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a b s t r a c t

In short-term operation of natural gas network, the impact of demand uncertainty is not negligible. To
address this issue we propose a two-stage robust model for power cost minimization problem in gun-
barrel natural gas networks. The demands between pipelines and compressor stations are uncertain with
a budget parameter, since it is unlikely that all the uncertain demands reach the maximal deviation
simultaneously. During solving the two-stage robust model we encounter a bilevel problem which is
challenging to solve. We formulate it as a multi-dimensional dynamic programming problem and pro-
pose approximate dynamic programming methods to accelerate the calculation. Numerical results based
on real network in China show that we obtain a speed gain of 7 times faster in average without
compromising optimality compared with original dynamic programming algorithm. Numerical results
also verify the advantage of robust model compared with deterministic model when facing uncertainties.
These findings offer short-term operation methods for gunbarrel natural gas network management to
handle with uncertainties.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

China has committed to peak carbon dioxide emissions before
2030 and achieve carbon neutrality before 2060. Natural gas is
playing an important role in optimizing current energy consump-
tion structure and it is a strategic replacement of crude oil (Li et al.,
2016; Liang et al., 2019; Zhao et al., 2019; Huang et al., 2019) to
reduce carbon emissions. To rationalize the natural gas availability,
long-distance natural gas network is built across China through the
West-East Gas Transmission Project, etc (Ma and Li, 2010). Natural
gas network is one of the largest and most complex nonlinear
systems in the world. Operating the natural gas network properly
has attracted attention from industry and academia.

However, compared with crude oil, natural gas shortage prob-
lem is greater as the transportation cost is greater and as a result of
abnormal weather conditions (Lin and Wang, 2012). Take the “Gas
shortage” inwinter of 2017 for example, acute natural gas shortages
severely influenced residents' heating and enterprises’ energy
H. Deng).
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supply in Hebei Province of China. In short-term operation of nat-
ural gas network, other factors that result in customer demand
varying in unpredictable pattern include uncertain market and oil
prices (Hellemo et al., 2012; Ríos-Mercado and Borraz-S�anchez,
2015, Pan et al., 2020).

Operation management under the guidance of deterministic
model will fail to performwell under uncertainties. The pipelines in
the network usually have a long distance, a change at one end may
need a certain amount of time to be transmitted to the other end. If
the planning decision is made based on prediction value, when the
real customer demand is revealed, previous planning decisionsmay
be sub-optimal or even infeasible and the system takes time to
react. Small disturbances may cause serious operation problems.
Handling with uncertainties in this field is quite challenging (Ríos-
Mercado and Borraz-S�anchez, 2015) and meaningful.

Robust optimization aims to find a solution that optimizes the
worst-case cost. Thus no matter what the uncertainty realization is,
the performance is acceptable. Acceptable here has two meanings:
the decision should be feasible in all possible realizations and the
worst-case cost is optimal. By this method we can respond to a
variety of unexpected situations. What’s more, compared with
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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stochastic programming and chance-constraint programming,
robust optimization needs not assuming distributional information
of the uncertain parameters. It is more applicable in practice when
the accurate distributions of uncertain parameters are not clear.

We establish a two-stage robust optimization model consid-
ering uncertain volumetric flow rate demands at each intermediate
node. In the two-stage robust optimization problem, the first-stage
decision is made before the uncertainty is revealed and cannot be
adjusted within a certain time. However, the worst case is a rare
occurrence. Considering it as no difference between other much
common cases will result in over-conservatism. Methods to over-
come this problem include utilizing the probability information to
construct the uncertainty set, introducing a budget parameter to
adjust the degree of conservatism. In this paper, a budget param-
eter is introduced to control the conservatism since it is rare that all
the demands reach the maximal deviation simultaneously.

The topology of natural gas transmission network has three
types: gunbarrel structure, tree structure and cyclic structure, as
shown in Fig. 1. In our study, we assume gunbarrel network
structure. Though it is the simplest type of the three, it is an
important building block of tree structured and cyclic structured
networks. Focusing on gunbarrel network is meaningful for natural
gas network applications (Deng et al., 2019). What’s more, many
important natural gas networks are gunbarrel in China such as the
transmission pipeline from central Asia to China (Hu, 2014). We
focus on transmission network in which a large volume of gas is
moved at high pressures from suppliers to regional demand points.
Appropriate operation of compressor stations in the network is
crucial to satisfy customer demands while at the same time opti-
mizing the power cost.

During solving the two-stage robust model in gunbarrel
network, we encounter a maxmin subproblem (SP), which is not
common in natural gas optimization research field. Solving this
non-convex bilevel programming problem is challenging. We take
advantage of the separable structure of the problem and express it
as a multi-dimensional dynamic programming formulation. To
accelerate the calculation, we propose multi-dimensional
Fig. 1. Three types of pipeline network topologies.
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approximate dynamic programming algorithms.
Approximate dynamic programming has recently drawn atten-

tion from academia and industry. In artificial intelligence/computer
science communities it is known as Reinforcement Learning, while
in the control theory related field it is known as Neuro-Dynamic
Programming. From the perspective of operation research, it em-
phasizes more on the high-dimensional problems (Powell, 2009).
The method can focus on reducing the number of states or
approximating the value function and policy function. In solving
the multi-dimensional maxmin problem by approximate dynamic
programming in our problem, two techniques are proposed:
neighborhood search and aggregation.

The idea of neighborhood search is that adjacent states in dy-
namic programming should have similar optimal corresponding
states in previous stage. Deng et al. (2019) and Zhang et al. (2020)
successfully applied neighborhood search in solving deterministic
steady-state and transient-state gunbarrel natural gas network
power cost optimization problem. A significant speed improvement
was obtained. However, the approximate dynamic programming
algorithm and corresponding lemmas were based on one-
dimensional case in Deng et al. (2019). We modify and extend
them to multi-dimensional cases and give analytical bounds and
theoretical justifications in any N-dimensional case. We also
analyze conditions when the optimality is not compromised by
multi-dimensional neighbourhood search.

Aggregation is another powerful technique in approximate dy-
namic programmingwith a review in Rogers et al. (1991). Instead of
searching in the whole states, we can only consider a collection of
“representative” states and apply neighborhood search mentioned
above in these states. The new state space is a subset of the original
states. It is essentially a piecewise constant approximation to the
original cost function. Combining neighborhood search and ag-
gregation, we can accelerate the calculation of dynamic program-
ming within acceptable gaps.

The major contributions of this paper are:

1. From a management perspective, a hybrid method with both
proactive and reactive action is provided to cope with un-
certainties in short-term operation management of gunbarrel
natural gas network, instead of passively reacting when change
already happens. By applying two-stage robust optimization
model proposed in this paper, the risk of natural gas trans-
portation interruption caused by short-term accidents can be
reduced, while the worst-case cost is optimized.

2. Previous research in this field utilizing robust optimization
simplified the model by assuming linear relationship or
considered only passive network without compressors
(Abmann et al., 2018, 2019). We consider detailed network
model in both working domain and power cost function in
natural gas compressor stations such that the solution can direct
the operation (Deng, 2015). What’s more, to reduce the over-
conservatism, we introduce an uncertainty budget parameter
to form the uncertainty set as the one proposed in Bertsimas and
Sim (2004). Based on real gunbarrel network structure in China,
we verify the robust model and conduct simulations to show the
advantages compared with deterministic formulation model.
The simulation results show that robust model ensures feasi-
bility with uncertain demands while the deterministic model
fails to be feasible in some simulated uncertainty realizations.

3. In solving the two-stage robust model, the SP is challenging
since it is a bilevel problem which is also non-convex and
nonlinear. We design appropriate and efficient algorithms to
solve it starting with a reformulation to a dynamic program-
ming problem. In multi-dimensional dynamic programming,
curses of dimensionality are the major challenges which demand



Y.-Z. Meng, R.-R. Chen and T.-H. Deng Petroleum Science 19 (2022) 2497e2517
heavily on computing resources, since the number of states in-
creases exponentially as the dimension number increases. By
applying the proposed approximate algorithms, the maxmin SP
can be solved in reasonable time and we obtain a 7 times speed
gain in calculation.

Section 2 reviews the relevant literature. Section 3 describes the
model formulation. In Section 4, we discuss the algorithm to solve
the problem. Section 5 presents numerical experiments to evaluate
the algorithm performance and verify the advantages of proposed
methods compared with deterministic models. In Section 6, we
summarize our conclusions.

2. Literature review

The constraints of this power cost minimization problem
contain three parts: the mass balance constraint, the relationship
between the pressure drop and the flow represented by a nonlinear
constraint and a nonlinear non-convex feasible set of the working
region of the flow and pressure in each compressor station. Since
the objective function is also non-convex in the flow and the
pressure, the original problem is difficult to solve.

Taking into account the decision of switching the compressor
brings integer variables. Nguyen et al. (2008) assumed that the
switching occurred only at the beginning of each period or hour.
Their experiments showed that Mixed Integer Nonlinear Pro-
gramming (MINLP) model generated the most effective solution
compared to the genetic algorithm and expert systems. In Wu et al.
(2000) the amount of flow and pressure variables were determined
at the first level and thenworking units were decided at the second
level. Cobos-Zaleta and Ríos-Mercado (2002) considered all those
variables at the same level and formulated the problem as an
MINLP. They applied an outer approximation with equality relax-
ation and augmented penalty method. However, global optimality
was not guaranteed due to the non-convexity. According to the
conversations with managers from Chinese natural gas company,
the on-off states of each compressor remain unchanged in short-
term operations. The switching decisions of compressors are
considered as first-stage decisions in this work.

To solve the deterministic fuel cost minimization problem,
methods including dynamic programming, gradient-based algo-
rithm, geometric programming approaches and linear approxima-
tion approaches are studied. We refer readers to Ríos-Mercado and
Borraz-S�anchez (2015) for a comprehensive overview in this field.
We mainly focus on formulations for steady networks and related
methods.

