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a b s t r a c t

Model-driven and data-driven inversions are two prominent methods for obtaining P-wave impedance,
which is significant in reservoir description and identification. Based on proper initial models, most
model-driven methods primarily use the limited frequency bandwidth information of seismic data and
can invert P-wave impedance with high accuracy, but not high resolution. Conventional data-driven
methods mainly employ the information from well-log data and can provide high-accuracy and high-
resolution P-wave impedance owing to the superior nonlinear curve fitting capacity of neural net-
works. However, these methods require a significant number of training samples, which are frequently
insufficient. To obtain P-wave impedance with both high accuracy and high resolution, we propose a
model-data-driven inversion method using ResNets and the normalized zero-lag cross-correlation
objective function which is effective for avoiding local minima and suppressing random noise. By using
initial models and training samples, the proposed model-data-driven method can invert P-wave
impedance with satisfactory accuracy and resolution. Tests on synthetic and field data demonstrate the
proposed method's efficacy and practicability.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

P-wave impedance is a critical parameter in reservoir identifi-
cation and exploration because it can indicate reservoir features.
Both model-driven and data-driven inversion methods can obtain
P-wave impedance from post-stack seismic data (Wang et al.,
2019a; Alfarraj and AlRegib, 2019; Biswas et al., 2019; Chen and
Schuster, 2020). Most model-driven methods presume that the
relationship between seismic data and P-wave impedance obeys
the Robinson seismic convolution model (Robinson,1967; Dai et al.,
2018; Ajaz et al., 2021; Cheng et al., 2021a). By using the Bayesian
theory or series reversion theory, Robinson model-driven inversion
methods update P-wave impedancemodels iteratively attributed to
the differences between synthetic and real seismic data (Yin and
Zhang, 2014; Innanen, 2011; Chen and Innanen, 2014; Hu et al.,
2011; Cheng et al., 2021b). Most seismic data have limited
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frequency bandwidths due to acquisition constraints, but inversion
targets have wide frequency bandwidths, resulting in ill-
conditioned and ill-posed inversion issues (Lu et al., 2015; Kieu
and Kepic, 2019; Li et al., 2020; Wang et al., 2022). As a result,
model-driven methods typically necessitate well-prepared low-
frequency initial models and are incapable of providing high-
resolution P-wave impedance (Zhou et al., 2017, 2019; Baeten
et al., 2013). Sparsity-constrained methods and well-log con-
strained methods are developed to supplement the missing fre-
quency information to enhance the resolution of inverted P-wave
impedance (Ma et al., 2019, 2021; Shi et al., 2020).

By using neural networks, recently developed data-driven
inversion methods provide another option to achieve broad fre-
quency bandwidth P-wave impedance (Das et al., 2019; Guo et al.,
2019; Puzyrev et al., 2019; Wu et al., 2021). These methods
necessitate no initial models but a significant number of training
samples. Conventional neural networks iteratively enhance neural
networks based on the difference between inverted and sample P-
wave impedance (Wang et al., 2020a; Wang et al., 2020b; Wang
et al., 2021; Sun et al., 2021). Because the training samples are
primarily created by well-log data, based on sufficient training
mmunications Co. Ltd. This is an open access article under the CC BY license (http://

http://creativecommons.org/licenses/by/4.0/
mailto:wliuyang@vip.sina.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petsci.2022.09.008&domain=pdf
www.sciencedirect.com/science/journal/19958226
www.keaipublishing.com/en/journals/petroleum-science
https://doi.org/10.1016/j.petsci.2022.09.008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.petsci.2022.09.008
https://doi.org/10.1016/j.petsci.2022.09.008


Y.-H. Sun and Y. Liu Petroleum Science 19 (2022) 2711e2719
samples, neural networks can yield P-wave impedance with high
resolution (Wang et al., 2019b; Xu et al., 2019a). However, in most
cases, the absence of well-log data leads to the insufficiency of
training samples, causing the inverted P-wave impedance to be low
accuracy (Zhao et al., 2019; Wang et al., 2020c; Xu et al., 2019b).

Convolutional neural networks (CNNs) are widely employed to
forecast P-wave impedance because of their weight sharing and
local connection properties, which result in high feature extraction
capacity (Wu et al., 2020; Yablokov et al., 2021). Nevertheless, most
CNNs contain deep layers and sophisticated structures, being prone
to gradient disappearance or gradient explosion, which is disad-
vantageous to the accuracy of inverted P-wave impedance. Residual
Networks (ResNets), which are developed by adding some shortcut
connections in CNNs, can solve these problems (Lin et al., 2021;
Tian et al., 2021; Zhang et al., 2021).

