depth, magnitude, and epicenter dis-
tance. The performance of the network topology was presented
throughMonte Carlo simulations. Unfortunately, theirwork aimed to
evaluate the pipeline network considering earthquakes without
furtheroptimization.Thus, this research takes economicperformance
as the goal, and couples the reliability optimization of pipeline
network to the gathering system optimization.

Since there are many uncertain factors in the production and
transportation of shale gas, it is necessary to consider the uncer-
tainty for the optimization problem. The uncertainties in optimi-
zation models could be described through bounded forms,
probability description and fuzzy description (Li and Ierapetritou,
2008). Modeling methods mainly include robust programming,
two-stage or multistage stochastic programming, and data-driven
approaches that generate different possible scenarios (Grossmann
et al., 2016). Meng et al., (2015) have done some meaningful work
on reliability assessment methods considering uncertainty. For the
evaluation of probabilistic constraints, they developed a modified
chaos control method to improve the effectiveness of convex per-
formance measure functions. In 2017, they (Meng et al., 2017)
revealed the essential cause of low efficiency for the stability
transform method and proposed a directional stability trans-
formation method to control the non-convergence problems of the
first-order reliability method. Recently, they (Meng et al., 2021a)
presented a novel hybrid time-variant reliability model based on a
probabilistic model and a super parametric convex model. The
expansion optimal linear estimation method was used to discretize
the stochastic process. The model was solved the model by a new
relaxed reliability iteration method. For the uncertainty factors,
Adachi and Ellingwood (2008) proposed a method considering the
uncertainty of earthquake intensity for evaluating the serviceability
of a water distribution system. The probabilities of peak ground
accelerations and peak ground velocities are produced by a risk
assessment platform (HAZUS). In their work, a region was divided
into many sub-regions, which have different probabilities. In other
words, the uncertainty is described by discrete parameters. Chen



Y. Wu, Z.-Y. Cui, H. Lin et al. Petroleum Science 19 (2022) 2431e2447
et al., (2018) used life cycle analysis, interval linear programming,
multi-objective programming, and multi-standard decision anal-
ysis to study the uncertainty of economy and environmental per-
formance. The proposed method was used for the optimization of
shale gas supply chain in the Marcellus region of the United States.
Based on the beta distribution generated by historical data, Oke
et al., (2020) studied the price uncertainty of shale gas using sto-
chastic programming. Most published studies focused on the price
uncertainty in the shale gas market, but the pipe failure uncertainty
under no-earthquake condition and earthquake-related un-
certainties (location, depth and magnitude) have been ignored.
Therefore, the proposed model includes the uncertainties of the
pipe failure and earthquake simultaneously.

To compensate for the deficiencies existing in present studies,
this work proposes a method to optimize shale gas gathering sys-
tem with the considerations of economic, pipeline network topol-
ogy, reliability, earthquake-related uncertainty, pipe failure under
no-earthquake conditions, and hydraulic characteristics. A
chance-constrained coupling model is developed, and the objective
function includes the system investment cost, operating cost and
the loss of revenue caused by pipeline failure. GA is used to opti-
mize the number of well clusters, site selection of gas collecting
station and central processing facilities, pipe network structure,
location, and the number of spare pipelines. In addition, Monte
Carlo simulations, K-means algorithm, GeoSteiner algorithm,
Kruskal algorithm and GLPK solver were used to solve different
subproblems. In this paper, a real case is optimized to prove the
effectiveness of the proposed method. The research also studies the
influence of the number of clusters, spare pipelines and four kinds
of pipeline topology on the shale gas system. The results are
conducive to providing effective guidance for practical engineering
design.

The main contributions of this paper are as follows:

(1) For the first time, the uncertainties of pipeline failure under
no-earthquake conditions, earthquake location, magnitude
and depth are considered simultaneously in the optimization
of shale gas gathering system.

(2) The two-level pipeline network with four kinds of topologies
is optimized in this research. The topologies include MST,
STAR, ESMT and RSMT. Besides, the influence of different
topology combinations on the whole system is also studied.

(3) This work not only optimizes network topology but also
optimizes the location and quantity of spare pipelines to
enhance the reliability of the gathering system.

(4) The proposed model considers the hydraulic characteristics
of pipeline networks, pressure loss is taken to be the oper-
ation cost in the objective function.

(5) A variety of algorithms are integrated to optimize the shale
gas gathering system comprehensively, and the proposed
method can solve the practical large-scale optimization
problem.

The study is outlined as follows: Section 1 reviewed the research
progress related to the gathering system and explains the motiva-
tion for the proposed problem. The problem statement and math-
ematical model are described in detail in Section 2. Section 3 gives
the flowchart of the proposed hybrid algorithm and introduces the
application of different algorithms in the proposed optimization.
Section 4 introduces the case study including scenario description
and data preprocessing. Section 5 summarizes and discusses the
results of scenarios with different models and sensitivity analyses.
Finally, conclusions and future works are drawn in Section 6.
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2. Methodology

2.1. Problem statement

The proposed method focuses on the optimization problem of
the shale gas gathering system considering reliability enhancement
under uncertainties. The problem consists of three sub-problems:
well clustering, site selection for the gathering gas station (GGS)
and central processing facility (CPF), and optimization of pipeline
network topology considering no-earthquake uncertainty and
earthquake-related uncertainties. The uncertainty under no-
earthquake conditions denotes pipeline failures caused by
improper operation, pipeline corrosion, and aging. Reliability is the
performance in the overall pipeline gathering capacity when
pipelines cannot function properly. In this research, the reliability
under no-earthquake conditions is defined as conventional reli-
ability, while the reliability under earthquake conditions is defined
as earthquake reliability. Reliability is enhanced by increasing the
number of spare pipelines and optimizing their locations.

To describe the proposed optimization problem, a coupling
model is developed, as shown in Fig. 1. The outer model is used to
optimize the layout and reliability of the gathering system. Spe-
cifically, the decision variables of the model are cluster number K,
tree types of different levels (first level and second level) of pipeline
network, number, cluster and position (first node and second node)
of spare pipelines, positions (nodes) of CPF and GGS. The input data
are coordinates and gas production of wells, earthquake data and
other related parameters of formulas of the model. The objective
function is to minimize the total annual cost TAC (CNY$a�1). The
inner model is used for clustering and network topology optimi-
zation. There is a linear programming (LP) model to calculate the
fluid flow in the network. Uncertainties are described by a chance-
controlled model. The details of the proposed models are shown in
Section 2.2.