Dynamic programming has been successfully applied to opti-
mize operation of natural gas network (Borraz-S�anchez and
Haugland, 2011; Wong and Larson, 1968). In power cost optimiza-
tion problem of natural gas station operation, the problem typically
has a separable structure. Optimization in single station (Deng,
2016) and in network (Deng et al., 2019) can both be solved by
dynamic programming.

Approximate dynamic programming (ADP) is also known as
reinforcement learning or neuro-dynamic programming. There are
two main classes of ADP: approximation on policy function and
approximation on cost/value function. In the first class, a set of
functionsmap the states to the decisions (Sutton et al., 2000; Baxter
and Bartlett, 2001). The second class is more common, in which a
set of basis functions are utilized to approximate the cost/value
functions by such as polynomial functions (Powell, 2007) and
Fourier basis (Konidaris et al., 2011). ADP method is successfully
applied in solving deterministic model of natural gas network
operation. In Deng et al. (2019) and Zhang et al. (2020), approxi-
mate dynamic programming based on idea of neighborhood search
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was applied to operation management in steady state and transient
state network.

Approximationwith piecewise linear functionwas studied in De
Wolf and Smeers (2000), who mainly handled the nonlinearity
relations of flow rate and pressure. Geibler et al. (2015) considered
steady state network. They utilized piece-wise linear approxima-
tion and obtained a mix-integer formulation. Martin et al. (2006)
studied non-separable functions approximation and proposed
methods based on SOS Type 2 constraints. The method was
comparedwith lambda-method and delta-method. In our work, we
utilize the separable structure of the problem and combine lambda-
method with SP to simplify the calculation.

Xue et al. (2016) and Han et al. (2019) established a natural gas
pipeline transmission plan for China National Petroleum Corpora-
tion (CNPC). The model specified the amount of flow at each node
to minimize the total cost including procurement costs and trans-
portation costs. Their planning model was a multi-period problem
with the minimum time unit of either a month or a year. In our
model, shorter time unit, a week or a day, is considered. What’s
more, we consider the uncertainty in demand and supply making
the volumetric flow rates uncertain variables.

Optimization with uncertainty adds complexity to the original
deterministic formulation. Efforts have been made to consider
uncertainty in the natural gas network operation problem (Gotzes
et al., 2016; Wintergerst, 2017; Behrooz, 2016) with stochastic
programming, chance-constraint programming, etc. Stochastic
programming was widely utilized to consider uncertainties of
natural gas price and demands (Vahid-Pakdel et al., 2017; Wang
et al., 2020) in energy system operation and uncertainties were
described and modeled by scenarios with specific predefined
probability. Similar with stochastic programming, chance-
constraint programming requires determination of the distribu-
tion information of uncertain parameters.

Unlike stochastic programming and chance-constraint pro-
gramming, robust optimization only assumes that the uncertain
parameter varies in a given uncertainty set. As for robust optimi-
zation related research, we find Abmann et al. (2018) and Abmann
et al. (2019) who applied two-stage robust optimization in natural
gas network operation. However, either the network examined was
passive without compressors or compressor model was simplified
by linear models in previous research. In this paper, we consider
gunbarrel-network optimization with detailed compressor models.

To reduce the over-conservatism of robust optimization, three
methods can be utilized. Firstly, budget parameter proposed by
Bertsimas and Sim (2003) and Bertsimas and Sim (2004) is able to
restrict the maximum number of uncertain parameters that
simultaneously reach the worst case. Second, data-driven methods
can be used to construct uncertainty sets. Third, adjustable robust
optimization allows some decisions to adjust after the uncertainties
are revealed. Typically the second stage decision variables were
approximated by an affine rule (Ben-Tal et al., 2004) or extended
affinely adjustable robust counterparts (Chen and Zhang, 2009).
Other solution approximation technique is finite adaptability
studied in Hanasusanto et al. (2015) where the decision maker pre-
committed to K second-stage decisions. In this paper, we consider
two-stage robust optimization with uncertainty budget, where the
second stage decision variables keep all the details instead of being
approximated by affine rules.

Two-stage robust optimization problems suffer from computa-
tion burden compared to the conventional static robust optimiza-
tion problem. Ben-Tal et al. (2004) showed that general two-stage
robust linear programs were NP-hard. The nonlinearity and non-
convexity of our problem make it more complicated to compute
the solution. We refer readers to Gabrel et al. (2014) and Gorissen
et al. (2015) for an overview of the recent development in robust
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optimization.
To solve the fully adjustable two-stage robust optimization

problem, Benders-dual cutting plane and column-and-constraint
generation (C&CG) algorithm are typically used. The C&CG algo-
rithm generates constraints from uncertainty scenarios in a dy-
namic way, while the Benders method generates constraints based
on the dual solution of the SP. See Zeng and Zhao (2013) for more
details of this method. Their experiments showed that C&CG per-
formed an order of magnitude faster than the Benders-dual algo-
rithm in the sense that the solution was found with a smaller
number of iterations. The method can apply to linear and non-
linear problems.

To solve the maxmin problem in second stage, applying dual of
the inner problem and Karush-Kuhn-Tucker (KKT) optimal condi-
tions are often used to transfer this bilevel problem into a single-
level problem. The former is applicable for linear functions. The
latter is only necessary and not sufficient for non-convex inner
problems, which may result in local or even suboptimal solutions.

The work most closely related to us where two-stage robust
optimization is applied is in Abmann et al. (2019). They applied
two-stage robust optimization to the fuel cost minimization prob-
lem considering uncertainty in demand and physical parameters
and decided the square pressure difference of the compressors in
the first stage, while squared pressure and flow became the second
stage decisions. They used simplified compressor model that the
cost was independent of the flow through the compressor and was
U ¼

8><>:dQ ¼ ðdQ0; dQ1:::dQmÞ :

�������dQm � dQm

������� � ddQ
^

m;
X

m2½M�

jdQm � dQmj
dQ
^

m

� G;cm2½M�

9>=>;:
linear in the square pressure difference, enabling them to exploit
the specific problem structure and end up with a single stage
problem. Compared to our work they used different first-stage
variables, different uncertainty sets and much simpler objective
functions. The designed approximate dynamic programming al-
gorithm and applications in solving maxmin problem in robust
optimization of gunbarrel natural gas network operation are also
our innovative contributions.
3. Notation and model

In this section, we propose a two-stage robust optimization
model of the compressor power cost minimization problem. In our
settings, the first stage decisions are the discharge pressure of the
compressor station and working status of each compressor. The
rotational speed of each compressor and volumetric flow rate
allocation can be adjusted once the uncertain flow condition is
clear. The explanation of the operation process can be seen in
Behrooz (2016). All the notations needed are listed in Table 1.

Moreover, we make following assumptions in the natural gas
transmission network:

(A1) The transmission network has N stations overall, with Kn

non-identical compressors installed in parallel at station n.
Intermediate nodes may exist between stations and uncer-
tain demands are extracted from these nodes.

(A2) The total gas inflow of a compressor station is equal to the
total outflow since the natural gas is not used to power the
compressors.
2500
(A3) The network is in a steady state, i.e., velocity, pressure and
the stream’s cross-section vary from point to point but are
time-independent.

In all the intermediate nodes, there is gas flow into or out of the
nodes, which is uncertain as well as the original flow into the
network dQ0. Assuming that there are L pipelines, we use
Q ¼ ðQ1;Q2;/;QLÞT to denote the uncertain variable volumetric
flow rates passing through each pipeline. Let lðnþÞ, lðn�Þ be the
pipeline connecting the compressor n outlet and inlet, respectively.
If there is no intermediate node between station n� 1 and station
n, we have Qlððn�1ÞþÞ ¼ Qlðn�Þ, otherwise, Qlððn�1ÞþÞ and Qlðn�Þ may be
different due to the uncertain flow in the intermediate node. Let
dQm denote the flow rate withdrew by intermediate node m, then
Qlððn�1ÞþÞ �

P
m2Mðn�1;nÞdQm ¼ Qlðn�Þ, whereMðn�1;nÞ is the set of

all intermediate nodes between station n� 1 and n.
Since the demands are uncertain, dQm varies around the nom-

inal value in the range of
����dQm � dQm

���� � ddQ
^

m. The maximum

variation is expressed as the fraction d of dQ
^

m, where 0 � d � 1. We
denote the uncertainty budget parameter as G, where G is a pre-
defined integer denoting the maximum number of nodes reaching
the maximal deviation simultaneously. Following the formulation
in Bertsimas and Sim (2004), the uncertainty set can be represented
as
To construct uncertainty set U in practice, the varying range of
volumetric flow rate can be obtained based on prediction. The

predicted value can be considered as nominal value dQm. Based on
average historical prediction accuracy, we can define the possible
range of demand volumetric flow rate and uncertainty budget
parameter.

The details of power cost minimization problem of a compressor
station are shown in Appendix A. An example of working domain of
a compressor is shown in Fig. 2. Objective function and constraints
of the deterministic model in a compressor are highly non-convex
and nonlinear. What’s more, in natural gas network, the pressure
drop in a pipeline is related to the volumetric flow rate in complex
form (Xue et al., 2016).

As for the robust optimization, the first-stage decisions are the
discharge pressure of each compressor station and on-off states of
compressors in each station. Once the uncertain volumetric flow
rate is revealed, suction pressure can be determined and allocation
of flow rate in each compressor station can be adjusted by con-
trolling the rotational speed of each compressor, which act as
second-stage decision variables. The second stage decisions should
optimize cost under given first-stage decisions and uncertainty.

Denote by 4n;k the mapping from each pair of suction pressure,
suction temperature of station n ðpsn; Ts

nÞ to the set of feasible
discharge pressure, discharge temperature of station n and volu-
metric flow rate allocation in station n ðpdn; Td

n ; Qn;kÞ. Then the
working domain of compressor unit k in station n can be expressed
as:



Table 1
Notation and symbols.