There are always sufficient seismic data but insufficient well-log
data, yielding proper initial models but insufficient training sam-
ples for field data. To balance the accuracy and the resolution of
inverted P-wave impedance, we combine the advantages of model-
driven and data-driven inversion methods and propose a model-
data-driven P-wave impedance inversion method using ResNets,
which consists of two steps, i.e., network pre-training and network
retraining/inversion. During the first step, we iteratively improve
the neural networks based on not only the errors between syn-
thetic and sample seismic data but also the error between inverted
and sample P-wave impedance. During the second step, we itera-
tively update the weight parameters of the pre-trained neural
networks based on both the errors between synthetic and real
seismic data and the error between the inverted P-wave impedance
after low-frequency-pass filtering and the P-wave impedance of the
initial model. Furthermore, because of thewaveform characteristics
of seismic data, the errors of seismic data calculated by the L2-norm
are easily plunged into a local minimum in the iteration process if
there are obvious amplitude differences (Liu et al., 2017). We
introduce the normalized zero-lag cross-correlation, which can
mitigate falling into a local minimum and suppress random noise,
to calculate the errors. Using synthetic and field data, we evaluate
the feasibility and the practicability of the proposed method and
draw some useful conclusions.

2. Methods

2.1. Model-driven inversion

The foundation of most model-driven P-wave impedance
inversion methods is the Robinson convolution model (Robinson,
1967) and it is shown in Appendix A. On basis of known seismic
data and wavelets, most model-driven methods improve param-
eter models iteratively based on the differences between synthetic
and real seismic data. Therefore, the objective function of a model-
driven method, as calculated by the L2-norm, is depicted as

J1 ¼kS� R*Wk2; (1)

where S, R and W represent seismic data, reflection coefficients,
and wavelets, respectively. kk2 stands for the L2-norm.

2.2. Data-driven inversion

Conventional data-driven inversion methods typically use
neural networks to transform seismic data to P-wave impedance.
By using the training samples created by well-log data, these
methods usually improve the constructed neural networks itera-
tively based on the difference between inversion and sample P-
wave impedance. As a result, the objective function, as defined by
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the L2-norm, is represented by

J2 ¼
���ZNN � ZSample

���
2
; (2)

where ZNN is the P-wave impedance outputted from networks and
ZSample means the sample P-wave impedance.
2.3. Model-data-driven inversion

To obtain P-wave impedance with satisfactory accuracy and
resolution, we propose a model-data-driven P-wave impedance
inversion method with two steps, as shown in Fig. 1.

Before the first step, the P-wave impedance low-frequency
initial model for synthetic data is obtained by filtering the real P-
wave impedance, while the initial model for field data is built by
the seismic-structure-guided interpolation method (Wu, 2017),
respectively. Meanwhile, the training samples are created by well-
log data, which are augmented by adding random numbers, and
seismic data, which are obtained based on the Robinson convolu-
tion model. Note that it is necessary to normalize the training
samples, and we use the normalized expression as

bxj ¼ xj � xmin

xmax � xmin
; (3)

where xj and bxj are the original and the normalized values of the jth
sample. xmax and xmin indicate the maximum and the minimum of
the samples, respectively.

The first step is network pre-training, in which we pre-train the
constructed neural networks using training samples. 1D sample
seismic data are fed into the neural networks to output 1D P-wave
impedance that matches the 1D sample P-wave impedance. The
output P-wave impedance is then used to convolute with a seismic
wavelet to synthesize seismic data that are matched with the
sample seismic data. In this way, the objective function in this step
has two parts and is written as

J3 ¼m1

���ZNN � ZSample

���
2
þ c,ð1�m1Þ

���SSyn � SSample

���
2
; (4)

where SSyn and SSample are the synthetic and the sample seismic
data, respectively. m1 represents a weight parameter with the range
from 0 to 1. This parameter increases as the quality of the initial
model becomes better. In this paper, we determine m1 as 0.5 for
both the synthetic and the field data examples by test. c indicates a
parameter that is used to balance the orders of magnitude and is
defined as the order of magnitude of the ratio of the first term to the
second term. The objective function is calculated to iteratively
update the neural network weight parameters until it converges to
the minimum.

The second step is network retraining/inversion, in which we
update the weight parameters of the neural networks after pre-
training trace by trace to obtain P-wave impedance. At first, 1D
real seismic data are input into the pre-trained networks to output
P-wave impedance, which is then filtered to obtain a low-frequency
component with the same frequency bandwidth as the initial
model. After that, the low-frequency component is constrained by
the initial P-wave impedance, which will slightly lower the reso-
lution of the inverted impedance. Meanwhile, the inverted P-wave
impedance is used to calculate reflection coefficients, which then
are convoluted with a statistical wavelet to synthesize seismic data
to match the real seismic data. The objective function of this step
also contains two parts and is defined as



Fig. 1. The flowchart of the proposed model-data-driven inversion method.
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J4 ¼m2kZLow�NN � ZInitialk2 þ c,ð1�m2Þ
��SSyn � SReal