2.1.1. Assumptions

(1) The shale gas is regarded as a compressible fluid.
(2) The shale gas in each branch has the same inlet pressure.
(3) The temperature of the shale gas in each branch is constant.
(4) The flow rate of the shale gas in each branch is constant.
(5) The probability of conventional failure under no-earthquake

conditions per unit length of the pipeline is fixed.
2.1.2. Given

(1) The coordinates of each shale gas well.
(2) The shale gas production of each well.
(3) Historical seismic data in the studied area.
2.1.3. Determine

(1) The number of well clusters (K).
(2) The location of the GGS and CPF.
(3) The number and location of spare pipelines.
(4) The topology of the collection and transmission network.
(5) The flow rate in each pipeline and the diameter of each

pipeline.
(6) The total annual cost of the shale gas gathering system.
(7) Conventional reliability and earthquake reliability of the

pipeline network.

According to the problem statement, it can be summarized the



Fig. 1. Coupling model for the optimization of shale gas gathering system.
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main contributions of the proposed methodology as follows:

(1) The proposed methodology can help achieve the synchro-
nization optimization of well clustering, site selection for
GGS & CPF, and optimization of pipeline network topology.

(2) The proposed methodology considers conventional reli-
ability and earthquake reliability at the same time.

(3) The optimization of the spare pipeline (number and position)
and tree type can be used to enhance the reliability of the
pipeline network. The reliability assessment for the network
with loops is solved by the proposed methodology.

(4) The hydraulic characteristics of pipeline networks, pressure
loss, is taken to consideration.

(5) The proposed methodology can describe the optimization of
a hybrid pipeline network with different levels.

2.2. Mathematical Model

2.2.1. Objective function
The objective function is minimizing TAC. It consists of the

construction cost of CPF CCPF (CNY$a�1), the construction cost of

GGS CGGS
k (CNY$a�1), the construction cost of the pipeline CPipeline

ði;jÞ
(CNY$a�1), the pressure loss cost of the pipeline CPressure

ði;jÞ (CNY$a�1),

and the expectation of the loss cost of pipeline failures CReliability

(CNY$a�1), as shown in Eq. (1).

min TAC ¼ CCPF þ
X
k

CGGS
k þ

X
ði;jÞ

CPipeline
ði;jÞ þ

X
ði;jÞ

CPressure
ði;jÞ

þ CReliability; cði; jÞ2ET; k2VGGS (1)

2.2.1. Constraints.

1�nK � nK;max (2)

0� T tree
first � Ttreemax (3)

0 � T tree
second � Ttreemax (4)
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0�nASP � nASP;max (5)

Eqs. (2)e(5) are the upper and lower bound constraints of the
variables, nK is the number of well clusters clustered, Ttreefirst is the

topology type of the first level of pipeline network, T tree
second is the

topology type of the second level of pipeline network, and nASP is
the number of spare pipelines. These variables are integer variables.

2.2.2. Linear programming model
The mass flow rate of shale gas in each branch pipe of each level

of the pipe network is obtained by solving an LP model (Wu et al.,
2020b). The model is established based on the results of the pipe
topology optimization. The model is described by Eqs. (6)e(9).

minW ¼
XnVT

g

XnVT

a

XnVT

b

bBinary
a;b;g

�wa;b;g (6)

XnVT

a

XnVT

b

h
ð � 1ÞDbBinary

a;b;g
�wa;b;g þ ð � 1ÞDbBinary

a;b;g
�wb;a;g

i
�Wg

¼ 0

(7)

wa;b;g � 0 (8)

wb;a;g � 0 (9)

The constraints are shown as Eqs. (7)e(9). Eq. (7) is used to
calculate the material balance for each vertex, Eqs. (8)e(10) are
used to control the gas flow direction. The decision variable iswa,b,g

(kg$s�1), denoting the mass flow rate of shale gas in the edge (a, b)
connected to the vertex g when the material balance is performed
on the vertex g. The remaining symbols represent parameters of
the LP model. nVT is the number of vertices in the pipeline network
topology,Wg (kg$s�1) is the mass flow rate of the vertex g, if vertex
g produces gas, Wg is negative, otherwise, Wg is positive. The flow
rate in each pipeline has two directions, from a to b and from b to a.
In Eq. (7), for each vertex g, there is a set of edges ET connected to it,
each set ET is a subset of the connected tree, and the number of
edge sets is nVT so that one of the two vertices corresponding to
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each edge ET must be g. If the edge (a, b) belongs to ET, b
Binary
a;b;g

is

equal to 1, otherwise, it is equal to 0. The mass flow rate of edge (a,
b) is calculated twice from a to b (wa,b,g) and b to a (wb,a,g). These
two mass flow rates are independent of each other due to the
constraints (Eq. (8) and Eq. (9)). After solving the optimization, one
of wa,b,g and wb,a,g must be 0, but they will not be 0 at the same

time, and the one that is not 0 is a positive value. Besides, bBinary
a;b;g

is

the binary parameter of the model and obtained from Eq. (10)
based on the result of the optimized pipeline network topology,

bBinary
a;b;g

indicates whether there is an edge (a, b), which belongs to

the connected tree, directly connected to the vertex g. D is the
exponential parameter and is determined by Eq. (11).

bBinary
a;b;g

¼
�
0; ½asi�∨½bsj�
1; ½a ¼ i�∧½b ¼ j� ; cði; jÞ2ET (10)

D¼
�
1; a<b
2; a � b

(11)
2.2.3. Investment cost model
The construction cost of the CPF CCPF (CNY$a�1), the construc-

tion cost of the GGS CGGS
k (CNY$a�1), the construction cost of the

pipeline CPipeline
ði;jÞ (CNY$a�1), and the unit cost of the pipeline aPipelineði;jÞ

(CNY$a�1) (Stijepovic and Linke, 2011) are calculated from Eqs.
(12)e(15), respectively.