Exogenous parameters

N ¼ Total number of compressor stations
Kn ¼ Total number of compressors at compressor station n, and let ½Kn� ¼ f1;2;…;Kng be the index set of compressors at station n, n2½N�
Qn ¼ Nominal value of the volumetric flow rate at station n, n2½N�, kg/s
Tsn=

Td
n

¼ Suction/discharge temperature at compressor station n, n2½N�, K

P d
0

¼ Suction pressure at the initial pipeline segment, MPa

pd;max
n

¼ Maximum required suction pressure at station n, n2½N�, MPa

pd;min
n

¼ Minimum required suction pressure at station n, n2½N�, MPabaj;n;k ¼ Constant values for modeling the surge and stonewall lines of compressor k in station n, 1 � j � 6, k2½Kn�, n2½N�bbj;n;k ¼ Constant values for modeling isentropic head and efficiency of compressor k in station n, 1 � j � 6, k2½Kn�, n2½N�
R ¼ Gas constant, MJ/kg , K
Zn ¼ Compressibility factor at the suction side of compressor station n, n2½N�
s ¼ Isentropic exponent
d ¼ The maximum variation fraction of the volumetric flow rate
G ¼ The uncertainty budget parameter

Intermediate variables

fn;k ¼ Mass flow rate of compressor k at station n, k2½Kn�, n2½N�, kg/s
Hn;k ¼ Isentropic head of compressor k at station n, k2½Kn�, n2½N�, MJ/kg
sn;k ¼ Rotational speed of compressor k at station n, k2½Kn�, n2½N�, r/s
hn;k ¼ Isentropic efficiency of compressor k at station n, k2½Kn�, n2½N�
psn ¼ Suction pressure at compressor station n, n2½N�, MPa

First-stage decision variables

S n ¼ The set of switched-on compressors in compressor station n, n2½N�
pdn ¼ Discharge pressure at compressor station n, n2½N�, MPa

Second-stage decision variables

Qn;k ¼ Actual volumetric flow rate passing through compressor k at station n, k2½Kn�, n2½N�, m3/s
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�
psn; T

s
n
�
24n;k

�
pdn; T

d
n ;Qn;k

�
:

Next we consider the relationships between station n� 1 and n.
Let vector Q ðn�1;nÞ denotes volumetric flow rates in all pipelines
between station n� 1 and n. Let gn be the function that computes
suction pressure and temperature of compressor station n from
discharge pressure and temperature of compressor n� 1 in gun-
min
pd
n ;S n

max
dQ2U

min
ps
n;Qn;k

:
XN
n¼1

X
k2S n

Pn;k

0@psn; T
s
n; p

d
n;Qn;k;S n

1A s:t:
�
psn; T

s
n

�
24n;k

�
pdn; T

d
n ;Qn;k

�
; cn2

h
N
i
; k2S n;

�
psn; T

s
n

�
¼ gn

�
pdn�1; T

d
n�1;Q ðn�1;nÞ

�
; cn2

h
N
i
\
n
1
o
;

Qlððn�1ÞþÞ �
X

m2Mðn�1;nÞ
dQm ¼ Qlðn�Þ; cn2

24N
35\
8<:1

9=;;
X
k

Qn;k ¼ Qlðn�Þ ¼ QlðnþÞ; cn2

"
N

#
; k2S n;

�
ps1; T

s
1

�
¼ g1

�
P s

0;T
s
0;Q ð0;1Þ

�
(1)
barrel network. Thus gn calculates ðpsn; Ts
nÞ from ðpdn�1;T

d
n�1Þ. Then,

we have:

�
psn; T

s
n
�¼ gn

�
pdn�1; T

d
n�1;Q ðn�1;nÞ

�
:

We assume that the network starts with a pipeline. The suction

pressure P d
0 and temperature T d

0 of the first pipeline are given,
then we have:
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�
ps1; T

s
1
�¼ g1

�
P d

0;T
d
0;Q ð0;1Þ

�
:

Denote the set of switched-on compressors in compressor sta-
tion n as S n, where S n2S , then the two-stage robust optimiza-
tion model for the fuel cost minimization with N compressor
stations is:
4. Methods

In this part, before we demonstrate the C&CG algorithm used to
solve the two-stage robust optimization problem and present the
formulation of master problem (MP) and SP to be solved, we first
introduce the same assumption in Deng et al. (2019) which can
reduce the dimensions of the decision variables. The assumption
asserts that there is only one feasible discharge temperature cor-
responding to each combination of suction pressure, discharge



Fig. 2. The working domain of a compressor.
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(2)
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pressure and suction temperature: Assumption 1. For any

compressor station n, 1 � n � N, the discharge temperature Td
n can be

uniquely determined from suction pressure psn, suction temperature Tsn
and discharge pressure pdn. Thus we can approximate Td

n to reduce
the dimension of the decision variables. Since the suction tem-
perature of each station is considered as given in this work, we only
need to consider decisions of pressure value and working status of
compressors as first-stage variables.
4.1. C&CG algorithm to solve the two-stage robust model

The C&CGmethod is similar to the Benders decomposition since
y
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they both consist of aMP and SPs. However, they are different in the
cutting strategy. The basic idea of the algorithm is that only a small
subset of all the possible realizations of uncertainty would play a
significant role in defining an optimal solution. The C&CG algo-
rithm generates new constraints related to individual worst-case
scenarios and adds them into the MP iteratively, thus successively
computing stronger lower bounds of the optimal objective function
value.

We index the selected realizations of the demand uncertainty in
each iteration by j. The same index is also applied to corresponding
second stage decisions. Here selected uncertainty scenarios are
given. Then the formulation of MP is:
The MP formulation (2) is non-convex and nonlinear, which can
be approximated by Mixed Integer Linear Programming (B2) in
Appendix B. The solution of MP will be the first stage decisions
which are fixed in the subsequent SP. The SP finds the corre-
sponding upper bound over all scenarios in uncertainty sets. If the
first stage decision is infeasible, the SP returns a positive infinite
value. If it is feasible, then the SP returns the worst objective value
under uncertainty and the corresponding solutions and new con-
straints are added to the MP that should be considered in the next
iteration. The algorithm terminates if the gap between the upper
and lower bounds is within a predefined tolerance ε. The SP

formulation yðbpd
n;
cS nÞ with given bpd

n;
cS n is:
;s:t:
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Fig. 3. The flowchart of C&CG algorithm.
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Next, we explain the main steps of C&CG algorithm as shown in
Fig. 3.

1. In the initialization, set LB ¼ � ∞, UB ¼ þ ∞, iteration index
j ¼ 0, initialize J.

2. The optimal solutions pd*n;jþ1, h
*
jþ1 of MP are decided, which are

candidate values of first-stage decisions. Only finite realizations
of uncertainties are considered in set J. The corresponding

recourse decisions Qj*
n;k, ps;jn / for all j in the set J are also

calculated.
3. Solutions of MP are passed to SP in which the worst-case under

given first-stage decisions are defined. The solution of any SP is
an upper bound of the robust model. To ensure the upper bound
Fig. 4. The neighborhood search in adjacent states.
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is non-increasing, the upper bound only needs to be updated
when the current optimal value of SP is smaller.

4. If gap between upper bound and lower bound is small enough,
the algorithm terminates. Otherwise, create recourse decision
related variables and add all the related constraints to the MP

with the corresponding uncertainty realization dQjþ1* being the

optimal scenario in solution of yðpd*jþ1;
cS *

n;jþ1Þ. In addition, add

feasibility/optimality cuts in Appendix C to MP. Update j ¼ jþ 1,
J ¼ J∪fjþ1g and go to step 2.

It should be noticed that the solution of simple linear bilevel
programming problem is NP-hard (Bard, 1991; Hansen et al., 1992).
As proved by Zeng and Zhao (2013), Zhao and Zeng (2012), the
C&CG algorithm converges to the optimal solution in finite
Fig. 5. The state aggregation in dynamic programming.



Fig. 6. The structure of selected network and nominal demands.
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iterations for the polyhedral uncertainty sets as long as the MP and
SP can be solved to their global optimal solutions when the rela-
tively complete recourse assumption holds and the model is linear
with both linear programming recourse and mixed-integer pro-
gramming recourse problems.
4.2. Approximate dynamic programming algorithm to solve the SP

In SP of the C&CG algorithm, the discharge state of each stage bpd
n

and working status of each compressor cS n are given, the objective
is to search for the volumetric flow rate realizations such that the
total optimization results are maximized. We first reformulate it as
dynamic programming problem in Appendix C.

Next, we propose approximate dynamic programming methods
to accelerate the calculation of SP. The approximate dynamic pro-
gramming approach contains two main ideas: neighborhood
search and aggregation. We illustrate the two approximate
methods respectively, starting from the neighborhood search.

The neighborhood search idea is that when searching the
optimal corresponding state in stage n� 1 for a given state in stage
n, instead of searching the whole region of states in stage n� 1, we
only need to search in a smaller range, since we have already
known the optimal state for an adjacent state of the given state in
stage n. Adjacent states of stage n should have optimal corre-
sponding previous states close to each other. See Fig. 4 for an
illustration of this idea. Take two-dimensional maximal problem
with quasi-concave objective function as an example. The solid line
is the function searching for optimal corresponding state n� 1 for a
given state Sn of stage n. The solution is point Awith objective point
A‘. The dotted line is the corresponding function for an adjacent
state S0n. The search starts from also point Awith objective point A‘‘.
It first searches in a direction parallel to the y axis and find a local
optimal point B, and then searches in a direction parallel to the x
axis. The change of direction may repeat until no updates are
gained. By this scheme, the search only takes a few steps to find the
optimal point C.We provide the details of this neighborhood search
in Appendix D.

