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a b s t r a c t

Production optimization has gained increasing attention from the smart oilfield community because it
can increase economic benefits and oil recovery substantially. While existing methods could produce
high-optimality results, they cannot be applied to real-time optimization for large-scale reservoirs due to
high computational demands. In addition, most methods generally assume that the reservoir model is
deterministic and ignore the uncertainty of the subsurface environment, making the obtained scheme
unreliable for practical deployment. In this work, an efficient and robust method, namely evolutionary-
assisted reinforcement learning (EARL), is proposed to achieve real-time production optimization under
uncertainty. Specifically, the production optimization problem is modeled as a Markov decision process
in which a reinforcement learning agent interacts with the reservoir simulator to train a control policy
that maximizes the specified goals. To deal with the problems of brittle convergence properties and lack
of efficient exploration strategies of reinforcement learning approaches, a population-based evolutionary
algorithm is introduced to assist the training of agents, which provides diverse exploration experiences
and promotes stability and robustness due to its inherent redundancy. Compared with prior methods
that only optimize a solution for a particular scenario, the proposed approach trains a policy that can
adapt to uncertain environments and make real-time decisions to cope with unknown changes. The
trained policy, represented by a deep convolutional neural network, can adaptively adjust the well
controls based on different reservoir states. Simulation results on two reservoir models show that the
proposed approach not only outperforms the RL and EA methods in terms of optimization efficiency but
also has strong robustness and real-time decision capacity.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The oil and gas industry has wielded incredible influence in
international economics over the past few decades and will remain
the backbone of global energy in the coming years. However,
considerable fields have entered the maturity phase and the
development of new fields is deemed to be an intractable task.
Therefore, it is crucial to take efforts to improve the hydrocarbon
production efficiency of existing reservoirs, especially in the
neering, China University of
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context of continued volatility in international oil prices.
With the technological developments of digital and smart oil-

fields, production optimization has attracted increasing attention
from the reservoir workers as a systematic workflow to greatly
improve hydrocarbon production efficiency (Chen et al., 2010; Chen
and Reynolds, 2016; Chang et al., 2020; Xue et al., 2020, 2021).
Production optimization aims to obtain the optimal development
scheme (e.g., flow rate, location, and pressure) of each activewell to
maximize economic benefits or accumulative hydrocarbon pro-
duction. In practice, however, solving such optimization problems
is not a trivial task. It is challenged by strong nonlinearity between
decision variables and objective function (Yin et al., 2021). In
addition, the optimized solution must satisfy the required physical
and operational constraints to ensure its feasibility. Furthermore,
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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since optimization involves the prediction of future production,
numerical simulators are frequently used. Unfortunately, a single
simulation run might cost a relatively long time (typically several
hours) while a complete optimization generally requires thousands
of simulation runs (Zhao et al., 2016). As a result, algorithms with
high efficiency are eager to be developed to deal with these
challenges.

In recent years, a variety of advanced optimization approaches
have been developed. Among them, gradient-based algorithms
show extremely high optimization speed since they use gradient
information to determine the search direction (Wang et al., 2002;
Sarma et al., 2008; Fonseca et al., 2017; Liu and Reynolds, 2020). For
production optimization problems, however, they do not have ac-
cess to the gradient information required from the commercial
simulators, making them impractical for real-world applications
(Zhang et al., 2021). By contrast, derivative-free algorithms proceed
without explicitly calculating the derivatives and thus have better
flexibility (Hajizadeh et al., 2010; Ebrahimi and Khamehchi, 2016).
Notable examples include the genetic algorithms and particle
swarm optimization. Although these methods are rather stable and
easy to implement, they suffer from a heavy computation burden
since they rely on a large number of simulation runs and therefore
do not meet the demand for real-time optimization in the field. To
alleviate this issue, major innovations focus on constructing data-
driven surrogate models (Zhao et al., 2020; Chen et al., 2021; Kim
and Durlofsky, 2021). In these efforts, the surrogate models are
trained using simulation input and output and then used as
approximation functions to replace the reservoir simulator during
optimization. While the computation demand is significantly
reduced, it is difficult to guarantee the fidelity of the surrogate
models, especially the dimension of the decision variables is large.
Although the dimension reduction techniques are available to cope
with the so-called ‘curse of dimensionality’, themodeling errors are
significant enough to shadow the benefits of optimization effi-
ciency (Sun, 2020).

The aforementioned production optimization approaches are
task-specific. They cannot extract shared patterns between similar
tasks and have to solve each task from scratch even though the task
changes only slightly. They typically seek to find a deterministic
solution and neglect the uncertainty of the subsurface environ-
ment, which results in two major limitations. Firstly, the obtained
solution is only optimal for the environment under which the
optimization is run. Due to the lack of robustness, a performance
drop will inevitably occur when deploying the scheme to the real
reservoir, known as the ‘sim-to-real’ gap. Secondly, they are unable
to cope with the unknown changes (e.g., one well breaks down at
some timesteps) and make adjustments in real-time, leading to the
failure of the development scheme. In theory, one approach well
suited to tackle these problems is reinforcement learning (RL).
Instead of directly optimizing the decision variables, RL features by
training a control policy that helps an ‘artificial agent’ to learn how
to act in a dynamic environment (Qiu et al., 2022). As an online
learning algorithm, RL can make use of the experience acquired
from interacting with the environment, thereby capturing the
environmental uncertainty and adapting to various state condi-
tions. Furthermore, the combination of RL with deep neural net-
works (DNN), known as the deep reinforcement learning (DRL), can
directly deal with complex sequential decision problems in an end-
to-end fashion (Mnih et al., 2015). Despite these attractive advan-
tages, RL has few applications in the field of production optimiza-
tion. Prior works either regard it as an alternative to traditional
methods or only handle simple decision scenarios (De Paola et al.,
2020; Miftakhov et al., 2020; He et al., 2022; Zhang et al., 2022).
We contend that two challenges hinder its widespread adoption in
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this domain. First, most RL approaches lack diverse exploration
strategies and converge prematurely to a local optimum in the face
of high-dimensional action and state spaces. Such a scenario is
likely to be encounteredwhen performing production optimization
of actual reservoirs. Secondly, RL algorithms typically suffer from
brittle convergence properties while stability and reliability are
crucial in practical deployment.

In response to the problems mentioned above, an efficient and
robust approach that is capable of reservoir real-time production
optimization under uncertainty is proposed in this paper. To be
specific, the production optimization problem is carefully formu-
lated as a finite Markov decision process (MDP) in which a high-
performance RL algorithm is used to train the optimal control
policy that maximizes the long-term net present value (NPV). To
address the problems of brittle convergence properties and insuf-
ficient exploration in RL, we introduce the population-based
evolutionary algorithm (EA), which generates diverse exploration
experiences to train the RL agents and promotes stability and
robustness due to its inherent redundancy. In turn, the RL agents
are periodically injected into the population to participate in the
evolutionary process, allowing the evolutionary process to be
accelerated as well. Consequently, the proposed approach, which
we call evolutionary-assisted reinforcement learning (EARL), has
better performance than EA and RL work separately. To further
improve the optimization efficiency of the entire process, EARL is
designed as a parallel computation architecture. Multiple policies,
which are represented by the deep convolution neural networks
(CNN), are trained in their respective environments using the data
from a shared experience replay buffer. Once trained, the policy
learns an explicit mapping relationship between reservoir state and
well control and can adapt to new scenarios without additional
training. We apply the proposed approach to waterflooding pro-
duction optimization problems, in which two reservoir models are
used to verify its optimization efficiency, real-time decision ca-
pacity, and robustness performance.