��
2; (5)

where ZLow�NN represents the inversion P-wave impedance after
low-frequency filtering and ZInitial indicates the initial P-wave
impedance. SReal is the real seismic data. m2 denotes a weight
parameter (ranging from 0 to 1) that increases in size as the initial
model is enhanced. The more proper the initial model is, the bigger
m2 is, and the higher the dependence of the proposed method on
the initial model is. In this paper, we determine m2 as 0.5 for the
synthetic data example and 0.3 for the field data example by test.
The objective function is calculated to iteratively update the pre-
trained neural networks trace by trace until it converges to the
minimum, and the P-wave impedance output from the networks is
the inversion parameter.

The first items on the right side of Eqs. (4) and (5) show P-wave
impedance constraints that are affected by the training samples
and initial model, respectively. The second items on the right side of
Eqs. (4) and (5) represent the constraints of seismic data. Because
seismic data have waveform characteristics, the L2-norm objective
function, which requires amplitude matching, is prone to falling
into a local minimum and yielding low accuracy when there are
amplitude differences between synthetic and real seismic data. The
normalized zero-lag cross-correlation objective function can
effectively process such amplitude differences by matching the
phase between waveforms. Furthermore, the objective function
reduces the importance of amplitude and is insensitive to random
noise in seismic data, which can effectively decrease the influence
of the random noise on inversion (Liu et al., 2017). By using the
normalized zero-lag cross-correlation, the proposed method im-
proves the objective functions used in the network pre-training and
network retraining/inversion steps as

J5 ¼m1

���ZNN � ZSample

���
2
þ c,ð1�m1Þ

0
B@1� SNN,SSampleffiffiffiffiffiffiffiffi

S2NN

q
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Sample

q
1
CA;

(6)
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and

J6 ¼m2kZLow�NN � ZInitialk2 þ c,ð1�m2Þ

0
B@1� SNN,SRealffiffiffiffiffiffiffiffi

S2NN

q
,

ffiffiffiffiffiffiffiffiffiffi
S2Real

q
1
CA;

(7)

By learning from Wu's neural networks (Wu et al., 2021), the
proposed method employs ResNets (shown in Fig. 2), which
contain four convolution layers and four ResBlocks. Each convolu-
tion layer is composed of 16 1D convolution filters and is followed
by a ResBlock (shown in the green box), which includes two
convolution layers and a skip connection over the two layers. We
use the ReLU activation function to add nonlinear information and
apply the Adam optimization algorithm to enhance the weight
parameters of neural networks by minimizing the objective func-
tions with the learning rate of 0.001.
3. Examples

To test the feasibility and the progressiveness of the proposed
model-data-driven method, we compare it with a model-driven
inversion method based on the least square algorithm and a data-
driven inversion method using the ResNets depicted in Fig. 2. We
use these three methods to process synthetic and field data for the
trial. Besides, the mean squared error (MSE) and the running time
are used to evaluate these three methods. The MSE's expression is
written as

MSE¼1
n

Xn
i¼1

�
mi �m0

i

�2
; (8)

where m and m0 mean inverted and real data, respectively. n is the
number of m.
3.1. Synthetic data example

As synthetic data, 401 CDPs (common depth points) and 501



Fig. 2. The structure of the ResNets used in the proposed method.
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samples with a 2 ms interval from the Marmousi model are used.
The real P-wave impedance of the partial Marmousi model (shown
in Fig. 3a) is used to calculate reflection coefficients, which are then
applied to convolute with a Ricker wavelet with the dominant
frequency of 20 Hz (shown in Fig. 3b) to synthesize real seismic
data without noise (displayed in Fig. 3c). The data of real P-wave
impedance's 101th, 201th, and 301th CDPs are used to establish
pseudo wells, which are then named as Wells 1, 2, and 3. We build
an initial model by filtering the real P-wave impedance, as drawn in
Fig. 3d. Meanwhile, the P-wave impedances of Wells 1 and 2 are
augmented by adding random numbers and then are applied to
compute seismic data based on the Robinson convolution model. In
this way, we create 1000 training samples to train the neural net-
works for the synthetic data example. The well-log data of Well 3
are used for verification.

By using the initial model shown in Fig. 3d, the model-driven
method inverts the real seismic data without noise and provides
the P-wave impedance shown in Fig. 4a. Fig. 4b depicts the P-wave
impedance inverted by the data-driven method after 300 epochs
based on the training samples. Meanwhile, by employing both the
initial model and the training samples, the proposed model-data-
Fig. 3. Test on the synthetic seismic data without noise for the partial Marmousi model. (a)
Synthetic seismic data without noise. (d) P-wave impedance low-frequency initial model.
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driven method deduces the P-wave impedance displayed in
Fig. 3c after 300 epochs for the pre-training step. One can see that
the P-wave impedance inverted by the model-driven method has a
lower resolution than those of both the data-driven and the pro-
posed model-data-driven methods.

