
lable at ScienceDirect

Petroleum Science 20 (2023) 1142e1154
Contents lists avai
Petroleum Science

journal homepage: www.keaipubl ishing.com/en/ journals /petroleum-science
Original Paper
Few-shot working condition recognition of a sucker-rod pumping
system based on a 4-dimensional time-frequency signature and meta-
learning convolutional shrinkage neural network

Yun-Peng He a, b, c, d, Chuan-Zhi Zang e, Peng Zeng a, b, c, *, Ming-Xin Wang a, b, c, f,
Qing-Wei Dong a, b, c, d, Guang-Xi Wan a, b, c, d, Xiao-Ting Dong a, b, c, d

a State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
b Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
c Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110169, China
d University of Chinese Academy of Sciences, Beijing, 100049, China
e Shenyang University of Technology, Shenyang, Liaoning 110870, China
f School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, Liaoning 110159, China
a r t i c l e i n f o

Article history:
Received 5 January 2022
Received in revised form
16 February 2023
Accepted 16 February 2023
Available online 24 February 2023

Edited by: Xiu-Qiu Peng

Keywords:
Few-shot learning
Indicator diagram
Meta-learning
Soft thresholding
Sucker-rod pumping system
Timeefrequency signature
Working condition recognition
* Corresponding author. State Key Laboratory of Ro
Automation, Chinese Academy of Sciences, Shenyang

E-mail address: zp@sia.cn (P. Zeng).

https://doi.org/10.1016/j.petsci.2023.02.017
1995-8226/© 2023 The Authors. Publishing services b
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is
necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a
deep learning working condition recognition model for pumping wells by obtaining enough new
working condition samples is expensive. For the few-shot problem and large calculation issues of new
working conditions of oil wells, a working condition recognition method for pumping unit wells based
on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage
neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are con-
verted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data.
Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate
low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-
tuning framework for learning the network parameters that are susceptible to task changes is merged
into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained
ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition
recognition. More specifically, in the case of lower computational complexity, only few-shot samples are
needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of
well conditions.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Sucker-rod pumping systems have the merits of low compre-
hensive costs, simple equipment and convenient operation and
have been widely used in mechanical oil recovery. Rod pumping
equipment needs to be extended underground for thousands of
meters during the working process, the working conditions are
very complicated, and the working environment is also very harsh,
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causing a high failure rate, which seriously affects the production
efficiency of oil fields (Li et al., 2018). Once oil wells fail to produce
oil normally, there will be various consequences that can lead to
production shutdown, causing very large economic losses. There-
fore, it is essential to quickly and accurately identify the working
conditions of a pumping well with a sucker rod (Lv et al., 2021a).

Currently, the mainstream working condition identification
method determines the working conditions of pumping wells by
identifying the indicator diagram (Han et al., 2021; Lv et al., 2020;
Zheng et al., 2020). In the traditional method, the staff identifies
faults through indicator diagram analysis based on their own
experience. Since this method is simple and convenient to operate
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and can identify most faults, it has not been eliminated thus far.
However, this method has poor accuracy and low efficiency and
cannot satisfy the requirements of modern oilfield production.

In recent years, intelligent diagnosis technologies, such as sup-
port vector machines (SVMs) (Lv et al., 2021b), designated
component analysis theory (Li et al., 2013a), spectral clustering (Li
et al., 2015), hidden Markov models (Zheng and Gao, 2017) and
radial basis function (RBF) neural networks (Zhou et al., 2019), have
been developed rapidly, especially deep learning-based oilfield
working condition diagnosis methods (Peng, 2019; Zhang et al.,
2022), which has greatly improved the accuracy and efficiency of
well condition identification. For instance, (Li et al., 2013b)
employed a moment-curve method to obtain the features of indi-
cator diagrams and used a modified SVM for work condition
identification. (Zheng and Gao, 2017) used the center-of-gravity
decomposition algorithm to obtain the geometric features of an
indicator diagram and a Markov model for work condition recog-
nition. (Wang et al., 2019) suggested a 14-layer convolutional
neural network (CNN) diagnostic model based on big data and deep
learning for the identification of the working conditions of rod
pumping wells. (Cheng et al., 2020) proposed a strategy to improve
the accuracy and efficiency of fault diagnosis by using a combina-
tion of CNNs and SVMs with error-correcting output code models
for work condition identification.