The rest of this paper is organized as follows. Section 2 reviews
the related works. In section 3, we describe the mathematical
model of the production optimization problem and reformulate it
as an MDP. In section 4, the proposed approach is illustrated in
detail. Case studies are discussed in section 5. Section 6 concludes
the paper.

2. Related works

Conventional approaches are widely used to solve the produc-
tion optimization problem, which can be broadly divided into two
categories: gradient-based and derivative-free algorithms. For
gradient-based algorithms, Wang et al. (2002) used a numerical
perturbation method, and Sarma et al. (2008) used the adjoint
gradient method to solve production optimization problems. Liu
and Reynolds (2020) applied stochastic gradient methods for
robust optimization with nonlinear state constraints. Fonseca et al.
(2017) proposed an approximate gradient method for production
optimization under uncertainty. Although computationally effi-
cient, gradient-based algorithms can be trapped in a local optimum.
On the contrary, derivative-free algorithms show strong global
optimization ability in the face of high-dimensional variables and
multi-modal objective functions. As a type of derivative-free and
meta-heuristic optimization method, the evolutionary algorithm
(EA) has been widely applied (Hajizadeh et al., 2010; Ebrahimi and
Khamehchi, 2016; Wood, 2016). Foroud et al. (2018) evaluated the
application of multiple different global optimization algorithms for
well control optimization in the Brugge field. Although most of
them are rather stable and easy to implement, they bear expensive
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computational costs due to a large number of simulation evalua-
tions. This motivates the arrival of the surrogate models. Zhang
et al. (2021) used the support vector machine as the surrogate
model to replace the reservoir simulator for constrained production
optimization. Kim and Durlofsky (2021) proposed a recurrent
neural network-based surrogate model to solve the waterflooding
optimization problem. Chen et al. (2021) developed a radial basis
function surrogate model for high-dimensional expensive optimi-
zation problems. Although much progress has been made in
improving optimization efficiency, the significant errors introduced
by inaccurate surrogate models remain a core challenge for prac-
tical applications.

In addition to the studies of optimization efficiency, several
research attempts to achieve robust operation by optimizing a so-
lution thatmaximizes the average NPV over all possible realizations
in the uncertainty set, known as robust production optimization.
Guo and Reynolds (2018) designed a robust production optimiza-
tion workflow that estimates the optimal well controls with sup-
port vector regression. Zhao et al. (2020) developed a classification-
based multi-objective evolutionary algorithm for waterflooding
production optimization under geological uncertainty. However,
because robust optimization is used to hedge against the worst-
case realization of unknown parameters, the resulting solution is
frequently too cautious and thus may sacrifice performance on
many environmental variants. Compared with these works, our
method learns a control policy autonomously by interacting with
the environment and therefore naturally captures the environ-
mental uncertainties.

Recent advances in the machine learning community further
accelerate the research of production optimization. Among them,
RL has been used as a promising solution. De Paola et al. (2020)
trained an RL agent that learned the best drilling scheme with
the deep Q-network algorithm. Miftakhov et al. (2020) utilized the
proximal policy optimization algorithm to optimize the production
parameters with the reservoir pressure and water saturation dis-
tribution as the observations. He et al. (2022) utilized the proximal
policy optimization algorithm to find the optimal drilling scheme
for greenfield primary depletion problems. Zhang et al. (2022)
developed an effective DRL agent for life-cycle waterflooding pro-
duction optimization. However, most existing works regard the RL
as an alternative to traditional methods and focus on finding the
optimal solution for a specific scenario. There is no in-depth
research on robustness and real-time decision capacity under un-
u ¼
h
q1winj;1; :::; qNt

winj;1; q1winj;2; :::; qNt
winj;NI

; :::; bhp1pro;1; :::; bhpNt
pro;1 ; bhp1pro;2; :::; bhpNt

pro;NP

i
(2)
certainty. Our approach, using RL as the main component, can be
seen as an extension of the previous works. By combining the RL
with other optimization techniques, we demonstrate that it can be
better applied to solving production optimization problems.

Although RL and EA have seen much success in solving chal-
lenging production optimization problems independently, syn-
ergies between them have not been studied in this domain. Our
approach is inspired by research in the field of computer science.
Pourchot and Sigaud (2018) proposed CEM-RL, which combined the
cross-entropy method and twin delayed deep deterministic policy
gradient algorithm, achieving excellent optimization performance
on a set of benchmarks. Khadka and Tumer (2018) introduced the
evolutionary reinforcement learning. Experimental results
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demonstrate that the proposed framework significantly out-
performs prior RL and EA approaches in solving complex robotic
tasks. More famously, Gupta et al. (2021) proposed the deep
evolutionary reinforcement learning framework, based on which
the embodied intelligence can perform multiple tasks in multiple
complex environments. In this paper, we demonstrate that key
challenges in production optimization can be well addressed using
the advances in machine learning and general-purpose domains.

3. Problem formulation

3.1. Mathematical model of the production optimization

While the proposed approach is general, we apply it to water-
flooding production optimization because waterflooding develop-
ment is the most commonly used secondary oil recovery method
and is a hot topic for reservoir engineers. The goal of waterflooding
optimization is to maximize economic benefits by adjusting the
well controls (e.g., injection/production rates or bottom hole
pressures (BHP)) at each timestep. In practical, NPV is generally
chosen as the objective function for dynamic optimization, which is
mathematically formulated as

J ¼
XNt

n¼1

8<
:
2
4XNP

j¼1

�
ro,qno;j � rw,qnw;j

�

�
XNI

i¼1

�
rw;inj,q

n
winj;i

�3
5 Dtn

ð1þ bÞtn

=

365

9=
; (1)

where Nt represents the number of timesteps in a life-cycle; NI and
NP denote the number of injection and production wells, respec-
tively; qno;j and qnw;j are the average oil and water production rates of

the jth production well over the nth timestep, respectively, STB/d;
qnwinj;i is the average water injection rate of the ith injection well

over the nth timestep, STB/d; tn represents the time at the end of
the nth timestep; Dtn is the time interval of the nth timestep, d; ro,
rw, and rw;inj are the oil revenue, the disposal cost of produced
water, and the water injection costs, respectively, USD/STB; b is the
annual discount rate.

In this paper, the sequence of well controls at each timestep to
be optimized are given as Eq. (2), all of them are continuous vari-
ables.
where qtwinj;i denotes the water injection rate of ith injectionwell at

tth timestep; bhptpro;j denotes the BHP of jth production well at tth

timestep.
Since the water and oil production rates of production wells in

the NPV are functions of the system state vector x (includes all the
primary variables of the reservoir simulator) and well control
vector u, we can write the NPV of Eq. (1) as a function of x and u.
Now, the production optimization problem can be formulated as a
general constrained optimization problem

max
u

Jðx;uÞ; u2Rd (3)

subject to
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gðx;uÞ¼0; xjt¼0 ¼ x0 (4)

ulb�u � uub (5)

where d represents the number of well controls to be optimized,
d ¼ Nt � ðNP þ NIÞ; gðx;uÞ ¼ 0 denotes the reservoir simulation
partial differential equations describing the flow of oil, gas, and
water; x0 represents the initial state; ub and lb are the specified
upper and lower bounds of the corresponding well controls,
respectively.