CCPF ¼ ð1þ IÞT I
ð1þ IÞT � 1

aCPF (12)

CGGS
k ¼ ð1þ IÞT I

ð1þ IÞT � 1
aGGSk ; ck2VGGS (13)

CPipeline
ði;jÞ ¼ ð1þ IÞT I

ð1þ IÞT � 1
aPipelineði;jÞ Lði;jÞ; cði; jÞ2ET (14)

aPipelineði;jÞ ¼ 5:74Wtði;jÞ þ 1295
�
Dout
ði;jÞ
�0:48 þ 47:6; cði; jÞ2ET

(15)

Wtði;jÞ ¼ 644:3
�
Din
ði;jÞ
�2 þ 72:5Din

ði;jÞ þ 0:4611; cði; jÞ2ET

(16)

Dout
ði;jÞ ¼ 1:052Din

ði;jÞ þ 0:005251; cði; jÞ2ET (17)
CReliability ¼
8<
:
h
1� E

�
RConventional

� i�
1� PEarthquake

�
þ
h
1� R

Earthquake
i
PEarthquake

9=
;aShale gas

X
i
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Din
ði;jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Wði;jÞ
pruði;jÞ

s
; cði; jÞ2ET (18)

where T (a) is the life cycle of the piping system, I is the annual
interest rate, and L(i,j) (m) is the length of the pipeline. The weight
per unit length of the pipeline Wt(i,j) (kg$m�1), pipeline outer
diameter Dout

ði;jÞ (m) and pipeline inner diameter Din
ði;jÞ (m) are

calculated with Eqs. (16)e(18), respectively, whereW(i,j) (kg$s�1) is
the mass flow rate of the fluid in the pipeline, r (kg$m�3) is the
density of the fluid in the pipeline, and u(i,j) (m$s�1) is the flow rate
of the fluid in the pipeline.
2.2.4. Pressure loss cost model

CPressure
ði;jÞ ¼ aElectricitytNði;jÞ

1000
; cði; jÞ2ET (19)

Nði;jÞ ¼
Neði;jÞ
h

; cði; jÞ2ET (20)

Neði;jÞ ¼ Hf
ði;jÞWði;jÞg; cði; jÞ2ET (21)

The pressure loss cost CPressure
ði;jÞ (CNY$a�1) of the pipeline

network, the shaft power N(i,j) (W) to overcome the resistance
when the gas is transported and the effective power Ne(i,j) (W) of
the conveying equipment are calculated by Eqs. (19)e(21),
respectively, where aElectricity (CNY$kW�1$h�1) is the electricity
cost, t (h) is the annual operating hours, h is the efficiency of the
conveying equipment, and Hf

ði;jÞ (m) is the head loss due to the

resistance along the route.

r

��
Pinði;jÞ

�2 � �Poutði;jÞ
�2 �

2Pinði;jÞ
� G2

ði;jÞ

(
ln

Pinði;jÞ
Poutði;jÞ

þ z

2
Lði;jÞ
Din
ði;jÞ

)

� 10�3; cði; jÞ2ET (22)

Hf
ði;jÞ ¼

Pinði;jÞ � Poutði;jÞ
rg

; cði; jÞ2ET (23)

Hf
ði;jÞ (m) can be calculated iteratively according to Eqs. (22) and (23)

(Wu et al., 2020b) regarding the standard guideline for pipeline
sizing in the petrochemical industry (SH/T3035-2018). r (kg$m�3)
is the density of the fluid in the pipeline, Pinði;jÞ (kPa) is the inlet

pressure of the pipeline, Poutði;jÞ (kPa) is the outlet pressure of the

pipeline, z is the coefficient of friction of the pipeline.
2.2.5. Reliability evaluation and pipeline failure cost model
Qi; ci2VT (24)
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Creliability indicates the pipeline failure cost and is related to the
reliability of the pipeline network. It is calculated by Eq. (24) and
includes two parts, one is the pipeline failure cost under no-
earthquake conditions (conventional failure cost) and the other is
the pipeline failure cost in the event of the earthquake (earthquake
failure cost). aShale gas (CNY$m�3) is the unit price of shale gas,
PEarthquake is the probability of an earthquake, Qi (kg$s�1) is the

production of shale gas per well, E(RConventional) and R
Earthquake

are
the reliabilities of the pipeline network system under no-
earthquake conditions and in the event of the earthquake,
respectively, where pipeline failure under conventional conditions
may be due to pipeline corrosion, aging, or improper operation.

E
�
RConventional

�
¼

P
l

P
i
ql;i

nS
P
i
Qi

; ci2VT; l2NL (25)
aConventionali;j ¼

8>><
>>:

1;

"
rConventionali;j >

 
1�

�
RRConventional

� Li;j
1000

!#
∩½ði; jÞ2ET �
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; ci2VT; s2NS; l2NL

(27)

E(RConventional) and R
Earthquake

are calculated by Eqs. (25)e(27),
respectively, where nS is the number of Monte Carlo simulations for
different parameters of the earthquake, ql,i is the shale gas flowrate
from ith vertex to the CPF in the lth simulation for the location of
pipe failure under the conventional conditions. ql,s,i is the shale gas
flowrate from ith vertex to the CPF in the lth simulation for the
location of the earthquake and sth simulation for the seismic depth
and magnitude under earthquake conditions. Eq. (26) describes

that, in Monte Carlo simulations, the probability of all REarthquakel

greater than R
Earthquake

is greater than cEarthquake. cEarthquake is the
confidence level of reliability under earthquake conditions.
2436
ql;i
�
or ql;s;i

�
¼
�
0; mi;CPF ¼ 0
Qi; mi;CPF � 1 ; ci;CPF2VT (28)

MnVT�nVT ¼ ∪
nVT

k¼1
AðkÞ
nVT�nVT

(29)

AðkÞ
nVT�nVT

¼Aðk�1Þ
nVT�nVT

1AnVT �nVT (30)

mi,CPF is an element of the reachability matrix MnVT �nVT , which is
equal to 1 when there is at least one path between the vertex i and
the vertex which indicates CPF, and 0 otherwise. MnVT �nVT can be
obtained by performing Boolean addition and Boolean multiplica-

tion on the adjacency matrix AðkÞ
nVT �nVT

by Eqs. (29)-(30) (Wu et al.,
2021). In Eq. (30), 1 is a mathematical operation symbol used for
logical operations, representing “or”.
Li;j ¼
�
Lði;jÞ; cði; jÞ2ET
0; otherwise (33)
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Fig. 2. Flow diagram of algorithms.
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(37)

pMagnitude
ði;jÞ ðMÞ ¼ a� expð � b�MÞ; cði; jÞ2ET (38)

Eqs. (31)e(32) are used to determine if the uncertainty factors
(pipeline failure and earthquake) are realized by comparing the
random number generated by Monte Carlo with the probability of
occurrence. Besides, the length of the pipeline in these two equa-
tions is obtained by Eq (33). Eqs. (34)e(36) are used to evaluate the
damage to the pipeline caused by the earthquake. The probability
distribution of the depth and magnitude of the earthquake in the
Monte Carlo simulation is expressed by Eqs. (37)e(38).