To clearly show the differences of the P-wave impedances
inverted by these three methods, we extract the data ofWells 1 and
3 and show them in Fig. 5a and b, respectively. One can see that the
P-wave impedances inverted by the proposed method are closer to
the well-log data than the impedances obtained by the model-
driven method for these two wells. The data-driven method pro-
vides the P-wave impedances that match the well-log data well
only for Well 1. Meanwhile, the MSEs of these inverted P-wave
impedances are calculated and then displayed in Fig. 6a and b. For
Well 1, whose data are used to create training samples, the model-
driven, the data-driven, and the proposed methods provide the
MSEs with 0.253, 0.180, and 0.173, respectively. For Well 3, which is
a validation well, these three methods invert P-wave impedances
with the MSEs of 0.257, 0.411, and 0.181. Our proposed method
deduces the impedances with the lowest MSEs and the highest
accuracy for both the two wells.
Real P-wave impedance. (b) Ricker wavelet with the dominant frequency of 20 Hz. (c)



Fig. 4. Test on the synthetic seismic data without noise for the partial Marmousi model. (a, b, and c) P-wave impedances inverted by the model-driven, the data-driven, and the
proposed model-data-driven methods.

Fig. 5. Test on synthetic seismic data without noise for the partial Marmousi model. (a) Well-log, initial and inverted P-wave impedances of Well 1. (b) Well-log, initial and inverted
P-wave impedances of Well 3.

Fig. 6. Test on the synthetic seismic data without noise for the partial Marmousi model. (a) The MSEs of the P-wave impedances inverted by the three methods for Well 1. (b) The
MSEs of the P-wave impedances inverted by the three methods for Well 3.
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Table 1 shows the running time of the three methods. The
model-driven method takes the shortest time to obtain the inver-
ted P-wave impedance shown in Fig. 4, while the proposed method
takes the longest time, which is still acceptable.

In addition, to test the anti-noise ability of the proposed
method, we add some random noise in the noiseless seismic data to
obtain noisy seismic data with the signal-to-noise ratio of 2 (shown
2715
in Fig. 7a). The model-data-driven methods, which employ the L2
norm objective function (Eq. (4) and (5)) and the normalized zero-
lag cross-correlation objective function (Eq. (6) and (7)), are used to
process the noisy seismic data and invert the P-wave impedances
depicted in Fig. 7b and c. For clarity, Fig. 8a and b shows the curves
of the initial model, the inverted P-wave impedances, and the well-
log data from Wells 1 and 3. One can see that the P-wave



Table 1
The running time of the three methods for the synthetic seismic data without noise.

Methods Pre-training (s) Retraining/Inversion (s) Total (s)

Model-driven Initial model e 40 40
Data-driven Train samples 85 e 85
Proposed Initial modelþ

Train samples
107 48 155

Fig. 7. Test on the synthetic seismic data with noise for the partial Marmousi model. (a) Synthetic seismic data with noise. (b and c) P-wave impedances inverted by the proposed
model-data-driven methods based on the L2-norm and the normalized zero-lag cross-correlation objective functions, respectively.

Fig. 8. Test on the synthetic seismic data with noise for the partial Marmousi model. (a) Well-log, initial and inverted P-wave impedances of Well 1. (b) Well-log, initial and inverted
P-wave impedances of Well 3.
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impedances inverted based on the normalized zero-lag cross-cor-
relation objective function (the MSEs are 0.175 and 0.182, respec-
tively) match the well-log data better than those of the L2-norm
objective function (the MSEs are 0.208 and 0.213, respectively). It
demonstrates that the normalized zero-lag cross-correlation
objective function has benefits of anti-noise.
2716
3.2. Field data example

The field data, consisting of 900 inline and 400 Xline, contain
250 samples with an interval of 2 ms. Fig. 9a shows the 3D field
seismic data and 4 wells. We extract the statistical wavelet (dis-
played in Fig. 9b) from the seismic data for inversion and build the
P-wave impedance initial model (revealed in Fig. 9c) based on the
seismic-structure-guided interpolation method (Wu, 2017). After



Fig. 9. Test on the field seismic data. (a) 3D field seismic data. (b) A statistical wavelet
extracted from the seismic data. (c) P-wave impedance low-frequency initial model.

Fig. 10. Test on the field seismic data. (a, b, and c) P-wave impedances inverted by the
model-driven, the data-driven, and the proposed model-data-driven methods.
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Fig. 11. Test on the field seismic data. (a) Well-log, initial, and inverted P-wave impedances of Well A. (b) Well-log, initial, and inverted P-wave impedances of Well D.