3.2. Production optimization reformulation as Markov decision
process

Because waterflooding development strategy consists of a
sequence of schemes at several timesteps, the production optimi-
zation can be formulated as an MDP, an underlying framework that
is widely used to solve sequential decision problems. This MDP is
defined by an artificial agent interacting with the environment,
including: a state space S , an action space A , a state transition P ,
and a reward function R . As depicted in Fig. 1, at each timestep t,
the agent observes a state st2S and takes an action at2 A ac-
cording to its policy pðat jstÞ. Then, the environment evolves to the
next state based on state transition P . The agent then receives a
scalar reward rt2R and a new state stþ12S for the next timestep
tþ 1. This procedure is reiterated for a large number of timesteps.
The aim of the agent is to learn an optimal policy p* that maximizes
the expected return, which is defined as

p*¼ argmax
p

E

"XT
t¼0

gtrt

#
(6)
at ¼
h
bhptprd;1; ,,,; bhp

t
prd;i; ,,,; bhp

t
prd;NP

; qtwinj;1; ,,,; q
t
winj;i; ,,,; q

t
winj;NI

i
2A (8)
where g2½0;1� is the discount factor to balance the future reward
against the immediate reward; T is the time horizon of the given
task.

We now turn to the production optimization problem. The agent
can be regarded as the controller which can adjust the production
Fig. 1. MDP of waterflooding production optimization problems. The ag
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schemes according to the latest reservoir states. The environment is
represented by a reservoir simulator that provides the real-time
reservoir state and rewards feedback. More specifically, the state,
action, and reward function are expressed as follows.

State. The design of the state is supposed to consider both the
observability of the system and the diversity of variables. It can be
the current situation returned by the environment or any future
situation. The selected state variables must provide sufficient in-
formation related to the reward function for the agent to under-
stand current situation and take corrective actions. For production
optimization problems, the states can be the dynamic information
of the wells (e.g., open/close and water cut), the cumulative infor-
mation of the field (e.g., formation pressure and oil/water produc-
tion), and temporal volumetric information (e.g., saturation and
pressure distribution). In this paper, we choose temporal volu-
metric information as the state since it provides the richest fea-
tures. Therefore, the state st at the tth timestep is given by

st ¼
h
sto;1; ,,,; s

t
o;i; ,,,; s

t
o;n;p

t
1; ,,,; p

t
i ; ,,,; p

t
n

i
2S (7)

where sto;i and pti are the oil saturation and pressure of the ith grid at

the tth timestep, respectively.
Since the pressure and saturation have different numerical

scales, we use Min-Max normalization method
ðx�minðxÞÞ=ðmaxðxÞ�minðxÞÞ to normalize them to improve the
training accuracy.

Action. The design of the actions depends on the corresponding
environment and specific tasks. For production optimization
problems, it is natural to define the well controls as the actions, so
the action at at the tth timestep is given by
where bhptprd;i and qtwinj;i are the bhp of the ith production well and

water injection rate of the ith injection well at the tth timestep,
respectively.

Reward function. The design of the reward function is the core
of whether an agent can complete the target task. The reward is a
ent and reservoir environment interact at each discrete timestep.



Fig. 2. High-level schematic of the proposed EARL framework. The optimal policy is trained in two interactive processes. Episode reward and fitness denote the evaluation results of
the policies provided by RL and EA, respectively. An episode denotes a forward simulation run.
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single positive or negative value that assesses whether particular
actions are ‘good’ or ‘bad’. The design of the reward should guar-
antee that the aim of the agent is tomaximize Eq. (3). Therefore, the
reward rt at the tth timestep is given by

rt ¼ h,

0
@XNp

j¼1

�
ro,qto;j � rw,qtw;j

�
�
XNI

i¼1

�
rw;inj,q

t
winj;i

�1
A,Dtn

(9)

where h is the scaling factor that scales the numerical scale of the
reward and facilitates the stability of the training.

4. EARL: evolutionary-assisted reinforcement learning

We propose a hybrid algorithm for real-time production opti-
mization, namely evolutionary-assisted reinforcement learning
(EARL). A general framework of EARL is shown in Fig. 2. The optimal
policy is obtained in a double-layer training manner: the learning
process of RL and the evolutionary process of EA. The key insight is
that the synergies between EA and RL enable both the learning
process and the evolutionary process can be accelerated. On the
one hand, transferring the RL agents into the evolutionary popu-
lation allows injecting gradient information, which accelerates
convergence without losing EA’s simplicity. On the other hand,
transferring population information into the learning process al-
lows RL agents to leverage diverse exploration experiences and
promotes robustness and stability.

4.1. RL-based learning process

Unlike conventional data-driven approaches that rely on large
labeleddatasets,RL featuresbyanagent that learnsanoptimalcontrol
policy fromthe experiences obtainedbycontinuous interactionswith
the environment. Based on themodeledMDP (Section 3.2),weutilize
a high-performance DRL algorithm to train the optimal policy for the
given real-time production optimization problem.
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Soft actor critic (SAC) (Haarnoja et al., 2018) is a state-of-the-art
DRL algorithm, which has demonstrated superior performance to
solve continuous control tasks. Different from typical RL algorithms
that optimize a policy defined in Eq. (6), in SAC, the optimal policy is
trained with the goal to maximize the expected return and the
policy entropy at the same time, which is given by

p* ¼ argmax
p

E

"XT
t¼0

gt,ðrt þ a,H ðpð,jstÞ Þ Þ
#

(10)

where a is the trade-off coefficient, which balances exploration and
exploitation, and

H ðpÞ¼Ex�p½�log pðxÞ� (11)

is the entropy term that encourages the agent to explore more
action space.

SAC utilizes an actor-critic architecture, which consists of three
components: the actor network, the critic network, and the expe-
rience replay buffer. The actor network pfðat jstÞ parameterized by
f represents the policy that maps the state st to action at . The critic
network Qqðst ;atÞ parameterized by q represents the action-value
function that maps the state-action pair ðst ;atÞ to Q-value, i.e.,
expected accumulated reward. The experience replay buffer D is
used to store generated experiences from the interactions with the
environment for the training of the actor network and critic
network.

More specifically, SAC performs the training process in a policy
iteration manner, i.e., iterating multiple times over a policy evalu-
ation step and a policy improvement step. At each iteration, a batch
of experiences ðst ;at ; rt ; stþ1Þ is sampled randomly from the expe-
rience replay buffer D . In the policy evaluation step, the critic
network is trained and then used to guide the update of the actor
network. Notice that two networks Qqj ; for j ¼ 1; 2 with the same
structure are used to alleviate the overestimation of the Q-value.
The parameters can be optimized by minimizing the loss function
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JQ
�
qj
� ¼ Eðst ;at ;rt ;stþ1Þ�D

��
Qqjðst ;atÞ � yðrt ; stþ1Þ

�2 �
(12)

with

yðrt ; stþ1Þ ¼ rt þ g,Eatþ1�pfð,jstþ1Þ

�
min
j¼1;2

Qqtarg;j ðstþ1;atþ1Þ

� a,log pfðatþ1jstþ1Þ
�

(13)

where Qqtarg;j is the target critic network with parameters qtarg;j. The

target networks are used to enhance stability during training, and
the parameters qtarg;j are periodically soft updated with

qtarg;j)ð1� tÞqtarg;j þ tqj; j ¼ 1; 2 (14)

where t2ð0;1Þ is the smoothing factor.
In the policy improvement step. The actor network is trained by

minimizing divergence from the exponential of the soft-Q function.
After derivation, the loss function can be written as

JpðfÞ ¼ Est�D ;at�pfð,jstÞ

�
a,log pfðat jstÞ �min

j¼1;2
Qqj ðst ;atÞ

�
(15)

The architecture of SAC-based real-time production optimiza-
tion is shown in Fig. 3. The agent has no prior knowledge of
reservoir dynamics. The evolution of the reservoir state and the
computation of the reward are provided by the environment. In this
process, the policy is represented by the actor network that chooses
an action to perform based on the input state. Then, the critic
network judges the choices made by the actor network and pro-
vides feedback to update its parameters, thus improving the actor
network’s behavior. By repeating the over and over policy iteration,
we eventually save the actor network as the optimal policy.