Existing intelligent diagnosis methods mainly obtain working
conditions by manually preselecting the geometric features of an
indicator diagram, and an intelligent algorithm classifies them ac-
cording to the corresponding features of the indicator diagram (Li
et al., 2015). Although the various intelligent diagnosis methods
mentioned above have achieved certain results, two problems still
exist. (i), different from the general image recognition, an oilfield
indicator diagram has the characteristics of simple image and few
feature points. It is directly input into the algorithm as a two-
dimensional image, which causes low feature utilization and
large data calculation amount to a certain extent. (ii), it is impos-
sible to obtain enough work condition samples for model training.
Specifically, most of the onshore oil fields have entered the middle
or even late stage of exploitation. As the working time of an oil well
grows, new working conditions will be added, oil well failure will
occur increasingly frequently, and serious safety accidents can
occur when oil wells are in a state of failure for a long time.

To address the first problem, researchers have developed work
condition recognition strategies that use feature extraction
methods. High feature dimensionality (Han et al., 2021), center-of-
gravity decomposition (Zheng and Gao, 2017), curve moment (Li
et al., 2013b), Fourier descriptor (Zhou et al., 2019), wavelet trans-
form (Wu et al., 2011) and statistical feature (Zheng et al., 2019)
methods are often applied to extract features of dynamometer
cards, but there are shortcomings, such as the computational
complexity, high feature dimensions, and sensitivity to noise (Han
et al., 2021). With the application of CNNs in the field of pattern
recognition, CNN is used to extract features directly from indicator
diagrams. For illustration, (Sharaf, 2018) used three improved
artificial neural networks, VGG16, ResNet34 and ResNet50, for well
working condition recognition based on the pump card shape and
confirmed that the highest accuracy was achieved at the last layer
of the pretrained ResNet50 model. (Zhao et al., 2017) introduced
image-based CNN and data-based CNN methods for rod pump
system fault diagnosis, and the results showed that CNN-based
methods outperformed the traditional machine learning algo-
rithm methods, such as the k-nearest neighbors (k-NN) and
random forest (RF) methods. Besides, (Zhao et al., 2017) confirmed
that image-based CNNs achieve better accuracy than data-based
CNNs. Although two-dimensional signals contain more compre-
hensive information and can express more complex structural
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distributions, they also contain useless or insensitive information
that can affect the diagnostic results and computational efficiency.
Therefore, a 4-dimensional time-frequency signal (4D-TFS) feature
extraction method that selects sensitive features from the indicator
diagram is proposed to overcome the drawbacks in (i) by
combining traditional frequency-domain and time-domain
features.

The second problem is the few-shot problems. Virtual sample
generation (George et al., 2017), data augmentation (Wang et al.,
2018) and meta-learning (Liu et al., 2020; Munkhdalai and Yu,
2017) are commonly used solutions and have been successfully
employed in target detection, image classification, and other fields.
(Ren et al., 2020) developed a fault diagnosis model that uses a
capsule automatic encoder to extract feature capsules, adaptively
fuses them to state capsules based on a routing algorithm, and then
sends them to a classifier for fault classification; this approach has
fast update and few-shot learning capabilities. (Zhang and Gao,
2019) employed dictionary-based transfer learning to map data
from various domains to the same subspace. The problem of
incomplete data in the target domain in fault diagnosis is solved by
calculating the transformationmatrix of the source data of a certain
well and the target data of another well and projecting the data in
both domains into a subspace where each fault sample can be
reconstructed by a shared dictionary. The above methods are based
on few-shot samples or limited data and provide an effective so-
lution for few-shot work condition identification. However, when
facing new tasks, the network needs to be trained from scratch and
cannot satisfy the real-time requirements of well identification.
Model-agnostic meta-learning (MAML) (Finn et al., 2017) can learn
inherent meta-knowledge among tasks during training and achieve
good generalization effectiveness with a few shots of training data
in new tasks (Bing, 2020; Lake et al., 2017). However, when the
framework of MAML is looking for an optimal parameter that can
solve multi-task optimization, it only considers the extraction of
high-frequency features, but ignores the impact of low-frequency
features on the performance of the model. In other words, low-
frequency features are not conducive to the learning of meta-
knowledge. In view of this, on the basis of the MAML framework,
a ML-CSNN with a specific structure that can ablate low-frequency
features is constructed in this paper for oil well workover identi-
fication of small samples to address the drawbacks in (ii).