In Eqs. (31)-(36), aConventionali;j and aEarthquakei;j are the elements of

AnV�nV , RRConventional (km�1) is the unit reliability of the pipeline

under conventional conditions, RREarthquakei;j (Tromans, 2004) is the

repairing rate of the branch pipeline (i, j) in the event of an
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earthquake, vscaledði;jÞ (Tromans, 2004) is the proportional velocity on

the edge (i, j), PGVði;jÞ (km$s�1) (Yoon et al., 2018) is the peak ground

velocity, Dout
ði;jÞ is the outer diameter of the pipeline, M is the seismic

magnitude, H (km)is the depth of the source, and R(i,j) (km) is the
distance from the pipeline (i, j) to the epicenter.

In Eqs. (37)-(38), pDepthði;jÞ is the probability of seismic depth H

when the earthquake occurs, and pMagnitude
ði;jÞ is the probability of

seismic magnitude M when the earthquake occurs. The two prob-
ability functions are fitted from historical seismic data.
3. Algorithms

To solve the proposed model, this study combines GA, a clus-
tering algorithm, a graph theory-based algorithm, and Monte Carlo
simulations to optimize the layout of the shale gas surface gath-
ering system. The framework of the algorithm is shown in Fig. 2.
The algorithm includes two parts: the inner layer and the outer
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layer. The outer layer uses GA to determine the number of well
clusters, the location variables of the CPF and GGS, the number and
location of spare pipelines, and topology type (STAR, MST, ESMT,
and RSMT) for the two-level pipeline network. The inner layer focus
on the calculation of the fitness function. It consists of four parts:
(1) The K-means algorithm is used for well group division. (2)
Depending on topology types of different levels of pipeline
network, Kruskal or GeoSteiner algorithm is applied to optimize the
topology for the GGS (first level pipeline network) and shale gas
wells (second level pipeline network). Then the spare pipelines are
added to the optimized loop-free pipe network. (3) Solve the LP
model to obtain the flow rate of shale gas in each pipeline and
perform hydraulic calculations. (4) Calculate the conventional
reliability and earthquake reliability of pipe network with loops
using reachability matrix and Monte Carlo simulations.
3.1. Genetic algorithm

GA is a global probabilistic algorithm based on the process of
genetics and natural selection (Roetzel et al., 2020). It can find
optimal or near-optimal solutions to constrained and uncon-
strained problems. The algorithm simulates the evolutionary pro-
cess of organisms in nature and follows the rules of natural
selection and survival of the fittest. GA has good robustness in
solving complex optimization problems and is widely used in
solving network system problems. Besides, GA is usually coupled
with the mathematical model in published researches because of
its good versatility. Cariou et al., (2018) solved a MILP model by
CPLEX and a specific GA to solve the liner shipping network design
problem. It was illustrated that their GA can reach an optimal so-
lution when solving large-size instances. Wu and Wang (2021)
developed a generally applicable framework to optimize the
Fig. 3. The chromosome of GA.
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recovery strategies of the network system. Mathematical pro-
gramming was used to achieve the coordination of different re-
covery agents and GA was used to find the assignment of the
required resource for restoration. In the work of Nemati et al.,
(2018), an improved real-coded GA and enhanced MILP based
method were proposed to solve the dispatching optimization
problem of microgrids. Compared with other new algorithms that
are more efficient in solving individual cases, the effectiveness of
GA has been proven in the application of many engineering cases.
Choosing GA is a safer method that can get good results. Therefore,
GA is selected used for solving the gathering system optimization
considering piping network and facility layout in this research.

The GA process in this study is shown in Fig. 2: firstly, the
population is randomly initialized; secondly, the finesses functions
of all the individuals are calculated to evaluate the quality of the
solution; thirdly, if the termination condition is not met, a new
generation of the population is generated by selection, crossover
and mutation of elite individuals in the parent generation; finally,
the best individual survives the continuous evolutionary process,
and the optimized solution can be obtained after decoding.

Fig. 3 displays the physical meanings of all decision variables of
the mathematical model. The variables are represented by genes in
GA. Specifically, the variables include the number of well clusters,
the topology type of the pipeline network, the number and location
of spare pipelines, and the locations of GGSs and CPF.

3.2. K-means algorithm

The K-means algorithm is a clustering algorithm. It can classify
data objects with high similarity into the same class clusters and
classify data objects with high dissimilarity into different class
clusters. The specific process of the K-means algorithm in this paper
is as follows.

(1) Select K points as the initial centroids.
(2) Assign each point to the nearest centroid to form K clusters

and recalculate the centroid of each cluster.
(3) Repeat steps (2) and (3) until there is no centroids change.
3.3. Kruskal algorithm

Kruskal algorithm and Prim algorithm are classical algorithms
for solving the MST of a weighted connected graph (Li et al., 2017).
Kruskal algorithm is best for very sparse graphs whereas the Prim
algorithm is fastest for denser graphs but requires more memory
(Dementiev et al., 2004). The topology in this research is optimized
in a sparse graph, so Kruskal algorithm is selected to solve the MST
in this research. It finds the edgewith the smallest weight, and then
gradually turns the connected component into an MST that con-
nects all vertices. The specific process of Kruskal algorithm is as
follows.

(1) Given a weighted connected graph G (V, E, W) of a pipeline
network. V, E and W are the set of vertices, edges and
weights in the connected graph, respectively. Initially, the set
of edges in MST is empty.

(1) Sort edges in E from smallest to largest according to the value
of wi,j in W to obtain e1, e2, e3, … eNq

.
(2) Add edges to MST (ET) sequentially in sequence and make a

judgment. If the addition does not form a loop, keep the
addition of e1, otherwise discard e1.

(3) If the number of edges in the MST is Np e 1, stop the algo-
rithm and output the result T (VT, ET, WT), otherwise, go to
step (3). Np is the number of vertices in the connected graph.
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3.4. GeoSteiner algorithm

The GeoSteiner algorithm is currently a very efficientmethod for
accurately solving different types of Steiner trees. It was improved
by the work of Zachariasen (1998) andWarme (1998). Based on the
algorithm, their team also developed a GeoSteiner software pack-
age. The program has for about 20 years been the fastest tool for
computing exact solutions to Steiner tree problems in the plane(-
Juhl et al., 2018). Steiner tree is a topology that connects given
points in a plane and allows other points besides the given points to
be included in the topology. The generation of Steiner tree consists
of two very important steps: the generation and connection of full
Steiner trees (FSTs). Before generating the FSTs, a relatively time-
consuming preprocessing process is performed to reduce the
complexity and to increase the speed of the calculation. The
connection of FSTs is the bottleneck of GeoSteiner algorithm. This
step can be treated as a problem of finding theMST in a hypergraph.
It can be solved by integer programming or dynamic programming.
In this paper, the GeoSteiner package is embedded in the optimi-
zation program and the integer programming is used to solve the
problem.