In practice, the performance RL algorithm is sensitive to the
hyperparameter g. The agent with a small g cares about short-term
Fig. 3. The SAC-based learning process fo
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returns but may be trapped in a local optimum. The agent with
large g attaches to long-term returns but suffers from an inaccurate
prediction. To alleviate this problem, we build an online allocation
manager (OAM) to dynamically allocate computational resources
for agents with different g. In particular, the concept of the upper
confidence bound (UCB) (Capp�e et al., 2013) score U is introduced
as the resource allocation criterion, defined as Eq. (16). The agent
with the higher U will be assigned more resources in the next
iteration.

Ui ¼Qi þ c,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

�PD
i¼1ni

�
ni

vuut
(16)

with

Qi*u , scorei þ ð1�uÞ,Q 0
i (17)

where Qi is the estimated value of the ith agent, satisfying the in-
cremental update rule Eq. (17). Q 0

i is the past estimated value of the
ith agent; scorei is the latest episode reward of the ith agent;u is the
weight coefficient. The square root term is a measure of the un-

certainty in the estimate of the ith agent’s value.
PD

i¼1ni is the total
number of interactions with the environment using all agents. ni is
the number of interactions with the environment using the ith
agent. The exploration coefficient c controls the degree of
exploration.

During the optimization, each agent is initially assigned the
same number of CPU cores to interact with the reservoir environ-
ment. The allocation of CPU cores considers not only the current
estimated values of agents but the number of times they have been
selected. The agents selected less frequently are also given the
opportunity to interact with the environment. This operation re-
sults in a balance between exploration and exploitation and avoids
time-consuming hyperparameter optimization. The pseudocode of
the RL-based learning process is provided in Algorithm 1.
r real-time production optimization.
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Algorithm 1. Pseudocode of RL-based learning process
Algorithm 2. Pseudocode of policy evaluation

4.2. EA-based evolutionary process

Although RL has successfully improved the performance of real-
time production optimization, there are still two shortcomings that
hinder its performance. First, RL lacks effective and diverse explo-
ration strategies in the face of large state space and action space. In
general, actual reservoir models contain a large-scale number of
grids and involve a large number of decision variables, it is difficult
to learn a policy that well establishes the mapping relationship
between the reservoir states and the well controls. Second, RL
suffers from brittle convergence properties, especially when the
267
rewards are uneven during the interaction. The main innovation of
the proposed approach is to introduce population-based EA to
provide diverse exploration experiences to train the RL agents and
promotes stability and robustness.

To achieve the synergies between EA and RL, the individuals in
the population must have the same structure as RL agents. Other-
wise, the RL agents are unable to utilize the exploration experiences
provided by the population and cannot be copied into the popu-
lation to participate the evolutionary process. To address this
problem, a deep Neuroevolution (NE) algorithm (Such et al., 2017)
is used as a component of the proposed framework. Unlike
methods such as the genetic algorithm and differential evolution
that directly optimize a numerical solution, NE parameterizes each
individual in the population as a neural network. The selection,
crossover, and mutation operators act on the weights of the neural
networks to drive the evolutionary process. Thus, NE explores
through perturbations in the weight parameters space.

To be specific, the EA-based evolutionary process for real-time
production optimization proceeds as follows: a population of
actor networks (each actor network represents a policy) is gener-
ated with randomweights. Note that these actor networks have the
same structure as the RL actor networks, but their parameters are
updated in different ways. The former uses evolutionary operators,
while the latter uses gradient information. For evolutionary actor
networks, they are evaluated through a life-cycle of interaction
with the reservoir environments. The fitness for each actor network
is calculated as the cumulative NPV over the production cycle. A
portion of individuals with higher fitness are preserved as elites.
The weights of the actor networks are then probabilistically per-
turbed through the selection, crossover, andmutation operations to
create a new generation. Algorithm 3 provides the pseudocode of
the EA-based evolutionary process.
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Algorithm 3. Pseudocode of EA-based evolutionary process
Fig. 4. Policy transfer mechanism between two interactive processes. EA is run as an
outer and RL is performed in an inner.
4.3. The integrated workflow

The previous two sections described the scenario in which RL
and EA independently solve production optimization problems. The
core idea of EARL is to integrate them into a single framework to
bring two advantages: (1) accelerate the learning process of RL
agents and promote stability and robustness of the trained policy
using the experiences generated by individuals in the evolutionary
population. (2) accelerate the evolutionary process of the popula-
tion by periodically injecting the RL agents into the population. The
detailed implementations are as follows:

EA to RL. Different from conventional EA which only saves the
fitness as a feedback signal and does not make use of the infor-
mation from the interaction process, our approach captures the
learning from the intrinsic sequential decision-making process. The
experiences of each individual, e.g., which reservoir states the in-
dividuals pass through and which well controls they take under
these states, are stored in a shared experience replay buffer. These
diverse exploration experiences can be randomly sampled by the
RL agents to update the parameters of their actor networks and
critic networks.

RL to EA.We introduce the concept of sync frequency M , which
controls the information flow from the RL agents to the evolu-
tionary population. For example, M ¼ 2 means the actor networks
of the RL agents are transferred every two generations. As depicted
in Fig. 4, the evolution is run as an outer optimization while the
transferred policies are trained with gradient information in an
inner loop, which can be considered as a combination of global
search and implicit local learning. This mechanism allows the EA’s
framework to directly use powerful gradient information, acceler-
ating the convergence. The sync results have the following
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scenarios: if the actor networks transferred are good, they will be
selected and extend their influence to the population over the
offspring. However, if the actor networks transferred are bad, they
will be discarded and gradually eliminated from the population.
This result ensures that the effects of sync are positive and will not
disrupt the evolutionary process. Algorithm 4 provides the pseu-
docode of EARL.

Algorithm 4. Pseudocode of EARL
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4.4. Training details

4.4.1. Neural networks structure
EARL utilizes two types of DNNs to design and optimize the

policy: the actor network and the critic network, as shown in Fig. 5.
For the actor network, the input is the reservoir state and the
output is the well control. In a recent study (He et al., 2022), three-
dimensional (3D) reservoir models need to be scaled to a 2D tem-
plate, then a 2D CNN is used to extract reservoir state features. This
operation results in the loss of large raw features because the
heterogeneities in the vertical direction are ignored. To address this
problem, we use a 3D CNN with a 3D convolution kernel (Ji et al.,
2012) to extract information directly from 3D reservoir model.
For example, for a 3D model (model size: 116 � 54� 24, the
detailed information can be found in the case study section), the
input of the actor network is a 5D tensor (N,2,24,54,116): ‘N’ is the
batch size, ‘2’ is the number of channels (pressure and oil satura-
tion), ‘24’ is the number of model layers, ‘54’ is the width of the
model, and ‘116’ is the length of the model. For the critic network,
the input is the combination of the flattened state and action, the
output is the Q-value. The critic network is parameterized by fully
connected neural networks. The detailed model architecture in-
formation about the actor network and critic network can be found
in Appendix A.
4.4.2. Training architecture
EARL uses an episodic training fashion in which data are

collected by running the simulator with the actor networks. Each
episode corresponds to a simulation run that terminates when a
fixed timestep has passed. Because of the computational re-
quirements of evolving dynamic reservoir state, the data acquisi-
tion rate of the reservoir simulator is significantly slower than that
Fig. 5. Network structure. (a) Policy network. The input is the reservoir state and the outpu
and action, the output is the Q-value.
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of a typical RL environment. To address this issue, we design a
parallel training architecture, as depicted in Fig. 6. At each iteration,
the actor networks interact with their respective environments in
parallel on allocated CPU cores, and the collected data is stored in a
shared experience replay buffer. Then, the critic networks sample
the experiences from the buffer to update their parameters and
provide gradient information for the update of the actor networks.
5. Case study