Fig. 12. Test on the field seismic data. (a) The MSEs of the P-wave impedances inverted by the three methods for Well A. (b) The MSEs of the P-wave impedances inverted by the
three methods for Well D.
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that, we create 5000 training datasets using the sample generation
method mentioned in the synthetic data example based on the
well-log data of Wells A, B, and C. The P-wave impedance of Well D
is used as the validation data.

The model-driven method inverts the field seismic data based
on the initial model and generates the P-wave impedance shown in
Fig. 10a. Fig. 10b displays the P-wave impedance inverted by the
data-driven method using the training samples after 300 epochs.
Meanwhile, the proposed model-data-driven method with the
zero-lag cross-correlation-based functions employs both the initial
model and the training samples and obtains the P-wave impedance
revealed in Fig.10c by costing 300 epochs in the pre-training step. It
can be seen that the P-wave impedances inverted by the data-
driven and the proposed methods have higher resolution than
that of the model-driven method, especially around the Well C.

Fig. 11 shows the P-wave impedances of Wells A and D for clear
comparisons. Concurrently, the MSEs of inverted impedances of
these two wells are calculated and drawn in Fig. 12a and b,
respectively. One can see that the model-driven, the data-driven,
and the proposed methods invert the P-wave impedances with
the MSEs of 0.364, 0.296, and 0.267, respectively for Well A. It
demonstrates that the proposed method provides the impedance
with the highest accuracy among the three methods. Meanwhile,
the MSEs of P-wave impedances inverted by the three methods are
0.359, 0.577, and 0.282 forWell D (shown in the black dashed boxes
in Fig. 10). It indicates that the data-driven method cannot provide
high accuracy impedance if there are insufficient training samples
while the proposed method can still invert the P-wave impedance
with high accuracy.
2718
4. Conclusions

We proposed a model-data-driven method to invert P-wave
impedance using ResNets and the normalized zero-lag cross-cor-
relation objective function. Based on the same initial model, the
proposed model-data-driven method can provide the P-wave
impedance with both higher accuracy and higher resolution than
that of the model-driven method because our method uses addi-
tional training samples. Using the same training samples, the pro-
posed method outperforms the data-driven method in terms of P-
wave impedance accuracy because it employs an additional initial
model. Meanwhile, the proposed method performs well in anti-
noise for using the normalized zero-lag cross-correlation objec-
tive function. This paper primarily advances a feasible inversion
strategy that combines model-driven and data-driven methods by
utilizing simple neural networks. When more appropriate net-
works are built, the newmethod will provide a more satisfactory P-
wave impedance.

Note that the model-driven method efficiently inverts P-wave
impedance with high accuracy but limited resolution. The data-
driven method provides P-wave impedance with both high reso-
lution and accuracy only around wells or in locations, whose
characteristics are similar to well-log data. But these methods have
higher efficiency than the proposed model-data-driven method. As
a result, we suggest that the model-driven methods are suitable to
invert the seismic data with a broad frequency bandwidth. The
data-driven methods are good at processing the field data, which
contain sufficient wells or training samples. Our proposed model-
data-driven method can perform better than these two methods
when seismic data have low resolution and well-log data are
insufficient.
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Appendix A

The Robinson convolution model theory (Robinson, 1967) is
expressed mathematically as

S¼R*W; (A.1)

where S, R and W represent seismic data, reflection coefficients,
and wavelets, respectively.

When seismic waves propagate to an underground reflection
interface vertically, the reflection coefficient at the interface is
defined as

Ri ¼
Ziþ1 � Zi
Ziþ1 þ Zi

; (A.2)

where Ri is the reflection coefficient at the interface, Zi and Ziþ1
indicate the P-wave impedances above and below the interface,
respectively.

References

Ajaz, M., Ouyang, F., Wang, G.H., et al., 2021. Fluid identification and effective
fracture prediction based on frequency-dependent AVOAz inversion for frac-
tured reservoirs. Petrol. Sci. 18 (4), 1069e1085. https://doi.org/10.1016/
j.petsci.2021.07.011.

Alfarraj, M., AlRegib, G., 2019. Semi-supervised Learning for Acoustic Impedance
Inversion. 89th Annual International Meeting. SEG Expanded Abstracts,
pp. 2298e2302. https://doi.org/10.1190/segam2019-3215902.1.

Baeten, G., Maag, J.W., Plessix, R.E., et al., 2013. The use of low frequencies in a full-
waveform inversion and impedance inversion land seismic case study. Geophys.
Prospect. 61 (4), 701e711. https://doi.org/10.1111/1365-2478.12010.

Biswas, R., Sen, M.K., Das, V., et al., 2019. Prestack and poststack inversion using a
physics-guided convolutional neural network. Interpretation 7 (3),
SE161eSE174. https://doi.org/10.1190/INT-2018-0236.1.