3.5. Reliability assessment (Monte Carlo simulations)

Monte Carlo method is a numerical computational method
guided by probability and statistics. It provides approximate solu-
tions to engineering problems through statistical sampling exper-
iments. The implementation of the method consists of two steps:
(1) Use a large number of random variables that follow some
probability distribution to simulate the real problem. (2) Use sta-
tistical methods to estimate the numerical characteristics of the
model and to obtain the numerical solution of the problem. In this
work, the pipelines network has loops due to the addition of spare
pipelines, leading to a much more difficult calculation of reliability.
The widely used matrix operations cannot accurately calculate the
reliability of such a complex pipeline network, so Monte Carlo
simulations are used in this research. Monte Carlo simulations are
used to calculate conventional reliability and earthquake reliability
respectively. When the network is in conventional operation, the
pipeline failures are uniformly distributed random numbers. In the
event of an earthquake, the failure of the pipeline is related to the
location, depth, and magnitude of the earthquake. Besides, the
numerical characteristic of the model is described by Eq. (26). All
the solutions obtained from Monte Carlo simulation will be sorted

from largest to smallest, then R
Earthquake

will be the cEarthquake � nS

th value in sorted solutions.
In the proposed model, each pipeline branch corresponds to an

intermediate variable. The intermediate variable represents the
total failure probability of this branch pipeline. The total failure
probability is related to the unit failure probability of each pipeline,
the pipeline length, the pipeline coordinates, and various
Table 1
The conditions of scenarios 1 to 4.

Scenario index K-value Pipeline topology Added spare pipeline

Scenario 1 2 First level: MST 0
Second level: MST

Scenario 2 Variable First level: MST 0
Second level: MST

Scenario 3 Variable First level: Variable 0
Second level: Variable

Scenario 4 Variable First level: Variable Variable
Second level: Variable
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parameters of the earthquake. As shown in Fig. 2, outerMonte Carlo
simulations generate all the random numbers used to determine
whether a pipeline has failed. In each simulation, when the pipeline
network is operating normally (R1), the total probability of pipeline
failure is obtained through the unit probability of failure and the
pipeline length. When an earthquake occurs (R2), inner Monte
Carlo simulations are required to obtain the earthquake-related
random numbers. The random numbers follow their respective
distributions and include earthquake location (uniform distribu-
tion), depth (normal distribution), and magnitude (exponential
distribution). After the number of simulations is satisfied, the
approximate solution of the total failure probability of the branch
pipeline under earthquake conditions can be determined. After
that, the random numbers and the total failure probability gener-
ated uniformly by the outer Monte Carlo simulations are used to
determine whether the branch pipeline fails or not. In this way, an
updated pipeline network without failed pipeline can be obtained.
Based on these results, the final reliability can be obtained by
calculating the ratio of the total amount of shale gas delivered by
the updated pipeline network to that of the original network.When
the number of simulations is large enough, the approximate solu-
tion of the conventional reliability is the expected value of re-
liabilities obtained by all simulations, and the earthquake reliability
is the minimum of the reliabilities obtained by all simulations that
meet the reliability constraints.
4. Case study

4.1. Scenario description

A case study from a real shale gas project is used to illustrate the
effectiveness of the proposed method. In this case study, 42 shale
gas wells cover an area of about 8.5 hm2, and the total annual
output of shale gas reaches 1.851 � 106 m3. This section includes
four scenarios and three sensitivity analyses. The scenarios consist
of an original scenario and three scenarios with different variables
which are shown in Table 1. To further explore the impact of some
important variables on the objective function, the sensitivity ana-
lyses on the impact of the numbers of clusters, topology type of
pipeline network and spare pipelines number are carried out. The
optimization is implemented in Cþþ by QT in Ubuntu Linux
14.04.2. There are 2 CPUs where each of which is Intel(R) Xeon(R)
Gold 6226 R CPU@ 2.90 GHz. The Available random-accessmemory
(RAM) is 128G.
4.2. Data acquisition and preprocessing

The initial data of the case study comes from a shale gas pro-
duction area in China. The well data are shown in Table 2 including
index, name, coordinates, and output of wells.

The earthquake data comes from the China Earthquake Network
Center1 (CENC). The data from 2010 to 2019 of the area where shale
gas wells are located are collected. Figs. 4 and 5 display the fitting
results of seismic depth and magnitude, the corresponding for-
mulas are shown in Eqs. (39)-(40).

pDepthði;jÞ ðHÞ ¼ 0:07792� exp

"
�
�
H � 13:75
7:468

	2
#
; cði; jÞ2ET

(39)
1 http://www.ceic.ac.cn.

http://www.ceic.ac.cn


Table 2
Input data of wells.

Well Index Well Name Coordinate X, m Coordinate Y, m Well Output, 104 m3/d

0 Well-0 9572.40 10748.90 3.2
1 Well-1 9993.90 9313.80 4.0
2 Well-2 10445.20 11305.00 5.0
3 Well-3 10649.40 12520.20 5.0
4 Well-4 1071 2.10 14296.20 5.0
5 Well-5 9651.80 7251.40 5.0
6 Well-6 11357.90 15601.40 5.0
7 Well-7 11401.00 17859.80 5.0
8 Well-8 12625.10 9901.00 5.0
9 Well-9 11656.10 12025.00 2.5
10 Well-10 12104.00 13668.90 3.2
11 Well-11 12577.10 15490.20 3.2
12 Well-12 12959.20 19734.00 5.0
13 Well-13 13435.30 9254.40 2.5
14 Well-14 13689.10 9433.00 5.0
15 Well-15 16115.10 10850.00 2.5
16 Well-16 15636.90 12177.60 5.0
17 Well-17 15527.10 13040.00 5.0
18 Well-18 16297.10 14207.00 5.0
19 Well-19 15785.10 15318.00 5.0
20 Well-20 15806.10 16635.00 5.0
21 Well-21 15713.10 17789.00 5.0
22 Well-22 16091.10 19050.00 5.0
23 Well-23 15699.10 21122.00 5.0
24 Well-24 6270.10 16258.00 2.5
25 Well-25 13058.10 20154.00 2.5
26 Well-26 6609.10 8897.00 6.0
27 Well-27 6553.20 9903.85 6.0
28 Well-28 7533.90 8058.80 3.0
29 Well-29 3879.74 7133.97 5.0
30 Well-30 6219.76 5366.60 2.5
31 Well-31 6862.10 3241.00 5.0
32 Well-32 5977.10 1283.00 5.0
33 Well-33 6722.10 0.00 5.0
34 Well-34 6667.10 1283.00 5.0
35 Well-35 6604.30 4318.70 3.0
36 Well-36 8259.19 6216.39 3.0
37 Well-37 1136.10 11102.00 5.0
38 Well-38 2514.10 12745.00 5.0
39 Well-39 1932.10 9629.80 5.0
40 Well-40 2332.88 8052.59 5.0
41 Well-41 0.00 7614.80 5.0

Fig. 4. Distribution of seismic depth. Fig. 5. Distribution of seismic magnitude.
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Table 3
Input data of main parameters.