In response to the above shortcomings, a working condition
recognition method with few-shot samples based on 4D-TFS and
ML-CSNN, which includes the two steps of low computational
complexity feature extraction and few-shot working condition
recognition, is proposed in this paper. The main contributions of
this paper are as follows.

1) A 4D-TFS feature extraction technique is proposed for the
problem of high computational complexity caused by low
feature utilization of training input feature maps, and pre-
liminary feature extraction is performed while compressing the
data. The results show that the accuracy of 4D-TFS work con-
dition recognition is better than the feature recognition accu-
racy of the indicator diagram, and the complexity of the
algorithm is significantly reduced.

2) A convolutional shrinkage neural network (CSNN) with a spe-
cific structure that can ablate low-frequency features is estab-
lished to identify well conditions. By introducing a low-
frequency feature ablation mechanism, the performance of
small sample condition recognition can be significantly
improved.

3) A meta-learning (ML) strategy to learning meta-knowledge and
fine-tune the model for newworking condition types is used for
the few-shot data and to address the drawback of needing to
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retrain the model when new working conditions appear. The
experiments demonstrate that the model has good generaliza-
tion ability and can achieve accurate few-shot working condi-
tion recognition.

The remainder of this paper is organized as follows. Theworking
condition recognition problem and few-shot learning problem are
overviewed in Section 2. In Section 3, the relevant theoretical
background is briefly described. The proposed working condition
recognition method is elaborated in Section 4. In Section 5, the
experimental comparisons are presented in detail. The conclusion
and future work of this paper are summarized in Section 6.
2. Problem statement

2.1. Working condition recognition problem

The 11 most commonly known work conditions, including
normal operation condition (NOC) and the following 10 fault con-
ditions: gas interference (GIF), oil pipe leakage (OPL), continuous
pumping and spraying (CPS), traveling valve leakage (TVL), insuf-
ficient liquid supply (ILS), standing valve leakage (SVL), upstroke
pump bumping (UPB), sucker-rod break-off (SRB), combination of
leaking standing and traveling valves (CST), and downstroke pump
bumping (DPB), are investigated in this paper. As showed in Fig. 1,
the horizontal axis is the displacement, and the vertical axis is the
load. Each dynamometer working condition shows specific char-
acteristics, but the shapes of some categories are also very similar,
such as in Fig. 1(c) and (d), (g) and (j).
2.2. Few-shot learning problem

Compared with machine learning algorithms that usually
require thousands of supervised samples to ensure their general-
ization ability, few-shot learning has the ability to learn and
generalize from few-shot samples (Ravi and Larochelle, 2017;
Santoro et al., 2016). Furthermore, given a small amount of available
supervised information in datasetD T ¼ fD tr ;D tsg corresponding
to a specific task T , the objective of few-shot learning is to
construct a function f for task T (Finn et al., 2019). The completion
of task T uses little supervision information in dataset D to
complete task T of mapping the input to the target. The infor-
mation can be expressed as:

D tr ¼ fðxi; yiÞgNtr
i¼1

D ts ¼ �
xj
�Nts

i¼1
xi; xj2Xt3X; yi2Yt3Y

(1)

where x represents the input data, y represents the supervision
information, and X and Y represent the space of the input data and
Fig. 1. Shapes of indicator diagrams und
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supervision information, respectively. The sample xi; yi used in task
T comes from a specific domain D T ¼ fXt;P ðXtÞg, and consists
of a data space Xt and a marginal probability distribution P ðXtÞ.

Generally, there areN task classes inD tr , and each class has only
K samples, which means the number of training data ntr ¼ N� K ,
which is also known as an N-way K-shot. Algorithmmodels trained
with such a small number of samples are prone to severe overfitting
problems. Therefore, it is difficult to construct a high-quality model
with a small amount of training data D tr .