Chen, T.S., Innanen, K.A., 2014. AVO inversion through iteration of direct nonlinear
inverse formulas. CREWES Research Report 26, 1e16.

Chen, Y.Q., Schuster, G.T., 2020. Seismic inversion by Newtonian machine learning.
Geophysics 85 (4), WA185eWA200. https://doi.org/10.1190/geo2019-0434.1.

Cheng, G.S., Yin, X.Y., Zong, Z.Y., et al., 2021a. Complex spherical-wave elastic
inversion using amplitude and phase reflection information. Petrol. Sci. https://
doi.org/10.1016/j.petsci.2021.12.005.

Cheng, J.W., Zhang, F., Li, X.Y., 2021b. Nonlinear amplitude inversion using a hybrid
quantum genetic algorithm and the exact Zoeppritz equation. Petrol. Sci.
https://doi.org/10.1016/j.petsci.2021.12.014.

Dai, R.H., Yin, C., Yang, S.S., et al., 2018. Seismic deconvolution and inversion with
erratic data. Geophys. Prospect. 66 (9), 1684e1701. https://doi.org/10.1111/1365-
2478.12689.

Das, V., Pollack, A., Wollner, U., et al., 2019. Convolutional neural network for
seismic impedance inversion. Geophysics 84 (6), R869eR880. https://doi.org/
10.1190/geo2018-0838.1.

Guo, R., Zhang, J.J., Liu, D., et al., 2019. Application of Bi-directional Long Short-Term
Memory Recurrent Neural Network for Seismic Impedance Inversion. 81st
Conference and Exhibition, vols. 3e6. EAGE Extended Abstracts. https://doi.org/
10.3997/2214-4609.201901386.

Hu, G.Q., Liu, Y., Wei, X.C., et al., 2011. Joint PP and PS AVO inversion based on Bayes
theorem. Appl. Geophys. 8 (4), 293e302. https://doi.org/10.1007/s11770-010-
0306-0.

Innanen, K.A., 2011. Inversion of the seismic AVF/AVA signatures of highly attenu-
ative targets. Geophysics 76 (1), R1eR11. https://doi.org/10.1190/1.3518816.

Kieu, D.T., Kepic, A., 2019. Seismic-impedance inversion with fuzzy clustering
constraints: an example from the Carlin Gold District, Nevada, USA. Geophys.
Prospect. 68 (1), 103e128. https://doi.org/10.1111/1365-2478.12891.

Li, Y.Q., Li, J.Y., Chen, X.H., et al., 2020. Post-stack impedance blocky inversion based
on analytic solution of viscous acoustic wave equation. Geophys. Prospect. 68
(7), 2009e2026. https://doi.org/10.1111/1365-2478.12967.

Lin, B.H., Jin, X., Kang, L.C., et al., 2021. The research of earthquake magnitude
determination based on convolution neural networks. Chin. J. Geophys. 64 (10),
3600e3611. https://doi.org/10.6038/cjg2021O0370 (in Chinese).
2719
Liu, Y.S., Teng, J.W., Xu, T., et al., 2017. Robust time-domain full waveform inversion
with normalized zero-lag cross-correlation objective function. Geophys. J. Int.
209 (1), 106e122. https://doi.org/10.1093/gji/ggw485.

Lu, J., Yang, Z., Wang, Y., et al., 2015. Joint PP and PS AVA seismic inversion using
exact Zoeppritz equations. Geophysics 80 (5), R239eR250. https://doi.org/
10.1190/geo2014-0490.1.

Ma, M., Zhang, R., Yuan, S.Y., 2019. Multichannel impedance inversion for nonsta-
tionary seismic data based on the modified alternating direction method of
multipliers. Geophysics 84 (1), A1eA6. https://doi.org/10.1190/geo2018-0319.1.

Ma, X., Huo, L.L., Li, G.F., et al., 2021. Inversion-based attenuation compensationwith
dip constraint. Petrol. Sci. https://doi.org/10.1016/j.petsci.2021.12.001.

Puzyrev, V., Egorov, A., Pirogova, A., et al., 2019. Seismic inversion with deep neural
networks: a feasibility analysis. In: 81st Annual International Meeting, vols.
3e6. EAGE Expanded Abstracts. https://doi.org/10.3997/2214-4609.201900765.

Robinson, E.A., 1967. Predictive decomposition of time series with application to
seismic exploration. Geophysics 32, 418e484. https://doi.org/10.1190/
1.1439873.

Shi, L., Sun, Y.H., Liu, Y., et al., 2020. High-order AVO inversion for effective pore-
fluid bulk modulus based on series reversion and Bayesian theory. Energies
13 (6), 1313. https://doi.org/10.3390/en13061313.