Genetic algorithm Pressure loss model Pipeline cost model Reliability model

Crossover 0.3 aElectricity 0.21 CCPF 2 � 107 aShale gas 2.22
Generation 400 t 8400 CGGS 5.4 � 107 nS 1000
Mutation 0.8 u 150 I 0.02 cEarthquake 0.8
Population 20 h 0.8 T 10 PEarthquake 0.2746
Selection 0.1 r 36.13 nK,max 4 RRConventional 0.97

z 0.015 Ttreemax 3 NASP,max 9

Fig. 6. Pipeline topology of scenarios 1 to 4.

Table 4
Cost results of scenarios 1 to 4.

Cost Name Scenario 1 Scenario 2 Scenario 3 Scenario 4

Pressure Loss Cost, CNY$a�1 2.08 � 107 2.08 � 107 2.07 � 107 2.07 � 107

Pipeline Cost, CNY$a�1 2.73 � 107 2.72 � 107 2.73 � 107 4.66 � 107

Station Cost, CNY$a�1 1.42 � 107 8.24 � 106 8.24 � 106 8.24 � 106

Conventional Failure Cost, CNY$a�1 6.04 � 107 5.81 � 107 5.21 � 107 1.14 � 107

Earthquake Failure Cost, CNY$a�1 2.73 � 107 2.71 � 107 2.65 � 107 8.34 � 106

Total Annual Cost, CNY$a�1 1.50 � 108 1.41 � 108 1.35 � 108 9.52 � 107

Pipeline Length, m 6.71 � 104 6.71 � 104 6.55 � 104 7.04 � 104

Conventional-Reliability 0.72 0.73 0.76 0.95
Earthquake-Reliability 0.67 0.67 0.68 0.90
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Fig. 7. Comparison of each cost of scenarios 1e4.
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pMagnitude
ði;jÞ ðMÞ ¼ 1170� expð � 2:15�MÞ; cði; jÞ2ET (40)

The main parameters in the model are shown in Table 3.

5. Results and discussion

5.1. Results for scenarios 1 to 4

The calculated network topologies are shown in Fig. 6. Fig. 6a
illustrates the initial topology of the gathering system of shale gas,
while the optimized topologies of the remaining scenarios are
presented in Fig. 6bed. The results in Table 4 show the different
cost-related items, namely pressure loss cost, pipeline cost, station
cost, conventional failure cost, and earthquake failure cost.

5.2. Discussion of four scenarios

5.2.1. Economic discussion
The total cost and their corresponding contributions for all

scenarios are shown in Fig. 7. As the number of optimization vari-
ables increases, the total annual cost tends to decrease, among
them, the reduction of Scenario 4 is the most obvious. Specifically,
the total annual cost of Scenario 4 is reduced by 5.48 � 107 CNY-
$a�1compared with Scenario 1. Moreover, in Scenarios 1 to 3, the
Fig. 8. The variations of TAC, conventional reliabilit
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costs of conventional failure and earthquake failure account for the
largest proportion of the total annual cost, and the sum of these two
costs exceed 50% or even 60%. In Scenario 4, after improving the
reliability of the pipe network, pipeline costs account for the largest
proportion, reaching 48.95%.

In Scenario 2, the number of well clusters is reduced from 2 to 1.
This reduces the cost of the gas gathering station while other costs
do not vary significantly, hence reducing the total annual cost.
Different from Scenario 2, the optimal pipe network topology of
Scenario 3 is ESMT. Compared with MST, ESMT reduces the pipe
length by introducing Steiner points. The shorter the pipe length,
the lower the risk of damage and energy loss, and therefore the
lower the total annual cost. This results in a 4.60% reduction in the
total annual cost. In Scenario 4, the optimization of spare pipelines
further reduces the total annual cost by 29.48%, compared with
Scenario 3. On one hand, adding spare pipelines increases the in-
vestment cost and is thus unfavorable for reducing the total annual
cost. On the other hand, the increase of spare pipelines provides
new paths for gas transmission among well clusters, which reduces
the risk of pipeline failures, thereby reducing conventional and
earthquake failure. It can be concluded that there is a balance be-
tween the pipeline cost and the reliability of the pipeline network.
In Scenario 4, due to the significant reduction in risk loss, the
adverse impact of a small number of spare pipelines on the cost is
completely offset, so the total annual cost is greatly reduced. The
above results prove the need for an optimal cluster number, to-
pology type, and reliability.

5.2.2. Reliability discussion
Fig. 8 reports the total annual cost, along with the trend of those

reliabilities for conventional and earthquake scenarios. With the
increase of the factors (K-value, pipeline topology and spare pipes)
considered in the model, the conventional reliability and earth-
quake reliability of the pipeline network has been improved, and
the total annual cost has been continuously reduced. Additionally,
both conventional reliability and earthquake reliability have similar
changing trends, and their influences on TAC are also consistent.

There is no significant variation between both reliability esti-
mations in Scenario 2. In Scenario 3, the conventional reliability
increases, whereas the earthquake reliability does not. The reason
is that the total length of the ESMT pipeline network in Scenario 3 is
shorter than in Scenarios 1e2, and the conventional reliability
decreases as the length of the pipe network increases, as shown in
Eqs. (25), (28)e(31). Furthermore, the earthquake reliability of the
y, and earthquake reliability of scenarios 1e4.



Table 5
The conditions of sensitivity analysis.

Sensitivity analysis K-value Pipeline topology Added spare pipeline

Well cluster number Variable First level: ESMT 0
Second level: ESMT

Pipeline topology 1 First level: Variable 0
Second level: Variable

Spare pipeline number 1 First level: ESMT Variable
Second level: ESMT

Fig. 9. The variations of each cost with cluster number.