Another approximation method is aggregation. The idea is
shown in Fig. 5. Each grey node denotes a state in the dynamic
programming. The grey line with arrow denotes the state transition
between nodes. An original dynamic programming with full states
calculates all the grey nodes. The idea of aggregation is that we only
search a subset of the original states. All the states in each subset
are considered to have the same cost function and some of the
transition between states is discarded. We list one possible
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aggregation in Fig. 5 denoted by black dotted frame. Each frame
aggregates all the states included and simply replaces the cost
function and state transition function by those of first stage in the
subset. For example, Sð2;0Þ denotes the first aggregated state in stage
2. The black lines denote all the left state transition between
aggregated states. The aggregation methodmay also be modified to
include more states, transitions and to get more accurate approxi-
mation. The states number and state transition number thus are
reduced significantly. The aggregation should put similar states in a
subset, otherwise the solution accuracy might be affected.

Noticing that the state in our problem is composed of volu-

metric flow rate vector ~Qn and current total uncertainty deviation
ratio gn. We choose to aggregate the states in the dimension of gn.

However, we can not directly aggregate all the states with same ~Qn
and different gn and keep only one state. In that case too much
possible transition is discarded. We still need to keep several states
with the same ~Qn. The size of the subset should be controlled and
tested carefully to keep the gap small and acceptable.

We provide details of the proposed DP algorithm pseudocode in
appendix E. The core approximate dynamic programming
Algorithm 1 utilizes the idea of PROPOSITION 1. The idea is that if
for a state Sn in stage n, the corresponding optimal state S*n�1ðSnÞ in
stage n� 1 is known. Then for a neighboring state S0n in stage n, the
corresponding optimal state may be in the neighboring region of
S*n�1ðSnÞ. In multi-dimensional cases, for kth dimension, the search
direction can be set as the direction parallel to the kth-dimensional
coordinate axis. After searching forward and backward in kth
dimension and find an optimal point, the search starts from this
optimal point and continue in the kþ 1th direction. After searching
in the last dimension, the search direction is changed to the di-
rection parallel to the first dimensional coordinate axis again and a
new cycle is started. The search ends when the gap of two optimal
values of adjacent directions is less than ε.

5. Numerical experiment

In this part, we conduct numerical experiments based on real
pipeline networks in China with intermediate nodes between two
adjacent stations and five compressor stations. The structure is
extracted from Deng et al. (2019). We do not use real data due to
confidentiality reasons. The gunbarrel structure and nominal de-
mand at each intermediate node are shown in Fig. 6.

The original subnetwork from Deng et al. (2019) contains one
compressor in each station, the structure of which is denoted as
setting 1. To illustrate that the proposed methods can be applied to



Table 2
Values of the suction temperature and first-stage decision variables in test 1.

Setting Index Suction Temperature, K Discharge Pressure, MPa

1 1 [299.27, 288.36, 304.98, 291.05, 300.07, 295.58] [9.8, 8.6, 9.6, 8.8, 9.1, 8.1]
2 [299.27, 288.36, 304.98, 291.05, 300.07, 295.58] [9.8, 8.6, 9.4, 8.6, 9.3, 8.4]
3 [296.31, 284.14, 297.23, 289.12, 298.86, 292.24] [9.8, 8.6, 9.6, 8.8, 9.1, 8.1]
4 [296.31, 284.14, 297.23, 289.12, 298.86, 292.24] [9.8, 8.6, 9.4, 8.6, 9.3, 8.4]

2 5 [299.27, 288.36, 304.98, 291.05, 300.07, 295.58] [9.8, 8.4, 9.7, 8.7, 9.5, 7.6]
6 [299.27, 288.36, 304.98, 291.05, 300.07, 295.58] [9.8, 8.4, 9.7, 8.6, 9.3, 7.8]
7 [296.31, 284.14, 297.23, 289.12, 298.86, 292.24] [9.8, 8.4, 9.7, 8.7, 9.5, 7.6]
8 [296.31, 284.14, 297.23, 289.12, 298.86, 292.24] [9.8, 8.4, 9.7, 8.6, 9.3, 7.8]

Table 3
Computation time and objective values with varying first-stage decisions.

Index CPU, s Objective

DP NS-ONLY AG-ONLY AG-NS DP NS-ONLY AG-ONLY AG-NS

1 357.38 163.30 179.88 97.85 59.11 59.11 59.11 59.11
2 94.98 48.57 51.10 29.41 60.50 60.50 60.50 60.50
3 95.59 48.84 53.28 26.93 57.39 57.39 57.39 57.39
4 95.28 48.16 51.49 26.36 59.37 59.37 59.37 59.37
5 493.48 255.09 275.78 141.90 78.12 78.12 78.12 78.12
6 550.35 283.39 309.46 156.62 84.31 84.31 84.31 84.31
7 497.86 256.00 278.60 151.12 76.29 76.29 76.29 76.29
8 568.07 280.35 307.06 158.27 82.43 82.43 82.43 82.43

Table 4
Computation time and objective values with varying uncertainty budget parameters.

Setting G CPU, s Objective

DP NS-ONLY AG-ONLY AG-NS DP NS-ONLY AG-ONLY AG-NS

1 1 106.01 47.99 52.12 26.78 58.52 58.52 58.52 58.52
2 357.38 163.3 179.88 97.85 59.11 59.11 59.11 59.11
3 697.66 458.48 367.58 240.29 59.67 59.67 59.67 59.67
4 819.52 799.16 517.97 416.58 60.18 60.18 60.18 60.18

2 5 151.59 75.57 86.02 46.71 77.31 77.31 77.31 77.31
6 493.48 255.09 275.78 141.90 78.12 78.12 78.12 78.12
7 890.10 645.58 503.22 352.06 78.63 78.63 78.63 78.63
8 1103.49 990.77 648.10 570.12 79.26 79.26 79.26 79.26

Table 5
Values of the volumetric flow rate ranges of four settings.

Index volumetric flow rate ranges, Nm3=s

a [4, 4, 4, 6, 8, 8]
b [4, 4, 6, 10, 6, 8]
c [4, 2, 4, 6, 4, 4]
d [6, 2, 6, 4, 4, 2]
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more general case, we also modify the component of each
compressor station to include nonidentical compressors in each
station, the structure of which is denoted as setting 2. The details of
Table 6
Computation time and objective values with varying volumetric flow rate ranges.

Setting Index CPU, s

DP NS-ONLY AG-ONLY

1 a 357.38 163.3 179.88
b 4925 1960.37 333.68
c 2789.66 1157.55 207.68
d 3487.37 1484.43 277

2 a 493.48 255.09 275.78
b 7047.13 2540.68 608.33
C 437.51 213.26 220.07
d 458.28 202.63 271.43
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the two settings are listed in Appendix G. The source flow rate for
setting 1 is 599.6 Nm3=s and the source flow rate for setting 2 is 660
Nm3=s, where Nm3=s is unit of the normal volumetric flow rate,
that is, the mass flow rate over the density under standard condi-
tions. The discretization length of pressure is 0.1 MPa. We include
the following numerical experiments: (1) benefits of the approxi-
mate dynamic programming algorithm; (2) results of robust model
and comparisons with deterministic model results and comparison
of results between different uncertainty budgets. The codes were
developed using Cþþ. The experiments were performed on an Intel
Core i90-9900K 3.60 GHz CPU. Models were solved by commercial
software Gurobi 9.1.1.
Objective

AG-NS DP NS-ONLY AG-ONLY AG-NS

97.85 59.11 59.11 59.11 59.11
146.55 59.74 59.74 59.74 59.74
85.66 59.64 59.64 59.64 59.64
105.1 59.56 59.56 59.56 59.56
141.90 78.12 78.12 78.12 78.12
285.34 78.84 78.84 78.84 78.84
110.40 77.83 77.83 77.83 77.83
124.32 78.30 78.30 78.30 78.30



Fig. 7. The simulation results under different G in setting 1.

Fig. 8. The simulation results under different G in setting 2.
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5.1. Benefits of the approximate dynamic programming algorithm

In this section, we compare the performance of the proposed
multi-dimensional hybrid search algorithm with multi-
dimensional global search algorithm in terms of computation
times and objective values. Results with aggregation technique
applied to these two algorithms are also recorded. Since the ac-
celeration algorithm is designed for SP, we conduct three tests with
different types of inputs for the SP, which are combination of suc-
tion temperature and first-stage decisions, uncertainty budget pa-
rameters and volumetric flow rate varying range, respectively.

In each test we record four results. The first result DP denotes
the result of original dynamic programming algorithm. The second
result NS-ONLY denotes the result of approximate dynamic
2506
programming with only neighborhood search approximate
method, which is algorithm 3. The third result AG-ONLY denotes
the result of aggregated version of Algorithm 2, where only ag-
gregation method is applied. The last result AG-NS denotes the
result of aggregated version of algorithm 3, in which both the two
approximate techniques are used.

In these tests, the default suction pressure of the first pipeline and
discharge pressure values of five compressor stations are [9.8, 8.6,
9.6, 8.8, 9.1, 8.1] MPa for setting 1 and [9.8, 8.4, 9.7, 8.7, 9.5, 7.6] MPa
for setting 2 with suction temperature being [299.27, 288.36, 304.98,
291.05, 300.07, 295.58] K. The uncertainty budget parameter G is 3,
the discretization length of volumetric flow rate is 1 Nm3=s and the
varying range of volumetric flow rate demand of each intermediate
node is [4, 4, 4, 6, 8, 8] Nm3=s unless otherwise specified.
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The first test considers varying values of suction temperatures
and first-stage decisions of discharge pressure. The settings are
listed in Table 2 and results are in Table 3. The second test considers
varying values of uncertainty budget parameter G and results are in
Table 4. The third test records results under varying ranges of
volumetric flow rate. The settings are listed in Table 5 and results
are in Table 6. It is worth mentioning that heterogeneous inter-
mediate nodes are considered, that is the varying range of demand
in each node is different. Since we do not assume that all the
customer demands vary in the same pattern.