Sun, Y.H., Liu, Y., Chen, T.S., 2021. Multi-wave amplitude-versus-offset inversion and
reservoir fluid identification based on unsupervised deep learning. Geophys.
Prospect. Pet. 60 (3), 385e394. https://doi.org/10.3969/j.issn.1000-
1441.2021.03.004 (in Chinese).

Tian, Y.J., Gao, J.H., Wang, D.Q., et al., 2021. Removing strong seismic reflection based
on the deep neural network. Chin. J. Geophys. 64 (8), 2780e2794. https://
doi.org/10.6038/cjg2021O0165 (in Chinese).

Wang, Y.Q., Ge, Q., Lu, W., et al., 2020c. Well-logging constrained seismic inversion
based on closed-loop convolutional neural network. IEEE Trans. Geosci. Rem.
Sens. 58 (8), 5564e5574. https://doi.org/10.1109/TGRS.2020.2967344.

Wang, N., Xing, G., Zhu, T., Zhou, H., et al., 2022. Propagating seismic waves in VTI
attenuating media using fractional viscoelastic wave equation. J. Geophys. Res.
Solid Earth 127. https://doi.org/10.1029/2021JB023280.

Wang, E.J., Liu, Y., Ji, Y.X., et al., 2019a. Q full-waveform inversion based on the
viscoacoustic equation. Appl. Geophys. 16 (1), 77e91. https://doi.org/10.1007/
s11770-019-0749-2.

Wang, Y.Q., Lu, W.K., Liu, J.L., et al., 2019b. Random seismic noise attenuation based
on data augmentation and CNN. Chin. J. Geophys. 62 (1), 421e433. https://
doi.org/10.6038/cjg2019M0385 (in Chinese).

Wang, L.L., Meng, D.L., Wu, B.Y., 2020a. Seismic inversion via closed-loop fully
convolutional residual network and transfer learning. Geophysics 86 (5), 1e54.
https://doi.org/10.1190/geo2020-0297.1.

Wang, Y.Q., Wang, Q., Lu, W.K., et al., 2021. Seismic impedance inversion based on
cycle-consistent generative adversarial network. Petrol. Sci. https://doi.org/
10.1016/j.petsci.2021.09.038.

Wang, W.B., Xu, X.L., Sheng, L., et al., 2020b. Detection of microseismic events based
on convolution neural networks. Oil Geophys. Prospect. 55 (5), 939e949 (in
Chinese). http://www.ogp-cn.com/EN/10.13810/j.cnki.issn.1000-7210.2020.05.
001.

Wu, X.M., 2017. Building 3D subsurface model conforming to seismic structural and
stratigraphic features. Geophysics 82 (3), IM21eIM30. https://doi.org/10.1016/
j.petsci.2021.09.038.

Wu, B., Meng, D., Wang, L.L., et al., 2020. Seismic impedance inversion using fully
convolutional residual network and transfer learning. Geosci. Rem. Sens. Lett.
IEEE 17 (12), 2140e2144. https://doi.org/10.1109/LGRS.2019.2963106.

Wu, X.M., Yan, S.S., Bi, Z.F., et al., 2021. Deep learning for multidimensional seismic
impedance inversion. Geophysics 86 (5), R735eR745. https://doi.org/10.1190/
geo2020-0564.1.

Xu, P., Lu, W., Tang, J., et al., 2019a. High-resolution reservoir prediction using
convolutional neural networks. In: 81st Annual International Meeting, vols.
1e5. EAGE Expanded Abstracts. https://doi.org/10.3997/2214-4609.201901392.

Xu, P., Lu, W., Wang, B., 2019b. A semi-supervised learning framework for gas
chimney detection based on sparse auto encoder and TSVM. J. Geophys. Eng. 16
(1), 52e61. https://doi.org/10.1093/jge/gxy004.

Yablokov, A.V., Serdyukov, A.S., Loginov, G.N., et al., 2021. An artificial neural
network approach for the inversion of surface wave dispersion curves. Geophys.
Prospect. 69 (7), 1405e1432. https://doi.org/10.1111/1365-2478.13107.

Yin, X.Y., Zhang, S.X., 2014. Bayesian inversion for effective pore-fluid bulk modulus
based on fluid-matrix decoupled amplitude variation with offset approxima-
tion. Geophysics 79 (5), R221eR232. https://doi.org/10.1190/geo2013-0372.1.

Zhang, Y.L., Yu, Z.C., Hu, T.Y., et al., 2021. Multi-trace joint downhole microseismic
phase detection and arrival picking method based on U-net. Chin. J. Geophys. 64
(6), 2073e2085. https://doi.org/10.6038/cjg2021O0379 (in Chinese).

Zhao, M., Chen, S., Fang, L.H., et al., 2019. Earthquake phase arrival auto-picking
based on U-shaped convolution neural networks. Chin. J. Geophys. 62 (8),
3034e3042. https://doi.org/10.6038/cjg2019M0495 (in Chinese).