Similarly, for the problem of identifying the working conditions
of oil wells, the purpose is to generate a target prediction function
f2F : X/Y from N � K newworking condition samples in training
setD tr , which can be used to diagnose faults accurately and quickly
from other new working condition samples in test set D ts. In
addition, the problem of oil well working condition recognition is a
classification problem, the loss function of which is

L T ðfqÞ¼
X

ðxÞ þ ð1� yÞlogð1� fqðxÞÞ (2)

where q is a set of learnable parameters. The learning goal further
becomes how to minimize the loss function L T using few-shot
data to obtain the optimal parameters q (Finn et al., 2019).

3. Theoretical background

3.1. CNN

A CNN is a typical feedforward neural network that has achieved
outstanding results in video analysis (Wu et al., 2015), image clas-
sification (Sun et al., 2021), natural language processing (Zhao et al.,
2019), target detection (Zhang et al., 2020), visual relocalization
(Chen et al., 2021), and other fields. In general, the structure of a
CNN is mainly composed of an input layer, an output layer and
multiple hidden layers. A hidden layer is composed of a series of
convolutional layers (Convs), pooling layers (Pools) and fully con-
nected (FC) layers. By convolving the input signal, the Conv can
obtain various feature maps of an activation function. For dimen-
sionality reduction, the Pool is usually concatenated to the Conv.
The category-unique local information in the Conv or Pool is
consolidated into an FC layer, and the weighted sum calculation
results of the one-dimensional vectors of all feature maps are
provided to the FC layer. A typical CNN architecture is illustrated in
Fig. 2.

3.2. Meta-learning and MAML

Meta-learning is the learning of meta-knowledge by utilizing
knowledge from multiple tasks to solve the limitation of few-shot
learning (Lee et al., 2019). Suppose a task is extracted from a dis-
tribution T � pðtÞ, and a sequence T i of I tasks is sampled from
task set T ¼ fT 1;T 2;: : :;T Ig. In themeta-training stage, a search
er 11 different working conditions.



Fig. 2. Typical CNN architecture.
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is performed for a meta-learner that performs well after updates to
these I new tasks. In the meta-testing stage, the initialization pa-
rameters are used to fine-tune the new task T i using the gradient
descent method.

MAML (Finn et al., 2017) is a classic meta-learning framework
that considers themeta-learner as the parameter q. When adjusting
to a new task T i , after one step of gradient descent, the series
parameter q of the model becomes q0i, which takes the form of

q0i ¼ q� aVqL T i
ðfqÞ (3)

where a is the inner loop learning rate. More specifically, the meta-
objective is as follows:

q* ¼ argminq

2
4 X
T i�pðtÞ

L T i

�
fq0i

�35

¼ argminq

2
4 X
T i�pðtÞ

L T i

�
fq�aVqL T i

ðfqÞ
�35

(4)

where q* is the optimal meta-learner. In the outer loop, the sto-
chastic gradient descent method is used to achieve meta-

optimization across tasks, and the optimal model parameter q* is
updated as follows:

q) q� bVq

X
T i�pðtÞ

L T i

�
fq0i

�
(5)

where b represents the outer loop learning rate. By continuously
updating the inner and outer loop parameters, a better base model
can be learned through the MAML framework.
4. Methodology

4.1. 4D-TFS feature extraction

The original working condition data of an oil well are two-
dimensional closed curve charts composed of the relationship
curve of the load versus displacement, as shown in Fig. 1. Normally,
a two-dimensional image contains more comprehensive informa-
tion than a one-dimensional signal, but the amount of calculation is
too large for the parameter learning process. A traditional approach
is to use the Lanczos algorithm to compress the image signal.
However, considering the uniqueness of the indicator diagram data
(the working condition signal is a continuous closed curve), to ac-
quire comprehensive oil well working condition information, the
working condition information should be converted and extracted
preliminarily. Therefore, a 4D-TFS feature extraction method based
on time-domain features and frequency-domain features is sug-
gested in this paper. The main goal of 4D-TFS is to improve feature
extraction and recognition performance by obtaining abundant
information about the working conditions involved in different
features extracted from various domains while reducing the
1145
computational effort in the feature extraction process. The flow-
chart of 4D-TFS feature extraction is shown in Fig. 3.