The results firstly show that in our numerical test, all the
approximation methods has the same optimal value as original DP,
that is the gap is 0 in all cases. In addition, in both setting 1 and
setting 2, the calculation time and objective value increase as the
uncertainty budget parameter increases. This is reasonable since
the feasible domain of larger G contains that of the smaller one. As
for the speed gain, we introduce an assessment metric: t0�t1

t1
, where

t0 is the calculation time of DP and t1 is the calculation time of
algorithm to be compared. The results show that NS-ONLY has time
improvements of 99.3% on average and 151.2% at maximum, AG-
ONLY has time improvements of 271.1% on average and 1376.0%
at maximum, AG-NS has the best performance with time im-
provements of 692.5% on average and 3260.6% at maximum. It
implies that in our numerical tests the aggregation method is more
efficient than neighborhood search. Combining these two methods
together returns the best performance with a speed gain of about 7
times faster than original dynamic programming algorithm
without compromising the optimality.

The speed gain verified by test results in this section is crucial
since when solving the robust model in gunbarrel network, there is
a high demand on computer resources due to the curses of dimen-
sionality in dynamic programming. Without proposed approxima-
tionmethods, the problemwith realistic scale may not be able to be
solved within a reasonable time.
5.2. Results of robust model and comparisons with deterministic
model

In this section, we solve the two-stage robust model and
deterministic model, respectively. Thenwe conduct simulations for
500 times to compare the performance of the two models under
simulated uncertainty realizations. The uncertainty budget
parameter G ranges from 1 to 6 in this subsection. Similar with
Gorissen et al. (2015), the simulated demand is drawn from uni-
form distribution without compromising the uncertainty budget
parameter. To better illustrate the results under different settings of
volumetric flow rate ranges, we conduct simulations for four set-
tings in Table 5, respectively.

The results are shown in Fig. 7 and Fig. 8. We introduce an
assessment metric infeasible ratio, which is defined as the times
when deterministic model result is infeasible divided by the total
simulation times. In average, the deterministic model has an
infeasible ratio of 57.91% in setting 1 and 12.58% in setting 2, while
the robustmodel ensures feasibility in all cases. What’s more, when
the value of G is small, the robust model results are similar to
deterministic model results. In setting 1 and 2, when G equals to 1,
some of the compressor stations can be shut down to optimize the
total costs. However, when G increases, additional costs are
required to gain robustness.

The results in this subsection verify that the robust model can
reduce the possibility of infeasibility when facing uncertainties. To
gain that benefit, additional costs act as the price of robustness. For
all the four settings, when G exceeds 2, the impact of increasing
value of G is not obvious. However, when G increases, the
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calculation time increases as well, since the search space is larger,
thus it is recommended to set the uncertainty budget parameter a
moderate value.

What’s more, simulation results verify that robust model can
reduce the risk of interruption of natural gas networkmanagement.
The interruption heremeans that operation can be infeasible due to
inappropriate first-stage decisions. The risk can be quite high when
fluctuation is not negligible. Considering robust optimization in
natural gas network operation can prevent interruption in advance,
instead of passively reacting when uncertainty reveals.
6. Conclusions

In this paper, we study solving two-stage robust optimization
model in gunbarrel structured natural gas network. Uncertainties
with budget parameter are considered in this paper since it is not
likely that all the demands in intermediate nodes reach the
maximal deviation simultaneously. The robust model is solved by
C&CG algorithm which consists of MP and SP. To solve the MP, we
take advantages of the separability of the structure of problem and
decompose it into two hierarchies. The inner hierarchy is solved by
dynamic programming and the outer hierarchy is solved by piece-
wise linear approximation based on lambda method. The SP is a
bilevel problem and quite challenging.

To solve the bilevel SP, we first formulate it as a dynamic pro-
gramming problem, and then two approximate methods are pro-
posed. The first method is multi-dimensional neighborhood search.
We provide the theoretical justification of the bounds and the al-
gorithm in multi-dimensional cases. The second method is aggre-
gation, in which we aggregate similar states.

The numerical results reveal that the two approximate methods
together show significant speed gain of an average of 7 times. The
numerical tests also verify the benefits of robust model. It reduces
the possibility of infeasibility when facing demand uncertainties.

From a management perspective, we provide a proactive
method to cope with uncertainties in operation management of
natural gas network, instead of passively reacting when change
already happens. This method ensures that no matter what the
uncertainty realization is, the performance of the operation de-
cisions won’t be too bad, thus by this way we add robustness to the
system.

Possible future research direction of this work is to consider tree
structured or even cyclic structured natural gas network, whichwill
be much more complicated. In tree structured network, dynamic
programming methods are also applicable. However, in cyclic
network the optimal nominal flow rate in each pipeline requires
complicated calculating and cannot be determined directly as in
tree structured and gunbarrel structured network. What’s more, in
this paper we only consider steady-state model, robust optimiza-
tion under transient state may be another future direction. Also,
distributional robust optimization can be studied to fully use some
of the information of uncertainty sets.
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Appendix A. Description of Basic Model

If a compressor k at station n is switched-on, the power
consumed is:
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Hn;k,fn;k
hn;k

; (A1)

whereHn;k and hn;k are the isentropic head and isentropic efficiency
of the compressor unit respectively, and fn;k is the mass flow rate
passing through the compressor. All compressors in the same sta-
tion are installed in parallel, thus their isentropic head values are
identical when in use.

The measurement of the isentropic head is the amount of work
needed to compress the gas from suction pressure psn to the

discharge pressure value pdn isentropically. In practice, this work
amount is related to the actual volumetric flow rate Qn;k and
compressor rotational speed sn;k as follow:

Hn;k ¼ bb1;n;ks2n;k þ bb2;n;kQn;ksn;k þ bb3;n;kQ2
n;k: (A2)

Similarly, the isentropic efficiency has a quadratic form repre-
sentation of Qn;k and sn;k:

hn;k ¼ bb4;n;k þ bb5;n;k
 
Qn;k

sn;k

!
þ bb6;n;k

 
Qn;k

sn;k

!2

; (A3)

where constants fbbj;n;k���j¼ 1;2;…;6g are characteristic parameters

depending on the compressor unit and can be estimated via ex-
periments which collect data of the quantities Qn;k, sn;k, Hn;k, and
hn;k. We can infer from (A2) that:

sn;k ¼
�bb2;n;kQn;k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb22;n;kQ2
n;k � 4bb1;n;k�bb3;n;kQ2

n;k � Hn;k

�r
2bb1;n;k :

(A4)

The following two equations give the relationships between
ðHn;k;Qn;kÞ and ðfn;k;psn;pdnÞ:

Hn;k ¼
ZnRTsn
m

" 
pdn
psn

!m

�1

#
; (A5)

Qn;k ¼ ZnRTsn
fn;k
psn

; (A6)

where m ¼ ðs � 1Þ=s, with psn and pdn denoting the suction and
discharge pressure of the compressor station respectively. All
compressors in a station share the same discharge pressure and
suction pressure. The isentropic exponent s, the gas compressibility
factor Zn and the gas constant R are positive parameters with given
suction temperature Ts

n in our work. We denote S n as the set of
switched-on compressors in station n. To summarize, the power
consumed by a single compressor k can be expressed by a function
Pn;kðpsn;Tsn;pdn;Qn;k;S nÞ.

The working domain of a switched-on compressor k2 S n in
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station n is given by the following constraints:

sn;k � smax
n;k ; (A7)

smin
n;k � sn;k; (A8)

Qn;k � ba1;n;k þ ba2;n;k,sn;k þ ba3;n;ks2n;k; (A9)

Qn;k � ba4;n;k þ ba5;n;k,sn;k þ ba6;n;ks2n;k; (A10)

where fbaj;n;k���j¼ 1;2;…;6g are constants depending on the

compressor k and can be estimated by experiments collecting data
of the quantities and applying the least squares method. Equation
(A7) and (A8) give the upper and lower rotational speed bounds.
Equation (A9) is the surge line constraint limiting the lower bound
of Qn;k as a quadratic function of sn;k. Equation (A10) is the stone-
wall line constraint limiting the upper bound of Qn;k as a quadratic
function of sn;k.
Appendix B. Piece-wise Linear Approximation of MP

To solve the non-convex and nonlinear problem MP, we use
linear-approximation method combined with single station opti-
mization to significantly reduce the total number of variables in the
approximation. We first denote

XN
n¼1

Pn
�
ps;jn ;Ts;jn ;pdn;bQ j

n;S n

�
¼min

Qj
n;k

XN
n¼1

X
k2S n

Pn;k
�
ps;jn ;Tsn;p

d
n;Q

j
n;k;S n

�
;

(B1)

where Pnðpsn; Tsn; pdn;Qn;S nÞ is the optimization results in a station
with given suction, discharge pressure, temperature and working
status. It can be solved by dynamic programming or piece-wise
linear approximation (Deng, 2015; Deng et al., 2019). By this way
we decompose the problem into single-station optimization and
network optimization.