In this section, the proposed approach is applied to two pro-
duction optimization cases of waterflooding reservoir models,
including a 2D model and a large-scale 3D model. To verify the
effectiveness, EARL is evaluated and comparedwith the SAC and NE
with the same parameters. Meanwhile, to demonstrate the role of
the OAM, we use a single agent in the learning process (EARL
without OAM), which is a special case of the EARL. Without losing
generality, all simulation-based evaluations are performed using
the EclipseSM Reservoir Simulation Software. We implemented all
DNN models using the open-source deep-learning library PyTorch
(Paszke et al., 2019).

The parameter configurations of EARL are provided as follows:
During the evolutionary process, the size of the population Ne is set
to 10; the elite rate is set to 0.2. During the learning process, four
agents share 10 CPU cores based on the OAM, and their discount
factors are set to 0.80, 0.90, 0.95, and 0.99, respectively. The
learning rates for the critic networks and the actor networks are set
to 5e-4 and 3e-4, respectively. The batch size is set to 128. The
smoothing factor t is set to 0.005. The trade-off coefficient a is set to
0.2. The save frequency f and the sync frequency M are set to 5. In
addition, the weight coefficient u and the exploration coefficient c
in OAM are set to 0.2 and 0.9, respectively.
t is the well control. (b) Critic network. The input is the combination of flattened state



Fig. 6. High-performance and data-efficient architecture for training the optimal policy.

Table 1
Properties of the three channel model.

Properties Value

Model size 25 � 25� 1
Porosity 0.2
Depth, ft 4,800
Viscosity of oil, cP 2.2
Initial pressure, psi 6,000
Compressibility, psi�1 6.9 � 10e5

Initial water saturation 0.2
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5.1. Case 1: 2D synthetic model

The three channel model is a 2D synthetic reservoir model with
three high-permeability channels. This model is developed with
four injection wells and nine production wells in a five-spot
pattern. The injection wells are under rate control. The allowable
upper bound is 1500 STB/d and the lower bound is zero. The pro-
duction wells are under bhp control. The allowable upper bound is
6000 psi and the lower bound is 3000 psi. The well location and
log-permeability distribution of the model are shown in Fig. 7.
Typical properties of the model are provided in Table 1. The antic-
ipated production cycle is 1800 days and the interval of each
timestep is 180 days, so there are 10 timesteps and the dimension of
decision variables is 10� ð4 þ 9Þ ¼ 130. The oil revenue is set to
Fig. 7. Well location and log-permeability distribution of the three channel model.
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48.0 USD/STB, the water production cost is set to 3.0 USD/STB, and
the water injection cost is set to 0.5 USD/STB. Discount rates are not
taken into account. The scaling factor is set to 1e-6.

5.1.1. Experimental evaluation on optimization performance
To make fair comparisons, we conducted 10 independent sta-

tistical runs with different random seeds and recorded the mean
value (solid line) and standard deviation (shadow). The perfor-
mance of NE, SAC, EARL (without OAM), and EARL are compared
based on the same number of simulation runs and their conver-
gence curves are shown in Fig. 8. SAC shows poor optimization
performance, which indicates that the agent fails to learn a good
policy. This is because the agent trains the policy through generated
experience within an episode. But in this case, an episode only has
10 timesteps, the agent is unable to explore the action space suf-
ficiently with a limited number of simulation runs. In contrast,
EARL (and EARL without OAM), which combines the global opti-
mization ability of EA, achieves higher NPV and has a smaller
variance. Moreover, the addition of OAM brings the synergies be-
tween different agents and enables to explore more state and



Fig. 9. Comparison of remaining oil saturation distribut

Fig. 10. Optimal BHP controls provided by SAC, NE, EARL (w

Fig. 11. Optimal rate controls provided by SAC, NE, EARL (w

Fig. 8. NPV vs. simulation runs by NE, SAC, EARL (without OAM), and EARL for the
three channel model.
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action space, further improving the performance of the policy.
From the perspective of oilfield development, achieving an

equilibrium displacement of the oil is a key objective. Due to the
presence of high permeability channels in the formation, the
waterflooding is not uniform. We analyze the quality of the
schemes provided by different methods, which is shown in Fig. 9. It
is obvious that EARL achieves the best equilibrium displacement of
the oil for this plane contradiction problem. The optimal schemes of
production wells and injection wells obtained by four different
approaches are depicted in Fig. 10 and Fig. 11, respectively.

5.1.2. Experimental evaluation on robustness performance
Robustness remains a major obstacle towards reliable deploy-

ment. Traditional production optimization methods are scenario-
specific and they fail to generalize to new scenarios even when
trained on similar environments with the same optimization ob-
jectives. In general, the reservoir models are built by integrating
multiple sources of data through history matching. Due to the
quality and quantity of the available geophysical data, the model
has high uncertainties and thus the discrepancies between the
simulation model and the actual reservoir are inevitable. In this
section, we evaluate the robustness of the trained policy by
ion after being optimized by different approaches.

ithout OAM), and EARL for the three channel model.

ithout OAM), and EARL for the three channel model.
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applying it to three unseen reservoir realizations that have different
permeability distributions. Experiments are executed without
further tuning of the neural network weights after training. The
log-permeability distribution of the three reservoir realizations is
shown in Fig. 12.

As a comparison, we retrained a policy from scratch in the
current environment. Fig. 13 shows the optimization results of two
policies for unseen environments. The experimental results show
the trained policy from the original environment can quickly adapt
to new environments. Both initial and final performance are
significantly improved compared to retraining a policy. This in-
dicates that the trained policy is able to transfer the optimization
experiences gained from interacting with the prior environment
and use them to efficiently draw inferences and make decisions for
similar scenarios.
Fig. 14. Well position and permeability distribution of the square model.
5.2. Case 2: 3D large-scale model

To further illustrate the effectiveness of the proposed approach,
we applied it to a large-scale reservoir model where a certain
number of grids are inactive. This model is extracted from a high
remaining oil region of an actual reservoir. The block includes six
productionwells and twelve injectionwells. The injectionwells are
under rate control, the allowable upper bound is 56600 STB/d and
the lower bound is zero. The production wells are under bhp con-
trol, the allowable upper bound is 1450 psi and the lower bound is
725 psi. Fig. 14 shows the well location and permeability distribu-
tion of this model, and the typical properties of the model are
shown in Table 2. The anticipated life-cycle is 2400 days and the
Fig. 13. Comparison of policy’s performance

Fig. 12. log-permeability distribution
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length of each timestep is 60 days, so there are 40 timesteps in an
episode and the dimension of the well controls is ð6 þ 12Þ� 40 ¼
720. High-dimensional decision variables significantly increase the
difficulty of optimization. In this case, the oil revenue is set to 80.0
USD/STB, the water production cost is set to 5.0 USD/STB, the water
injection cost is set to 0.5 USD/STB, and the annual discount rate is
0%. The scaling factor is set to 1e-5.