Zhou, D.Y., Yin, X.Y., Zong, Z.Y., 2019. Multi-trace basis-pursuit seismic inversion for
resolution enhancement. Geophys. Prospect. 67 (3), 519e531. https://doi.org/
10.1111/1365-2478.12752.

Zhou, L., Li, J.Y., Chen, X.H., et al., 2017. Prestack amplitude versus angle inversion for
Young's modulus and Poisson's ratio based on the exact Zoeppritz equations.
Geophys. Prospect. 65 (6), 1462e1476. https://doi.org/10.1111/1365-2478.12493.

https://doi.org/10.1016/j.petsci.2021.07.011
https://doi.org/10.1016/j.petsci.2021.07.011
https://doi.org/10.1190/segam2019-3215902.1
https://doi.org/10.1111/1365-2478.12010
https://doi.org/10.1190/INT-2018-0236.1
http://refhub.elsevier.com/S1995-8226(22)00223-0/optWTXQTzD1V7
http://refhub.elsevier.com/S1995-8226(22)00223-0/optWTXQTzD1V7
http://refhub.elsevier.com/S1995-8226(22)00223-0/optWTXQTzD1V7
https://doi.org/10.1190/geo2019-0434.1
https://doi.org/10.1016/j.petsci.2021.12.005
https://doi.org/10.1016/j.petsci.2021.12.005
https://doi.org/10.1016/j.petsci.2021.12.014
https://doi.org/10.1111/1365-2478.12689
https://doi.org/10.1111/1365-2478.12689
https://doi.org/10.1190/geo2018-0838.1
https://doi.org/10.1190/geo2018-0838.1
https://doi.org/10.3997/2214-4609.201901386
https://doi.org/10.3997/2214-4609.201901386
https://doi.org/10.1007/s11770-010-0306-0
https://doi.org/10.1007/s11770-010-0306-0
https://doi.org/10.1190/1.3518816
https://doi.org/10.1111/1365-2478.12891
https://doi.org/10.1111/1365-2478.12967
https://doi.org/10.6038/cjg2021O0370
https://doi.org/10.1093/gji/ggw485
https://doi.org/10.1190/geo2014-0490.1
https://doi.org/10.1190/geo2014-0490.1
https://doi.org/10.1190/geo2018-0319.1
https://doi.org/10.1016/j.petsci.2021.12.001
https://doi.org/10.3997/2214-4609.201900765
https://doi.org/10.1190/1.1439873
https://doi.org/10.1190/1.1439873
https://doi.org/10.3390/en13061313
https://doi.org/10.3969/j.issn.1000-1441.2021.03.004
https://doi.org/10.3969/j.issn.1000-1441.2021.03.004
https://doi.org/10.6038/cjg2021O0165
https://doi.org/10.6038/cjg2021O0165
https://doi.org/10.1109/TGRS.2020.2967344
https://doi.org/10.1029/2021JB023280
https://doi.org/10.1007/s11770-019-0749-2
https://doi.org/10.1007/s11770-019-0749-2
https://doi.org/10.6038/cjg2019M0385
https://doi.org/10.6038/cjg2019M0385
https://doi.org/10.1190/geo2020-0297.1
https://doi.org/10.1016/j.petsci.2021.09.038
https://doi.org/10.1016/j.petsci.2021.09.038
http://www.ogp-cn.com/EN/10.13810/j.cnki.issn.1000-7210.2020.05.001
http://www.ogp-cn.com/EN/10.13810/j.cnki.issn.1000-7210.2020.05.001
https://doi.org/10.1016/j.petsci.2021.09.038
https://doi.org/10.1016/j.petsci.2021.09.038
https://doi.org/10.1109/LGRS.2019.2963106
https://doi.org/10.1190/geo2020-0564.1
https://doi.org/10.1190/geo2020-0564.1
https://doi.org/10.3997/2214-4609.201901392
https://doi.org/10.1093/jge/gxy004
https://doi.org/10.1111/1365-2478.13107
https://doi.org/10.1190/geo2013-0372.1
https://doi.org/10.6038/cjg2021O0379
https://doi.org/10.6038/cjg2019M0495
https://doi.org/10.1111/1365-2478.12752
https://doi.org/10.1111/1365-2478.12752
https://doi.org/10.1111/1365-2478.12493

	Model-data-driven P-wave impedance inversion using ResNets and the normalized zero-lag cross-correlation objective function
	1. Introduction
	2. Methods
	2.1. Model-driven inversion
	2.2. Data-driven inversion
	2.3. Model-data-driven inversion

	3. Examples
	3.1. Synthetic data example
	3.2. Field data example

	4. Conclusions
	Acknowledgments
	Appendix A
	References