Table 6
The variations of conventional and earthquake reliabilities with cluster number.

Cluster Number 1 2 3 4

Conventional reliability 0.760 0.761 0.778 0.789
Earthquake reliability 0.678 0.697 0.698 0.728
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pipeline network is not only affected by the length, but also limited
by the magnitude, depth, and epicenter distance of the earthquake.
These earthquake factors increase the failure rate of a single pipe-
line, thus limiting the increase in earthquake reliability. In Scenario
4, both conventional reliability and earthquake reliability are
greatly improved by 31.17% and 34.39% respectively. The increased
reliability greatly reduces the total annual cost. The addition of
Fig. 10. The variations of each cost with pipeline topologies.
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spare pipelines directly modifies the topological structure of the
pipe network, and new gathering paths are generated. Regardless
of the conventional situation or the earthquake situation, new
gathering paths means that even if the original route fails, the
gathering of the shale gas will be still very likely to operate nor-
mally, so the reliability is significantly improved.

Based on the above results, we can infer that the cluster number
has no apparent influence on the two reliabilities of the pipeline
network. The topology type can further affect the conventional
reliability by affecting the total length. Also, the spare pipeline can
greatly improve the conventional reliability and the earthquake
reliability at the same time.

5.3. Sensitivity analysis

The analysis in Section 5.2 is valid when the number of clusters,
pipe network structure and the number of spare pipelines are fixed.
However, these factors will vary in different real-life cases. In in-
dustrial production, designers are more concerned about the
impact of changes in these factors on the economic benefits, and
then determine the optimal layout of the case. Based on the results
in Section 5.2, a sensitivity analysis for the cluster number, topology
type, and the number of spare pipelines, on the economic benefit is
carried out. The details of each sensitivity study are shown in
Table 5.

5.3.1. Well cluster number
In this section, the range of clusters number is set between 1 and

4. Fig. 9 and Table 6 respectively show the costs and reliabilities for
each of these different scenarios. The results in Fig. 9 further vali-
date what has already been shown in Section 5.2. When the
number of clusters is 1, the total annual cost is the lowest, given
that the increase in cluster number will significantly increase the
station cost. On the other hand, both the reliabilities of the pipe
network tend to increase slightly as the number of clusters in-
creases. However, the improvements of the reliabilities do not
exceed 5%. Similarly, pipeline cost and pressure loss cost decrease
slightly as the cluster number increases. Therefore, changes in
station cost due to the number of clusters have the greatest impact
on the objective function. Tomaximize the economic benefit, in this
case, a lower number of clusters may be more appropriate. Overall,
the optimal number of well clusters will vary according to actual
engineering factors. If the locations of wells are not as concentrated
as in this case study, but scattered in more areas and have longer
distances, the costs related to the pipeline will be increased. In this
case, increasing the number of clusters may reduce the total cost.
Table 7
The variations of conventional and earthquake reliability among pipeline topologies.

Topology STAR MST RSMT ESMT

Conventional Reliability 0.825 0.730 0.747 0.750
Earthquake Reliability 0.679 0.667 0.659 0.668



Fig. 11. The variations of each cost and reliability with spare pipeline number.
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5.3.2. Pipeline topology
This section analyzes the four types of pipe network topologies,

namely STAR, MST, RSMT, and ESMT, respectively. Fig. 10 shows the
cost for these different topologies. The results prove one conclusion
in Section 5.2 again, that is, the total annual cost of the pipe
network with the ESMT structure is the lowest when other vari-
ables are kept fixed. In addition, changes in topology have a rela-
tively larger impact on reliabilities and pipeline cost comparedwith
cluster numbers. Thus, the consideration of pipeline topology in the
optimization is necessary.

In the STAR pipeline network, each well is directly connected to
the gas gathering station, and the pipelines are independent of each
other. The damage of a pipeline will not affect the gas trans-
portation of the wells that are not directly connected to it in the
entire pipeline network. Therefore, the STAR pipeline network has
higher reliability, as shown in Table 7. However, this leads to a
longer length, which results in higher pipeline and pressure loss
costs. Compared with the STAR pipe network, the MST pipe
network connects each adjacent well and then connects a single
well to the gas gathering station to achieve the gas gathering and
transportation, reducing the total pipeline length, so its total annual
cost is lower. By introducing Steiner points to shorten the length,
the RSMT, and ESMT pipe networks further reduce the total annual
cost and ESMT has the shortest length. Therefore, to obtain the
maximum economic benefits, the ESMT pipe network is the better
choice.
5.3.3. Spare pipeline number
This section sets the number of spare pipelines from 0 to 9.

Fig. 11 shows the changes in different costs and reliabilities. The
spare pipeline has a significant impact on the pipeline cost and both
reliabilities. As the number of spare pipelines increases, the total
annual cost and reliabilities show a decreasing and increasing
trend, respectively. When the number of spare pipelines exceeds 5,
the total annual cost rebounds slightly and the two reliability tend
to stabilize. Themain reasons for the change in the total annual cost
come from the conventional and earthquake failures and pipeline
costs. When the spare pipeline number is small, the proportion of
failure costs is greater, and its decrease is the main reason for the
decrease in the total annual cost. However, as the number of
pipelines increases, the proportion of failure costs decreases, and
the space for reduction is smaller. From this point onwards, pipeline
costs dominate over the changes in the total annual cost, so the
total annual cost tends to rebound. In the early stage of the increase
in the number of pipelines, the increase in reliability was due to the
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appearance of a small number of spare pipelines that change the
original network topology and provide new transportation paths. In
the later stage, because the reliability of the pipeline network is at a
high level, and alternative paths appear, the continuous increase of
spare pipelines no longer has a significant impact on reliability.
Overall, to maximize economic benefit, adding 5 spare pipelines
seems to be a more suitable choice.

6. Conclusion

This research proposed a method to comprehensively optimize
shale gas gathering systems considering reliability, uncertainty,
topology arrangements, and hydraulic calculations. The optimiza-
tion includes well clustering, selection of site and central process-
ing stations, and pipe network topology. Additionally, the proposed
model can describe the optimization considering several uncer-
tainty factors. The uncertainty factors include pipeline failure under
no-earthquake conditions, seismic location, depth, and magnitude.
Using the proposed method, new topology arrangements with
loops based on STAR, MST, RSMTand ESMTcan be obtained, and the
spare pipelines can also effectively enhance the reliability of the
gathering system. The GeoSteiner algorithm is innovatively coupled
with a set of optimization methods, namely genetic algorithm, K-
means algorithm, Kruskal algorithm, and linear programming. A
case study is carried out, where the integrated algorithm was able
to provide realistic solutions and reaches the following insights:

(1) The shale gas gathering system with one well cluster, ESMT
topology, and 5 spare pipelines has the lowest total annual
cost with 9.52 � 107 CNY$a�1. Its conventional reliability and
earthquake reliability both reach 0.9.