5.2.1. Experimental evaluation on optimization performance
We perform 1000 simulation runs to test the performance of

four different methods, and the mean and standard deviation
values of the NPV derived from 10 independent runs are shown in
Fig. 15. We first compare the performance of NE and SAC. In this
case, SAC outperforms NE, which is contrary to the result of the
under different reservoir realizations.

s of three reservoir realizations.



Table 2
Properties of the square model.

Properties Value

Model size 116 � 54� 24
Depth, m 900
Viscosity of oil, cP 6.8
Density of oil, kg/m3 857.8
Compressibility, psi�1 8.2 � 10e5

Initial water saturation 0.32

Fig. 15. NPV vs. simulations by NE, SAC, EARL (without OAM), and EARL for the square
reservoir model.
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three channel model. This is because this model hasmorewells and
timesteps than the three channel model, resulting in a significant
increase in the dimensionality of the well-controls. RL methods are
more efficient when dealing with multi-step decision tasks since
Fig. 16. Comparison of remaining oil distribution a
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they can make use of the information in the episode. Another
conclusion is that EARL has better performance in terms of effi-
ciency and effectiveness compared to NE and SAC. A distinctive
feature of waterflooding development is that the NPV is extremely
unequal for each timestep. NPV in the late stages of development is
significantly smaller than in the early stages. Uneven reward
feedbacks make it difficult for the RL agents to learn the optimal
policy. In such cases, the global optimization ability of EA plays an
important role since it only uses total fitness without leveraging
information from intermediate processes. By leveraging the expe-
riences transferred from the population, the RL agents can escape
from the local optima. On this basis, the OAM further enhances
optimization performance. With different g, each agent has a
different range of exploration. The synergies between different
agents lead to a better policy.

Considering the heterogeneity of the reservoir, the differences in
water injection displacement can often cause the inter-layer
contradiction problem. To address this issue, we employ a CNN
with a 3D convolution kernel for the extraction of reservoir state
information. Compared with the general feature extraction opera-
tion, a 3D convolution kernel can fuse multiple layers of features.
Fig. 16 displays the comparison of remaining oil distribution after
being optimized by different methods. It can be observed that EARL
develops the reservoir more effectively and achieves a higher oil
recovery percentage. This is the main reason why EARL attains the
highest NPV.
5.2.2. Experimental evaluation on real-time decision capacity
A desirable characteristic of the policy is the ability of func-

tioning in diverse environments, including ones that have never
been encountered before. In this section, we investigate whether
the trained policy can make real-time adjustments for multiple
scenarios, which have similar reservoir environments and the same
optimization target (NPV) but differ in thewell locations and status.
To this end, we evaluate the real-time capacity of the trained policy
on two common scenarios.

Scenario 1: an injection well fails to work properly. To be
fter being optimized by different approaches.



Fig. 18. Position changes of injection well 7 and injection well 9.
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specific, the water injection rate of well 7 is set to zero in the first
five timesteps of the development. We observe the real-time
adjustment capacity of the trained policy. The remaining oil dis-
tribution So of the development process (a well fails to work during
the first five timesteps) is shown in Fig. 17a. As a comparison, the
remaining oil distribution So of the normal development (all the
wells work according to the optimal policy) is shown in Figs. 17b
and c shows the difference ðSo �SoÞ between these two cases. It can
be seen that the trained policy can adaptively make adjustments
based on the current reservoir state and eventually achieves a
similar oil displacement effect as the optimal development process,
despite not being trained in this scenario, further demonstrating
the robustness and real-time decision capacity of the trained policy
for uncertain environments.

Scenario 2: After developing 10 timesteps, we adjust the well
location based on the remaining oil distribution in order to develop
the reservoir more effectively. Specifically, we shut in the injection
well 7 and well 9, and add two new wells in locations with high
remaining oil, which is shown in Fig. 18. Fig. 19a displays the final
remaining oil distribution after developing by using the trained
policy. For a better comparison, we retrain a policy from scratch by
performing a thousand simulation runs, which we consider to be
the optimal policy for the current scenario. The remaining oil dis-
tribution after developing with this retrained optimal policy is
depicted in Fig. 19b. We can see that the trained policy achieves a
similar oil displacement effect as the retrained optimal policy.

Fig. 20 shows that the retrained optimal policy does outperform
previous trained policy in terms of NPV and cumulative oil pro-
duction. The reason for this gap is that the previously trained policy
encounters new reservoir states that were not experienced during
its original training process. However, we emphasize that this gap is
within acceptable ranges, especially considering the huge compu-
tational costs involved in retraining a policy.

From the above two scenarios, it can be seen that the policy
trained with our approach has strong robustness and real-time
decision capability. The primary reason behind this is that the in-
formation transfer combines the advantages of NE and SAC. SAC
provides an explicit structure that maps states to actions, which
enables to make full use of powerful gradient information and
adjust the well controls based on different reservoir states. How-
ever, due to the lack of effective exploration strategies and insuf-
ficient exploration of the state space and action space, it is difficult
to ensure the performance of the trained policy. The transfer of
population information deals with this problem well. During this
process, NE provides diverse exploration experiences for the RL
Fig. 17. Comparison of results for scenario 1. (a) The evolution of the remaining oil So under
of the remaining oil So during the normal production process. (c) The difference ðSo �SoÞ b
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agents, which means that two kinds of exploration strategies are
utilized in the training process. NE explores through the noise in
the parameter space (neural network weights) while SAC explores
through the noise in the action space (decision variables). More-
over, it also brings the stability of population-based methods,
which can be seen from the variance of multiple independent run
results. By continuously interacting with the reservoir environment
in both evolutionary and learning ways, the policy generates
memorability and adaptively adjusts the well controls by identi-
fying the difference in reservoir states. Therefore, NE and SAC
collectively lead to a more effective exploration and improve the
performance of the policy.

6. Conclusions

Taking the disadvantages of previous methods applying to
production optimization into consideration, this paper proposes a
hybrid algorithm, namely EARL, to deal with real-time production
optimization under uncertainty. EARL integrates RL and EA into a
single framework, achieving better performance than they work
separately. This approach enables the training of a robust control
policy that can adapt to unseen environments and cope with un-
known changes without retraining from scratch, which is funda-
mentally different from previous methods that can only optimize a
solution for a specific scenario. Through the case studies, the pro-
posed approach is proven to have superior optimization efficiency,
robustness, and real-time decision capacity.

The main limitation of EARL is that the trained policy only deals
with the problems with the same demesion of well controls since
the well controls are controlled by the output of the neural
network. In addition, the trained policy is only suited to different
the scenario where a well fails to work during the first five timesteps. (b) The evolution
etween the above two cases.



Table A1
The model architecture of the actor network. Conv3d, Maxpool3d, and linear are
three types of model layers of the PyTorch. ReLU and Tanh are the non-linear acti-
vation functions. Action ¼ Normalðm; sÞ represents that the output is sampled from a
Normal distribution. N is the batch size of the samples.