In the network optimization, the core of the approximation is to
transform expression (B1) and�
ps;jn ; Tsn

�
¼ gn

�
pdn�1; T

d*
n�1

�
pdn�1

�
; bQ j

ðn�1;nÞ
�
; cj2J;n2½N�\f1g

into a piecewise-linear formulation of pdn�1; p
d
n using lambda

method, thus we only need to consider linearization of all pairs of

ðpdn�1; p
d
nÞ in network optimization. We rewrite the term Pnðps;jn ; Ts;j

n ;

pdn; bQ j
n;S nÞ by function of pair ðpdn�1; p

d
nÞ as Z nðpdn�1; p

d
n;
bQ j
ðn�1;nÞ;

S nÞ, which denotes the optimal power cost of station n under
discharge pressure pdn , previous station discharge pressure pdn�1,

volumetric flow rate realization bQ j
ðn�1;nÞ and working compressor

combination of S n:



Z n

�
pdn�1;p

d
n;
bQ j
ðn�1;nÞ;S n

�
¼ Pn

�
ps;jn ;Ts;jn ;pdn; bQ j

n;S n

�
;¼min

Qj
n;k

X
k2S n

Pn;k
�
ps;jn ;Tsn;p

d
n;Q

j
n;k;S n

�
¼min

Qj
n;k

X
k2S n

Pn;k
�
gn
�
pdn�1;T

d*
n�1

�
pdn�1

�
;

bQ j
ðn�1;nÞ

�
;pdn;Q

j
n;k;S n

�
; cj2J;k2S n;n2½N�\f1g:
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Suppose the domain of the pair ðpdn�1; p
d
nÞ is D4R 2, pdn�1 and pdn

are divided into Nn�1;1 � 1 and Nn;1 � 1 parts respectively. Then the
set of grid points is given by L ¼ 1:::Nn�1;1Nn;1 and the total
number of triangles is 2ðNn�1;1 � 1ÞðNn;1 � 1Þ. We introduce
ln;i; i2I for each grid point and binary variables zn;l; l2 L for each
triangle. We denote whether to choose S n by binary variable YS n

,
if YS n

¼ 1 then a particular combination of working status of
compressors in station n is selected. The original formulation of the
piece-wise linear approximation of MP is:
min
pd
n ;h;YS n

h

s:t: h�
XN
n¼1

XNn

i¼1

X
S n2S

ln;i,YS n
,Z n

�bpd
n�1;i;bpdn;i; bQ j

ðn�1;nÞ;S n

�
þ
XN1

i¼1

X
S 12S

l1;i,YS 1
,Z 1

�
P s

0;bpd
1;i;
bQ j
ð0;1Þ;S 1

�
; cj2J;

�
ps1;T

s
1
�¼g1

�
P s

0;T
s
0;
bQ j
ð0;1Þ

�
; cj2J; pdn�1¼

XNn

i¼1

ln;ibpd
n�1;i; cn2½N�\f1g; pdn�1¼

XNn�1

i¼1

ln�1;ibpd
n;i; cn2½N�\f1g;ln;i

�
X

l2Lðln;iÞ
zn;l; cn2½N�;i2I;

XNn

i¼1

ln;i¼1; cn2½N�;
X

n2S n

YS n
¼1; cn2½N�;

XN0
n

l¼1

zn;l¼1; cn2½N�;zn;l2f0;1g;

cn2½N�;l2L; YS n
2f0;1g; cn2½N�; ln;i�0; cn2½N�;i2I; (B2)
where Nn ¼ Nn;1Nn;1, N0
n ¼ 2ðNn;1 � 1ÞðNn;1 � 1Þ, and Lðln;iÞ is the

index set of all triangles adjacent to grid point ln;i. To reduce the

number of variables, when we discretize the pairs of ðpdn�1;p
d
nÞ, we

only consider those within the working domain. It is worth point-
ing out constraint (B2) is nonlinear since it contains product of ln;i
and YS n

. To linearize this term, we introduce continuous variable
xn;i;S n

and force it to equal to ln;i,YS n
by following constraints:

xn;i;S n
�M,YS n

; cn2½N�; i2I;S n2S ; (B3)

0� xn;i;S n
� ln;i; cn2½N�; i2I;S n2S ; (B4)

xn;i;S n
� ln;i �

�
1�YS n

�
,M; cn2½N�; i2I;S n2S : (B5)

Replacing constraint (B2) with constraints (B3)-(B5), we obtain
an MILP approximation of MP. In C&CG algorithm, we add the
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following feasibility/optimality cuts for iteration index jþ 1:
h�
XN
n¼1

XNn

i¼1

X
S n2S

xn;i;S n
,Z n

�bpd
n�1;i; bpd

n;i;
bQ jþ1
ðn�1;nÞ;S n

�
; (B6)

�
ps1; T

s
1
�¼ g1

�
P s

0;T
s
0;Q

jþ1
1

�
: (B7)
Appendix C. the Dynamic Programming Formulation of SP

This appendix provides the original dynamic programming
formulation of SP.

Stage index: each stage of the DP corresponds to one
compressor station.

State variables: let gn be the total deviation of volumetric flow
rates for stage 1;2; :::; n. For notation convenience, we denote

Q ðn�1;nÞ as ~Qn�1, then the state of stage n is ð ~Qn�1;gnÞ.
State-transition equation: recall that gn calculates ðpsn; Ts

nÞ from
ðbpd

n�1;
bTd
n�1;

~Qn�1Þ:

�
psn; T

s
n
�¼ gn

�bpd
n�1;

bTd
n�1;

~Qn�1

�
; n2½N�\f1g;

where bpd
n�1, bTd

n�1 denote that the discharge pressure and



Y.-Z. Meng, R.-R. Chen and T.-H. Deng Petroleum Science 19 (2022) 2497e2517
temperature are given in this problem. Recall that 4n is the map-

ping from each pair of ðpsn; TsnÞ to the set of feasible pairs ðbpd
n;
bTd
n;

Qn;kÞ. Then, the feasibility constraints on ðpsn; Ts
nÞ can be written as:

�
psn; T

s
n
�¼ gn

�bpd
n�1;

bTd
n�1;

~Qn�1

�
24n;k

�bpd
n;
bTd
n;Qn;k

�
;

Vnð ~Qn;gnÞ ¼ max
~Qi;gi

Pn
i¼1

Ciðð ~Qi�1;gi�1Þ; ð ~Qi;giÞÞ

¼ max
~Qi;gi

Pn
i¼1

Pi
�
psi ; T

s
i ; bpdi ;Qi;

cS n

�
s:t:
�
psi ; T

s
i

�
24i;k

�bpd
i ;
bTd
i ;

~Qi�1

�
; ck2cS n;1 � i � n;

�
psi ; T

s
i

� ¼ gi
�bpd

i�1;
bT d
i�1;

~Qi�1

�
; c2 � i � n;

QlðmþÞ � dQm ¼ Qlðm�Þ; cm2½M�;
Qi ¼ Qlði�Þ ¼ QlðiþÞ; c1 � i � n;

gi ¼
X

m2Mði�1;iÞ

jdQm � dQmj
ddQm

þ gi�1; c2 � i � n;
�
ps1; T

s
1
� ¼ g1

�
P s

0;T
s
0;Q ð0;1Þ

�
;gn � G:
k2cS n;n2½N�\f1g:
Also we have:

QlðmþÞ �dQm ¼ Qlðm�Þ; m2½M�;

Qn ¼Qlðn�Þ ¼ QlðnþÞ; n2½N�:
What’s more, since we consider the budget uncertainty set, the

total deviation should be within the budget:

gn ¼
X

m2Mðn�1;nÞ

jdQm � dQmj
ddQm

þgn�1 �G; n2½N�\f1g:

Immediate reward function: Recall that Pnðpsn; Ts
n; p

d
n;Qn;S nÞ is

compressor station n’s optimal total power consumption. Given
former state ð ~Qn�1; gn�1Þ, we are now ready to start stage n, and

select ð ~Qn;gnÞ as the immediate destination. Then the immediate
reward function is:

Cnðð ~Qn�1;gn�1Þ; ð ~Qn;gnÞÞ¼ Pn
�
psn; T

s
n; bpd

n;Qn;cS n

�
¼ Pn

�
gn
�bpd

n�1;
bT d
n�1;

~Qn�1

�
; bpd

n;Qn;cS n

�
; n2 ½N�\f1g:
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Value function: we denote by Vnð ~Qn;gnÞ the value function

with respect to the system state ð ~Qn;gnÞ. Then Vnð ~Qn;gnÞ calculates
the maximum power required to transport natural gas from station
1 to n under total deviation gn as follows:
Then, the Bellman’s equation can be written as follows:

Vnð ~Qn;gnÞ¼ max
~Qn�1;gn�1

fCnðð ~Qn�1;gn�1Þ;ð ~Qn;gnÞÞþVn�1ð ~Qn�1;gn�1Þg

¼ max
~Qn�1;gn�1

n
Pn
�
psn;T

s
n;bpd

n;Qlðn�Þ
�
þVn�1ð ~Qn�1;gn�1Þ

o
s:t:

�
psn;T

s
n
�
24n;k

�bpd
n;
bTd
n;
~Qn�1

�
;

�
psn;T

s
n
�¼gn�bpd

n�1;
bTd
n�1;

~Qn�1

�
;

QlðmþÞ�dQm¼Qlðm�Þ;cm2Mðn�1;nÞ;
Qlðn�Þ¼QlðnþÞ;

gn¼
X

m2Mðn�1;nÞ

jdQm�dQmj
ddQm

þgn�1:

(C1)

Appendix D. Neighborhood Search Related Proposition for SP

In (C1), we denote the optimal decision for given volumetric

flow rate ~Qn and total deviation gn as X *ð ~Qn;gnÞ. We also define
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Gnðð ~Qn�1;gn�1Þ; ð ~Qn;gnÞ

� Þ¼ Pn
�
gn
�bpd

n�1;
bTd
n�1;

~Qn�1

�
; bpd

n;Qlðn�Þ;cS n

�
þ Vn�1ð ~Qn�1;gn�1Þ;

which describes the total power cost at stage n as a function of

ð ~Qn�1;gn�1Þ and ð ~Qn;gnÞ. For given direction e1, e2 and given dis-
cretization interval size D, we define

X ð ~Qn;gn;D;e1;e2Þ¼inffx�0ÞjGðX*ð ~Qn;gnÞþx*e1;ð ~Qn;gnÞþD,e2Þ
<GðX*ð ~Qn;gnÞþðx�DÞ*e1;ð ~Qn;gnÞþD,e2Þg

and

X
�
~Qn;gn;D;e1;e2

�
¼ supfx�0ÞjGðX*ð ~Qn;gnÞþx*e1;ð ~Qn;gnÞ

þD,e2Þ <GðX*ð ~Qn;gnÞþðxþDÞ*e1;ð ~Qn;gnÞþD,e2Þg
Essentially, X ð ~Qn;gn;D;e1;e2Þ is the minimum x in direction e1

such that function GðX*ð ~Qn;gnÞþx*e1;ð ~Qn;gnÞþD,e2Þ starts
decreasing with x. And X ð ~Qn;gn;D;e1;e2Þ is the maximum x in

direction e1 such that function GðX*ð ~Qn;gnÞþx*e1;ð ~Qn;gnÞþD,e2Þ
starts increasing with x. The fundamental theorem of the algorithm
is shown as follows:

LEMMA 1. For finite closed sets X;Y3Rn, Rm and vector x2 Rn, y2
Rm, we denote Gðx; yÞ : X � Y/R as an arbitrary continuous func-
tion. We choose Dy as an arbitrary vector where Dy_ 0. Suppose
Gðx; yÞ is quasi-concave in x. For any given y2Y such that yþ Dy2 Y,
and a given maximum x*ðyÞ2arg max

x2X
Gðx; yÞ and an arbitrary pos-

itive direction e. We denote
xðyÞ ¼ inffx � 0jdDx>0;Gðx*ðyÞ þ x*e; y þ DyÞ<Gðx*ðyÞ þ ðx� DxÞ*e; y þ DyÞg;
x ðyÞ ¼ supfx � 0jdDx>0;Gðx*ðyÞ þ x*e; y þ DyÞ<Gðx*ðyÞ þ ðxþ DxÞ*e; y þ DyÞg;

xðy;DxÞ ¼ inffx � 0ÞjGðx*ðyÞ þ x*e; y þ DyÞ<Gðx*ðyÞ þ ðx� DxÞ*e; y þ DyÞg;
x ðy;DxÞ ¼ supfx � 0jGðx*ðyÞ þ x*e; y þ DyÞ<Gðx*ðyÞ þ ðxþ DxÞ*e; y þ DyÞg:
Then, for an arbitrary Dx>0,

xðyÞ�Dx�xðy;DxÞ�ðx*ðyþDy;eÞ�x*ðyÞÞT*e�xðy;DxÞ�xðyÞþDx;

where

x*ðy þ Dy;eÞ2
(
arg maxx2XGðx;y þ DyÞ

����� ðx�x*ðyÞÞT
kðx�x*ðyÞÞk2 ,e ¼ ±1

)
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The full version is provided in Appendix F. with further
improved boundaries if function Gðx; yÞ has additional
characteristics.

PROPOSITION 1. For any n2½N�, given direction e1, e2 and given

discretization interval size D>0, if Gnðð ~Qn�1;gn�1Þ; ð ~Qn;gnÞÞ is

continuous and quasi-concave in ð ~Qn�1;gn�1Þ,

X ð ~Qn;gn;D;e1;e2Þ�ðX *ðð ~Qn;gnÞþD*e2;e1Þ�X *ð ~Qn;gnÞÞT*e1
�X ð ~Qn;gn;D;e1;e2Þ:

PROPOSITION 1 is a direct result of LEMMA 1. It gives search

boundaries X ð ~Qn;gn;D;e1;e2Þ and X ð ~Qn;gn;D;e1;e2Þ of the
optimal solution in direction e1, when function

Gnðð ~Qn�1;gn�1Þ;ð ~Qn;gnÞÞ is quasi-concave in ð ~Qn�1; gn�1Þ. How-
ever, we should still consider the case when the conditions in
PROPOSITION 1 do not hold. Motivated by Deng et al. (2019), we
develop a hybrid search algorithm in which after every certain
steps the approximation result is compared with the one without
approximation, then the errors can be corrected if there is any.

Appendix E. the Proposed Approximate DP Algorithm
Pseudocode for SP

The proposed hybrid search algorithm in shown in Algorithm 1.
The global search algorithm, which is the original formulation of
multi-dimensional dynamic programming without approximation
is shown in Algorithm 2. It is a benchmark of the proposed hybrid
search algorithm 3. It is worth noting that there is a chance that
conditions in PROPOSITION 1 do not hold. To handle these cases, in
hybrid search algorithm 3 we add a checking mechanism similar to
Deng et al. (2019) to correct the search error if there exists any. The
checking mechanism is called every certain number of steps. At
each checking point, the approximate neighborhood search is
compared with global search. If there is a gap between the two
results, we backtrack previous steps to recalculate. In this way gaps
and errors are corrected.
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Algorithm 1. Multi-dimensional Neighborhood Search Function

The aggregation technique can be applied to both Algorithm 2
and algorithm 3. In aggregation we skip certain search points as
interpreted in section 4.2. For example, a full search space for stage
2512
n� 1 contains all combinations of ð ~Qn�1; gn�1Þ. If the minimal
discretization of gn�1 is 0.01, we can only search in the points with a
minimal gn�1 discretization of 0.5. With well-designed parameters,
we may gain a significant calculation time improvement.



Algorithm 2. Multi-dimensional Global Search Function
2513
Algorithm 3. Multi-dimensional Hybrid Search Algorithm
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Appendix FFull Version of all the Lemmas

LEMMA 2. 1. For finite closed sets X;Y3Rn, Rm and vector x2 Rn,
y2Rm, we denote Gðx; yÞ : X � Y/R as an arbitrary continuous
function. We choose Dy as an arbitrary vector where Dy_ 0. Suppose
Gðx; yÞ is quasi-concave in x. For any given y2Y such that yþ Dy2 Y,
and a given maximum x*ðyÞ2arg max

x2X
Gðx; yÞ and an arbitrary pos-

itive direction e. We denote
Þ

xðyÞ ¼ inffx � 0jdDx>0;Gðx*ðyÞ þ x*e; y þ DyÞ<Gðx*ðyÞ þ ðx� DxÞ*e; y þ DyÞg;
x ðyÞ ¼ supfx � 0jdDx>0;Gðx*ðyÞ þ x*e; y þ DyÞ<Gðx*ðyÞ þ ðxþ DxÞ*e; y þ DyÞg;

xðy;DxÞ ¼ inffx � 0ÞjGðx*ðyÞ þ x*e; y þ DyÞ<Gðx*ðyÞ þ ðx� DxÞ*e; y þ DyÞg;
x ðy;DxÞ ¼ supfx � 0jGðx*ðyÞ þ x*e; y þ DyÞ<Gðx*ðyÞ þ ðxþ DxÞ*e; y þ DyÞg:
Then, for an arbitrary Dx>0,

x ðyÞ � Dx � x ðy;DxÞ � ðx*ðy þ Dy; eÞ � x*ðyÞÞT * e� xðy;DxÞ� xðy
þ Dx;

where x*ðy þ Dy; eÞ2
(
arg maxx2XGðx; y þ DyÞ

����� ðx�x*ðyÞÞT
kðx�x*ðyÞÞk2 ,e ¼

±1

)

2. In addition to 1, if Gðx; yÞ is L∞-Lipschitz in y, i.e. dL � 0 such
that��Gðx; y1Þ�Gðx; y2Þ

��� L , ky1 � y2k2; cy1; y2 2Y ; x2X;

then

xðyÞ� inffx�0ÞjGðx*ðyÞþx*e;yþDyÞ<Gðx*ðyÞ;yÞ�LkDyk2g;
x
�
y
�
� supfx�0ÞjGðx*ðyÞþx*e;yþDyÞ<Gðx*ðyÞ;yÞ�LkDyk2g:

3. In addition to 2, if Gðx; yÞ is continuously differentiable in x.
Denote gðx; yÞ ¼ Gðx*ðyÞþx *e; yÞ and gðx; yþDyÞ ¼
Gðx*ðyÞþx *e; yþDyÞ , if there exists ε>0 such that vxgðx1; yÞ�
vxgðx2; yÞ � ε*ðx2 �x1Þ;cx1 > x2 and x*ðyÞ þ x1*e; x*ðyÞ þ x2*e2
X; then it holds that

xðyÞ� x ðyÞ � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L k Dyk2=ε

q
:

Proof of LEMMA 2 1. We prove the first inequality by showing
that

x ðyÞ�Dx� ε � x ðy;DxÞ; cε > 0:

For an arbitrary ε>0, the inequality holds if x ðy;DxÞ � x ðyÞ� ε

because Dx>0. Therefore, we only need to discuss the case when
x ðy;DxÞ< x ðyÞ� ε.
2514
By the definition of x ðyÞ, there exist 0> x0 > x ðyÞ � ε and
Dx0 >0, such that

Gðx*ðyÞþ x0 * e; yþDyÞ<Gðx*ðyÞþ ðx0 þDx0Þ * e; yþDyÞ:
Then we argue that there exists Dx1 >0;Dx1 � Dx such that

Gðx*ðyÞþ x0 * e; yþDyÞ<Gðx*ðyÞþ ðx0 þDx1Þ * e; yþDyÞ:
If Dx0 � Dx, then Dx1 ¼ Dx0. If Dx0 >Dx, we have
Gðx*ðyÞþ x0 * e; yþDyÞ<Gðx*ðyÞþ ðx0 þDx0 �DxÞ * e; yþDyÞ:

Otherwise, we should have

Gðx*ðyÞþðx0þDx0�DxÞ*e;yþDyÞ �Gðx*ðyÞþx0*e;yþDyÞ
<Gðx*ðyÞþðx0þDx0Þ*e;yþDyÞ

and x0 þ Dx0 > x ðyÞ� ε> x ðy;DxÞ, which contradicts the definition
of x ðy;DxÞ. If necessary, repeat the above subtraction, and obtain
Dx1 ¼ Dx0 � n,Dx>0; Dx1 � Dx; n2Zþ. Let x1 ¼ x0 þ Dx1 �
Dx � x0, then k x3 � x*ðyÞk2 > k x0 � x*ðyÞk2. By the quasi-
concavity of function Gðx; yþDyÞ in x and in direction e, we have

Gðx*ðyÞ þ x1*e; y þ DyÞ � Gðx*ðyÞ þ x0*e; y þ DyÞ
<Gðx*ðyÞ þ ðx0 þ Dx1Þ*e; y þ DyÞ:

Therefore, x12fx� 0jGðx*ðyÞ þ x *e; y þ DyÞ <Gðx*ðyÞ þ ðx þ
DxÞ *e;y þ DyÞg. As a result,

x ðy;DxÞ� x1 > x0 �Dx > x ðyÞ�Dx� ε:

For any arbitrary ε>0, the above inequality holds, thus we can
derive that

x ðy;DxÞ� x ðyÞ � Dx:

Wenext prove the second inequality by contradiction. Assuming

that there exists x*ðy þ Dy; eÞ : ðx*ðy þ Dy; eÞ � x*ðyÞÞT*e< x ðy;DxÞ:
By the definition of x ðy;DxÞ, there exists x2:

ðx*ðy þ Dy; eÞ � x*ðyÞÞT*e < x2 < x ðy;DxÞ (F1)

such that

Gðx*ðyÞþ x2 * e; yþDyÞ<Gðx*ðyÞþ ðx2 þDxÞ * e; yþDyÞ:

Because x*ðy þDy;eÞ2
�
arg maxx2XGðx;y þDyÞ

���� ðx�x*ðyÞÞ
kðx�x*ðyÞÞk2 ¼ ±e

	
,

we have
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Gðx*ðyÞ þ x2*e; y þ DyÞ <Gðx*ðyÞ þ ðx2 þ DxÞ*e; y þ DyÞ
� Gðx*ðy þ Dy; eÞ; y þ DyÞ:

(F2)

Combining Eq. (F1) and Eq. (F2), we observe that Gðx; yþDyÞ
first decreases strictly from x*ðyþDy; eÞ to x*ðyÞ þ x2*e and then
increases strictly from x*ðyÞ þ x2*e to x*ðyÞþ ðx2 þ DxÞ* e, which
contradicts that Gðx; yþDyÞ is quasi-concave in x. Therefore, we
have

x
�
y;Dx

�
�
�
x*
�
yþDy;eÞ�x*ðyÞÞT*e;

cx*


yþDy;e

�
2

�
argmax

x2X
G


x;yþDy

����� ðx�x*ðyÞÞT
kðx�x*ðyÞÞk2

e¼±1
	
:

The last two inequalities can be proved following the same
procedures.

2. We prove the first inequality by showing that

fx�0jGðx*ðyÞþx*e;yþDyÞ<Gðx*ðyÞ;yÞ�L*kDyk2g3
fx�0jdDx>0;Gðx*ðyÞþx*e;yþDyÞ<Gðx*ðyÞþðx�DxÞ*e;yþDyÞg:

For an arbitrary x02fx�0jGðx*ðyÞþ x*e; yþ DyÞ<Gðx*ðyÞ; yÞ�
L*kDyk2g, we argue that x0s0, because according to the Lipschitz
condition, we have

Gðx*ðyÞ; yþDyÞ�Gðx*ðyÞ; yÞ � L* k Dyk2:
Let Dx0 ¼ x0 >0. We observe that

Gðx*ðyÞ þ x0*e; y þ DyÞ<Gðx*ðyÞ; yÞ � L* k Dyk2
� Gðx*ðyÞ; y þ DyÞ ¼ Gðx*ðyÞ þ ðx0 � Dx0Þ*e; y þ DyÞ:

Therefore,

x02fx�0jdDx > 0;Gðx*ðyÞþ x * e; yþDyÞ < Gðx*ðyÞ
þ ðx�DxÞ * e; yþDyÞg:

Similarly, we have

fx�0jGðx*ðyÞþx*e;yþDyÞ<Gðx*ðyÞ;yÞ�L*kDyk2g3
fx�0jdDx>0;Gðx*ðyÞþx*e;yþDyÞ<Gðx*ðyÞþðxþDxÞ*e;yþDyÞg:

Therefore, we have proved that

xðyÞ� inffx�0ÞjGðx*ðyÞþx*e;yþDyÞ<Gðx*ðyÞ;yÞ�LkDyk2g;
x
�
y
�
�supfx�0ÞjGðx*ðyÞþx*e;yþDyÞ<Gðx*ðyÞ;yÞ�LkDyk2g:

3. We prove the inequality by contradiction. We assume that
xðyÞ� x ðyÞ>4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L k Dyk2=ε

p
. If we denote

xlðyÞ¼ supfx�0jGðx*ðyÞþx*e;yþDyÞ<Gðx*ðyÞ;yÞ�L kDyk2g;
xrðyÞ¼ inffx�0jGðx*ðyÞþx*e;yþDyÞ<Gðx*ðyÞ;yÞ�L kDyk2g;

where x*ðyÞ þ xlðyÞ*e; x*ðyÞ þ xrðyÞ*e2X; we have
2515
xrðyÞ � xlðyÞ>4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L k Dyk2=ε

q
: (F3)

For the arbitrary minimum point x*ðyÞ2arg maxx2XGðx; y þ
DyÞ. Eq. (F3) gives either �xlðyÞ>2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L k Dyk2=ε

p
or

xrðyÞ>2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L k Dyk2=ε

p
. Without loss of generality, we assume that �

xlðyÞ>2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L k Dyk2=ε

p
to derive a contradiction in the following

proof.
First, since Gðx; yÞ is continuous in x, we have

G
�
x*ðyÞþ xlðyÞ * e; yþDy

�
¼Gðx*ðyÞ; yÞ � L k Dyk2:

Consequently, by the Lipschitz condition, we have

Gðx*ðyÞ; y þ DyÞ � Gðx*ðyÞ; yÞ þ L k Dyk2
¼ G

�
x*ðyÞ þ xlðyÞ*e; y þ Dy

�
þ 2L k Dyk2: (F4)

Then, from the assumption that
vxgðx1; yÞ � vxgðx2; yÞ � ε*ðx2 �x1Þ;cx1 > x2 and x*ðyÞþ x1*e;
x*ðyÞþ x2*e2X, we have

vxgðx; y þ DyÞ � �ε,xþ vxgð0; y þ DyÞ
¼ �ε,x; cx<0; x*ðyÞ þ x*e2X:

As a result,

gð0; y þ DyÞ ¼ g
�
xlðyÞ; y þ Dy

�
þ
ð0

xlðyÞ

vxgðx; y þ DyÞdx

� g
�
xlðyÞ; y þ Dy

�
�
ð0

xlðyÞ

ε,xdx

¼ g
�
xlðyÞ; y þ Dy

�
� ε

2
,x2jx¼0

x¼xlðyÞ

¼ g
�
xlðyÞ; y þ Dy

�
þ ε

2
,
�
xlðyÞ

�2
:

Because � xlðyÞ>2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L k Dyk2=ε

p
, the above inequality gives

gð0; yþDyÞ > g
�
xlðyÞ; yþDy

�
þ 2L k Dyk2: (F5)

We observe Eq. (F4) and Eq. (F5) together lead to a contradiction.
Therefore, we have

xðyÞ� x ðyÞ � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L k Dyk2=ε

q
:

Appendix G. Main parameter settings of the numerical
experiment

In this section, we present the numerical settings for the tested
networks in Fig. 6. We list the pipeline parameters, the descriptions
of components of compressor stations and the physical parameters
of the fitting compressor model formulation. The same structure is
tested for two compressor station component settings. The first
setting is just the same as Deng et al. (2019), in which the sub-
network contains only one compressor in each station. In the sec-
ond setting, each station contains 1, 2 or 3 nonidentical
compressors, details are in Table 8. The pipeline parameters and
compressor type parameters in Tables 7 and 9 all come from Deng
et al. (2019). The size of numbers of compressors in each station is
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consistent with network settings in previous related literature（;
Deng et al., 2019, Behrooz (2016).
Table 7
Pipeline Parameters for the test network

Pipeline Starting End Length, Elevation Heat Transfer

ID Node Node km Change, m Factor, W/(m2,K)

1 0 1 0 0 0
2 1 2 139.652 �6 4
3 2 3 13.34 0 4
4 3 4 101.86 �777.8 4
5 4 5 62.3 37.2 4
6 5 6 42.41 0 4
7 6 7 134.18 �113 4
8 7 8 152.37 �19.8 4
9 8 9 95.66 18 5
10 9 10 54.671 14.1 4

Table 8
Compressor station components for the test network

Station ID Setting1 Setting2

Compressor number Compressor
Type/ID

Compressor number Compressor
Type/ID

1 1 1 1 1
2 1 2 2 2,6
3 1 3 2 3
4 1 4 1 4,7,8
5 1 5 3 5,9

Table 9
Compressor Model Parameters for the test network

ID H1 H2 H3 ETA1 ETA2 SURGE1 SURGE2 STONE1 STONE2 Speedmax Speedmin

1 �5.35E-04 �3.71E-04 1.32E-04 �1.31E-03 2.14E-04 3420 2.77E-01 5900 8.61E-01 5000 3120
2 �9.81E-04 2.33E-05 2.08E-05 �1.30E-03 1.62E-04 5620 3.55E-01 8120 1.41Eþ00 5330 3510
3 �5.37E-04 �3.78E-04 1.31E-04 �1.31E-03 2.24E-04 3360 2.58E-01 5940 8.54E-01 4940 3180
4 �9.70E-04 3.39E-05 2.12E-05 �1.32E-03 1.76E-04 5100 3.57E-01 8140 1.24Eþ00 5320 3500
5 �8.88E-04 6.20E-05 2.37E-05 �1.17E-03 1.70E-04 5060 3.02E-01 6990 9.15E-01 6560 4050
6 �4.65E-04 �3.44E-04 6.56E-05 �1.48E-03 1.46E-04 5600 3.95E-01 10090 1.29Eþ00 4970 2960
7 �1.19E-03 1.64E-04 4.35E-05 �1.48E-03 3.21E-04 3520 1.45E-01 4650 5.63E-01 6340 4030
8 �4.38E-04 �3.42E-04 6.85E-05 �1.47E-03 1.57E-04 5580 3.84E-01 10290 1.33Eþ00 5080 3150
9 �5.82E-04 7.91E-05 7.50E-06 �6.89E-04 1.17E-04 5050 4.62E-01 8560 1.58Eþ00 6430 3730
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