(2) Well cluster number has a greater influence on station cost
but has little impact on pipeline cost, pressure loss cost and
failure costs. The fewer the cluster number, the lower the
total annual cost and reliability of the pipe network system.

(3) Topology arrangements have a relatively larger impact on
reliabilities and pipeline costs than cluster numbers. In
general, a pipeline networkwith a tree-like topology is better
suited to a star-like topology, although the former is less
reliable. ESMT is the best among the three tree-like
topologies.

(4) Spare pipeline number has the most significant impact on
pipeline cost and reliability. With the increase in the number
of spare pipelines, the total annual cost shows a decreasing
trend at the beginning, followed by an increasing one later,
while both reliabilities show an asymptotic behavior.

In future work, the proposed algorithm will be improved to
solve the proposed problem on a larger scale more efficiently. Be-
sides, more engineering factors are needed to be considered in the
model, such as the topography of the well area, the variation of
shale gas productionwith mining time, safety factors in the process
of shale gas transportation, etc.
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Nomenclature
Main Abbreviations
CPF Central processing facility
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ESMT Euclidean Steiner minimum tree
GA Genetic algorithm
GGS Gathering gas station
LP Linear programming
MILP Mixed integer linear programming
MST Minimum spanning tree
RSMT Rectilinear Steiner minimal tree
Input Parameters
a Coefficient of exponential distribution
aCPF Construction cost of the central processing station, CNY
aElectricity Cost of electricity, CNY,kW�1,h�1

aGGSk Cost of the construction of kth gathering gas station,
CNY

aShale gas Unit price of shale gas, CNY$m�3

b Coefficient of exponential distribution
bBinary
a;b;g

Boolean parameter

CCPF Annual construction cost of the central processing
station, CNY$a�1

cEarthquake Confidence level of reliability under earthquake
conditions

CGGS
k Annual cost of the construction of kth gathering gas

station, CNY$a�1

I Annual interest rate
nASP;max Max number of added spare pipelines
nK;max Max number of well clusters
ns The number of Monte Carlo simulations for different

parameters of earthquake
PEarthquake The probability of the earthquake
RRConventional Unit reliability of the pipeline under conventional

conditions, km�1

T Operation life cycle of the pipeline network system, a
t Annual operating hours, h
Ttreemax Max number of the topology types of pipeline network
u(i,j) The flow rate of fluid in the pipeline, m,s�1
Variables
AðkÞ
nVT �nVT

Adjacent matrix

aConventionali;j The element of the AðkÞ
nVT �nVT

aPipelineði;jÞ The unit price of the pipeline ði; jÞ, CNY$m�1

aEarthquakei;j The element of the AðkÞ
nVT �nVT

CPipeline
ði;jÞ Pipeline construction cost of the pipeline connected ith

and jth vertex, CNY$a�1

CPressure
ði;jÞ Pressure loss cost of the pipeline connected ith and jth

vertex, CNY$a�1

CReliability Loss cost of pipeline failure, CNY$a�1

D An exponent, which can control the flowdirection in the
pipeline

Dout
ði;jÞ The outer diameter of the pipeline connected ith and jth

vertex, m
Din
ði;jÞ The inner diameter of the pipeline connected ith and jth

vertex, m
G(i,j) The mass flux of the fluid in the pipeline, kg,m�2,s�1

H Depth of focus, km
Hf
ði;jÞ Head loss caused by resistance from ith vertex to jth

vertex, m
Lði;jÞ The length of the pipeline connected ith and jth vertex,

m
M Magnitude of the earthquake
MnVT �nVT The reachability matrix
mi;CPF The element of MnVT �nVT

nASP The number of added spare pipelines
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N(i,j) The shaft power that overcomes resistance when the
gas is transported from ith vertex to jth vertex, W

nK The number of well clusters
nVT The number of vertices in the optimized connected tree
Neði;jÞ The effective power of the conveyor between ith vertex

and jth vertex, W
PGVði;jÞ Peak ground velocity, cm,s�2

pDepthði;jÞ ðHÞ The probability of seismic depth Hwhen the earthquake
occurs

pMagnitude
ði;jÞ ðMÞ The probability of seismic magnitude M when the

earthquake occurs
pinði;jÞ The inlet pressure of the pipeline, kPa

poutði;jÞ The outlet pressure of the pipeline, kPa
Qi Shale gas production of ith well, kg,s�1

ql;i The shale gas flowrate from ith vertex to the CPF in the
lth simulation for the location of pipe failure under the
conventional conditions, kg,s�1

ql;s;i The shale gas flowrate from ith vertex to the CPF in the
lth simulation for the location of earthquake and sth
simulation for the seismic depth and magnitude under
the earthquake condition, kg,s�1

RConventional The reliability of the pipeline network system under
conventional conditions

Rði;jÞ The distance from the edge ði; jÞ to the epicenter, km

R
Earthquake

The reliability of the pipeline network system in the
event of an earthquake

RREarthquakeði;jÞ The repair rate of the branch pipeline ði; jÞ in the event
of an earthquake, km�1

T tree
first Integer variable, the topology type of the first level

pipeline network
T tree
second Integer variable, the topology type of the second level

pipeline network
TAC Total Annual Cost, CNY,a�1

vscaledði;jÞ Scaled velocity on the edge ði; jÞ
w(i,j) The mass flow rate of the fluid in the pipeline, kg,s�1

Wg Mass flow rate of vertex g , kg,s�1

wa,b,g the mass flow rate of shale gas in the edge ða; bÞ
connected to vertex g when the material balance is
performed on the vertex g, kg,s�1

Wt(i,j) The weight of the unit length of the pipeline, kg,s�1

Sets and indices
ET The set of edges in the connected graph, denoted by

indices ði; jÞ
VT The set of vertices in the connected graph, denoted by

indices i; j;a;b;g
VGGS The set of gas gathering stations, denoted by index k
NS The set of seismic depth and magnitude simulations,

denoted by index s
NL The set of pipeline failure location and earthquake

location simulations, denoted by index l

Greek letters
h The efficiency of conveying equipment
m The location parameter of the normal distribution
r The density of the fluid in the pipeline, kg,m�3

s The shape parameter of the normal distribution
z The coefficient of friction of the pipeline
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