Layer Configuration Output shape

3D convolution block
Input Shape ¼ (N,2,24,54,116) e

Conv3d Kernel size¼(1,3,3), activation ¼ ReLU (N,8,24,52,114)
Conv3d Kernel size¼(5,5,5), activation ¼ ReLU (N,12,20,48,110)
MaxPool3d Kernel size¼(2,2,2), activation ¼ ReLU (N,12,10,24,55)
Conv3d Kernel size¼(1,5,5), activation ¼ ReLU (N,16,10,20,51)
Conv3d Kernel size¼(1,5,5), activation ¼ ReLU (N,24,10,16,47)

Fig. 19. Comparison of simulation results for scenario 2. Remaining oil distribution after developing with (a) the previously trained policy and (b) the retrained optimal policy.

Fig. 20. NPV and cumulative oil production vs. development time for scenario 2.
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development scenarios for the same model and cannot be gener-
alized to different reservoir models. From this perspective, this
work can be regarded as an initial effort.

Although we study the waterflooding production optimization
problems in this paper, EARL is suitable for various multi-step de-
cision tasks involving computationally expensive simulation
models in the field of oilfield development, such as well pattern
arrangement, directional drilling, and history matching. EARL
provides a general framework for further study of these problems.
Moreover, EARL utilizes a shared replay buffer that allows the RL
agents to use the experiences from EA’s population. We wonder
whether it is reasonable to directly exploit the actual well control
experiences in the field site through such an experience replay
buffer when optimizing a practical model. We leave the above is-
sues for future works.
MaxPool3d Kernel size¼(2,2,2), activation ¼ ReLU (N,24,5,8,23)
Conv3d Kernel size¼(1,5,5), activation ¼ ReLU (N,28,5,4,19)
Conv3d Kernel size¼(1,3,5), activation ¼ ReLU (N,32,5,2,15)
Flatten
Flatten Neurons¼(32 � 5� 2� 15),

activation ¼ ReLU
(N,4800)

Linear (flattened
state)

Neurons ¼ 256, activation ¼ ReLU (N,256)

Fully connected block
Linear Neurons ¼ 256, activation ¼ ReLU (N,256)
Linear Neurons ¼ 128, activation ¼ ReLU (N,128)
Linear (m) Neurons ¼ 18, activation ¼ ReLU (N,18)
Linear (lnðsÞ) Neurons ¼ 18, activation ¼ ReLU (N,18)
Output Action ¼ Normalðm;sÞ, neurons ¼ 18, (N,18)
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Appendix A
activation ¼ tanh



Table A2
The model architecture of the critic network. ‘256 þ 18’ represents the combination
of the flattened state and the action.

Layer Configuration Output Shape

Input Shape ¼ (N,256 þ 18) e

Linear Neurons ¼ 256, activation ¼ ReLU (N,256)
Linear Neurons ¼ 256, activation ¼ ReLU (N,256)
Linear Neurons ¼ 128, activation ¼ ReLU (N,128)
output Neuron ¼ 1 (N,1)

Z.-Z. Wang, K. Zhang, G.-D. Chen et al. Petroleum Science 20 (2023) 261e276
References

Capp�e, O., Garivier, A., Maillard, O.-A., et al., 2013. Kullback-Leibler upper confidence
bounds for optimal sequential allocation. Ann. Stat. 41 (3), 1516e1541. http://
www.jstor.org/stable/23566868.

Chang, H., Liu, Y., Lei, Y., et al., 2020. A comprehensive workflow for real time
injection-production optimization based on equilibrium displacement. Adv.
Geo-Energy. Res. 4 (3), 260e270. https://doi.org/10.46690/ager.2020.03.04.

Chen, B., Reynolds, A.C., 2016. Ensemble-based optimization of the water-
alternating-gas-injection process. SPE J. 21 (3), 786e798. https://doi.org/
10.2118/173217-PA.

Chen, G., Li, Y., Zhang, K., et al., 2021. Efficient hierarchical surrogate-assisted dif-
ferential evolution for high-dimensional expensive optimization. Inf. Sci. 542,
228e246. https://doi.org/10.1016/j.ins.2020.06.045.

Chen, S., Li, H., Yang, D., et al., 2010. Optimal parametric design for water-
alternating-gas (WAG) process in a CO2-miscible flooding reservoir. J. Can.
Pet. Technol. 49 (10), 75e82. https://doi.org/10.2118/141650-PA.

De Paola, G., Ibanez-Llano, C., Rios, J., et al., 2020. Reinforcement learning for field
development policy optimization. SPE Ann. Tech. Conf. Exhib. https://doi.org/
10.2118/201254-MS.

Ebrahimi, A., Khamehchi, E., 2016. Sperm whale algorithm: an effective meta-
heuristic algorithm for production optimization problems. J. Nat. Gas Sci. Eng.
29, 211e222. https://doi.org/10.1016/j.jngse.2016.01.001.

Fonseca, R.R.M., Chen, B., Jansen, J.D., et al., 2017. A stochastic simplex approximate
gradient (StoSAG) for optimization under uncertainty. Int. J. Numer. Methods
Eng. 109 (13), 1756e1776. https://doi.org/10.1002/nme.5342.

Foroud, T., Baradaran, A., Seifi, A., 2018. A comparative evaluation of global search
algorithms in black box optimization of oil production: a case study on Brugge
field. J. Petrol. Sci. Eng. 167, 131e151. https://doi.org/10.1016/
j.petrol.2018.03.028.

Guo, Z., Reynolds, A.C., 2018. Robust life-cycle production optimization with a
support-vector-regression proxy. SPE J. 23 (6), 2409e2427. https://doi.org/
10.2118/191378-PA.

Gupta, A., Savarese, S., Ganguli, S., et al., 2021. Embodied intelligence via learning
and evolution. Nat. Commun. 12 (1), 1e12. https://doi.org/10.1038/s41467-021-
25874-z.

Haarnoja, T., Zhou, A., Abbeel, P., et al., 2018. Soft actor-critic: off-policy maximum
entropy deep reinforcement learning with a stochastic actor. Int. conf. mach.
learn 1861e1870. https://doi.org/10.48550/arXiv.1801.01290.

Hajizadeh, Y., Christie, M., Demyanov, V., 2010. Comparative study of novel
population-based optimization algorithms for history matching and uncer-
tainty quantification: PUNQ-S3 revisited. Abu Dhabi Int. Petrol. Exhib. Conf.
https://doi.org/10.2118/136861-MS.

He, J., Tang, M., Hu, C., et al., 2022. Deep reinforcement learning for generalizable
field development optimization. SPE J. 27 (1), 226e245. https://doi.org/10.2118/
203951-PA.

Ji, S., Xu, W., Yang, M., et al., 2012. 3D convolutional neural networks for human
action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35 (1), 221e231.
276
https://doi.org/10.1109/TPAMI.2012.59.
Khadka, S., Tumer, K., 2018. Evolution-guided policy gradient in reinforcement

learning. Proc. Adv. Neural Inf. Process. Syst. 31. https://doi.org/10.48550/
arXiv.1805.07917.

Kim, Y.D., Durlofsky, L.J., 2021. A recurrent neural networkebased proxy model for
well-control optimization with nonlinear output constraints. SPE J. 26 (4),
1837e1857. https://doi.org/10.2118/203980-PA.

Liu, Z., Reynolds, A.C., 2020. A sequential-quadratic-programming-filter algorithm
with a modified stochastic gradient for robust life-cycle optimization problems
with nonlinear state constraints. SPE J. 25 (4), 1938e1963. https://doi.org/
10.2118/193925-PA.

Miftakhov, R., Al-Qasim, A., Efremov, I., 2020. Deep reinforcement learning: reser-
voir optimization from pixels. Int. Petrol. Technol. Conf. https://doi.org/10.2523/
IPTC-20151-MS.

Mnih, V., Kavukcuoglu, K., Silver, D., et al., 2015. Human-level control through deep
reinforcement learning. Nature 518 (7540), 529e533. https://doi.org/10.1038/
nature14236.

Paszke, A., Gross, S., Massa, F., et al., 2019. Pytorch: an imperative style, high-
performance deep learning library. Proc. Adv. Neural Inf. Process. Syst.
https://doi.org/10.48550/arXiv.1912.01703.

Pourchot, A., Sigaud, O., 2018. CEM-RL: combining evolutionary and gradient-based
methods for policy search. arXiv preprint arXiv:1810.01222. https://doi.org/
10.48550/arXiv.1810.01222.

Qiu, D., Dong, Z., Zhang, X., et al., 2022. Safe reinforcement learning for real-time
automatic control in a smart energy-hub. Appl. Energy 309, 118403. https://
doi.org/10.1016/j.apenergy.2021.118403.

Sarma, P., Chen, W.H., Durlofsky, L.J., et al., 2008. Production optimization with
adjoint models under nonlinear control-state path inequality constraints. SPE
Reservoir Eval. Eng. 11 (2), 326e339. https://doi.org/10.2118/99959-PA.

Such, F.P., Madhavan, V., Conti, E., et al., 2017. Deep neuroevolution: genetic algo-
rithms are a competitive alternative for training deep neural networks for
reinforcement learning. arXiv preprint arXiv:1712.06567. https://doi.org/
10.48550/arXiv.1712.06567.

Sun, A.Y., 2020. Optimal carbon storage reservoir management through deep
reinforcement learning. Appl. Energy 278, 115660. https://doi.org/10.1016/
j.apenergy.2020.115660.

Wang, P., Litvak, M., Aziz, K., 2002. Optimization of production operations in pe-
troleum fields. SPE Ann. Tech. Conf. Exhib. https://doi.org/10.2118/77658-MS.

Wood, D.A., 2016. Metaheuristic profiling to assess performance of hybrid evolu-
tionary optimization algorithms applied to complex wellbore trajectories. J. Nat.
Gas Sci. Eng. 33, 751e768. https://doi.org/10.1016/j.jngse.2016.05.041.

Xue, L., Gu, S.H., Jiang, X.E., et al., 2021. Ensemble-based optimization of hydrauli-
cally fractured horizontal well placement in shale gas reservoir through Hough
transform parameterization. Petrol. Sci. 18 (3), 839e851. https://doi.org/
10.1007/s12182-021-00560-3.

Xue, X., Zhang, K., Tan, K.C., et al., 2020. Affine transformation-enhanced multi-
factorial optimization for heterogeneous problems. IEEE Trans. Cybern. 52,
6217e6231. https://doi.org/10.1109/TCYB.2020.3036393.

Yin, F., Xue, X., Zhang, C., et al., 2021. Multifidelity genetic transfer: an efficient
framework for production optimization. SPE J. 26 (4), 1614e1635. https://
doi.org/10.2118/205013-PA.

Zhang, K., Wang, Z., Chen, G., et al., 2022. Training effective deep reinforcement
learning agents for real-time life-cycle production optimization. J. Pet. Sci. Eng.
208, 109766. https://doi.org/10.1016/j.petrol.2021.109766.

Zhang, K., Zhao, X., Chen, G., et al., 2021. A double-model differential evolution for
constrained waterflooding production optimization. J. Pet. Sci. Eng. 207, 109059.
https://doi.org/10.1016/j.petrol.2021.109059.

Zhao, H., Kang, Z., Zhang, X., et al., 2016. A physics-based data-driven numerical
model for reservoir history matching and prediction with a field application.
SPE J. 21 (6), 2175e2194. https://doi.org/10.2118/173213-PA.

Zhao, M., Zhang, K., Chen, G., et al., 2020. A classification-based surrogate-assisted
multiobjective evolutionaryalgorithm for production optimization under
geological uncertainty. SPE J. 25 (5), 2450e2469. https://doi.org/10.2118/
201229-PA.

http://www.jstor.org/stable/23566868
http://www.jstor.org/stable/23566868
https://doi.org/10.46690/ager.2020.03.04
https://doi.org/10.2118/173217-PA
https://doi.org/10.2118/173217-PA
https://doi.org/10.1016/j.ins.2020.06.045
https://doi.org/10.2118/141650-PA
https://doi.org/10.2118/201254-MS
https://doi.org/10.2118/201254-MS
https://doi.org/10.1016/j.jngse.2016.01.001
https://doi.org/10.1002/nme.5342
https://doi.org/10.1016/j.petrol.2018.03.028
https://doi.org/10.1016/j.petrol.2018.03.028
https://doi.org/10.2118/191378-PA
https://doi.org/10.2118/191378-PA
https://doi.org/10.1038/s41467-021-25874-z
https://doi.org/10.1038/s41467-021-25874-z
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.2118/136861-MS
https://doi.org/10.2118/203951-PA
https://doi.org/10.2118/203951-PA
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.48550/arXiv.1805.07917
https://doi.org/10.48550/arXiv.1805.07917
https://doi.org/10.2118/203980-PA
https://doi.org/10.2118/193925-PA
https://doi.org/10.2118/193925-PA
https://doi.org/10.2523/IPTC-20151-MS
https://doi.org/10.2523/IPTC-20151-MS
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1810.01222
https://doi.org/10.48550/arXiv.1810.01222
https://doi.org/10.1016/j.apenergy.2021.118403
https://doi.org/10.1016/j.apenergy.2021.118403
https://doi.org/10.2118/99959-PA
https://doi.org/10.48550/arXiv.1712.06567
https://doi.org/10.48550/arXiv.1712.06567
https://doi.org/10.1016/j.apenergy.2020.115660
https://doi.org/10.1016/j.apenergy.2020.115660
https://doi.org/10.2118/77658-MS
https://doi.org/10.1016/j.jngse.2016.05.041
https://doi.org/10.1007/s12182-021-00560-3
https://doi.org/10.1007/s12182-021-00560-3
https://doi.org/10.1109/TCYB.2020.3036393
https://doi.org/10.2118/205013-PA
https://doi.org/10.2118/205013-PA
https://doi.org/10.1016/j.petrol.2021.109766
https://doi.org/10.1016/j.petrol.2021.109059
https://doi.org/10.2118/173213-PA
https://doi.org/10.2118/201229-PA
https://doi.org/10.2118/201229-PA

	Evolutionary-assisted reinforcement learning for reservoir real-time production optimization under uncertainty
	1. Introduction
	2. Related works
	3. Problem formulation
	3.1. Mathematical model of the production optimization
	3.2. Production optimization reformulation as Markov decision process

	4. EARL: evolutionary-assisted reinforcement learning
	4.1. RL-based learning process
	4.2. EA-based evolutionary process
	4.3. The integrated workflow
	4.4. Training details
	4.4.1. Neural networks structure
	4.4.2. Training architecture


	5. Case study
	5.1. Case 1: 2D synthetic model
	5.1.1. Experimental evaluation on optimization performance
	5.1.2. Experimental evaluation on robustness performance

	5.2. Case 2: 3D large-scale model
	5.2.1. Experimental evaluation on optimization performance
	5.2.2. Experimental evaluation on real-time decision capacity


	6. Conclusions
	Acknowledgments
	Appendix A
	References