First, four points a; b; c and d are identified by a theoretical
analysis of the indicator diagram, as shown by the red dots in
Fig. 3(a); that is, the load-displacement curve is divided into four-
dimensional curves ðD1; D2; D3; D4Þ. After that, according to the
sampling period of a load-displacement curve, the time corre-
sponding to each load can be obtained, and the upper stroke load
(a/b/c) and the lower stroke load (c/d/a) are sampled by the
interpolation method to obtain the load-time curve shown in
Fig. 3(b). Finally, as shown in Eq. (6) and Fig. 3(c), the time-domain
features TF and frequency-domain features FF of the signal are
selected to form the feature set F, where Fi is the i-dimensional TF

and FF, f ji is the j th element of the i th feature and J is the time-
frequency signature length of the feature set.

F ¼ ½ F1F2F3F4 �T ¼

2
66666664

f 11 f 21 / f J1
f 12 f 22 / f J2
f 13 f 23 / f J3
f 14 f 24 / f J4

3
77777775

(6)

In this paper, J represents the 23 time domain and frequency
domain features extracted. Specifically, 14 time-domain statistical
features TF1 � TF14 and 9 frequency-domain features FF1 � FF9
based on the fast Fourier transform (FFT) (Cooley and Tukey, 1965)
were extracted in this paper from the 4 dimensions of each signal to
acquire comprehensive information about the working conditions
while considering the non-negativity of the load-time curve. The
basic idea of FFT algorithm uses the radix-2 butterfly block, that is,
one calculates the FFT yðkÞof a signal xðnÞ using Eq. (7), whereWN is
the N-th twiddle factor, j is the imaginary unit, and N is the number
of points of the FFT (He et al., 2021).

yðkÞ ¼
XN

n¼1
xðnÞ,Wk,n

N

WN ¼ e�j 2p
N

1 � k � K∧1 � n � N

(7)

Statistical analysis is commonly used with extracting the char-
acteristic information of faults and fully exploiting the state infor-
mation and intrinsic properties of the original signal (Yan and Jia,
2018). For better statistical analysis in time domain, we selected
all the time-domain features and the expressions are shown in
Table 1. TF1 � TF8, TF15, and TF16 are referred to as dimensional
statistics, which are mean value, root-mean-square value, square
root amplitude, variance, maximum value, minimum value, peak-
to-peak value, standard deviation, absolute mean value, and peak
value, respectively, and TF9 � TF14 are called dimensionless statis-
tics, which are peak factor, mean waveform factor, margin factor,
pulse factor, skewness factor, and kurtosis factor, respectively
(Decker, 2002; Liu et al., 2013, 2019; Pvc et al., 2005; Yan and Jia,



Fig. 3. Flowchart of 4D-TFS feature extraction.

Table 1
Time-domain feature expressions.

Feature expression Feature expression Feature expression Feature expression

TF1 ¼ 1
N

XN

n¼1
xðnÞ TF5 ¼ maxðxðnÞÞ

TF9 ¼ TF16
TF2 TF13 ¼

1
N

XN

n¼1
ðxðnÞ � TF1Þ3

ðTF8Þ3

TF2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1
ðxðnÞÞ2

r
TF6 ¼ minðxðnÞÞ

TF10 ¼ TF2
TF15 TF14 ¼

1
N

XN

n�1
ðxðnÞ � TF1Þ4

ðTF4Þ2

TF3 ¼
�1
N

XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
jxðnÞj

p !2 TF7 ¼ TF5 � TF6 TF11 ¼ TF16
TF3

TF15 ¼ 1
N

XN

n¼1
jxðnÞj

TF4 ¼ 1
N

XN

n¼1
ðxðnÞ � TF1Þ2 TF8 ¼ ffiffiffiffiffiffiffiffi

TF4
p

TF12 ¼ TF16
TF15

TF16 ¼ maxjxðnÞj
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2018). xðnÞ;n ¼ 1;2;3;…;N is the time series, where N is the length
of signal u (Yu et al., 2021). In this paper, the first 14 time-domain
feature expressions are selected in view of the non-negativity of the
load-time curve in Fig. 3(b), i.e., xðnÞ > 0.

The calculation of statistical features is an effective tool for
feature extraction. To achieve greater statistical analysis in the
frequency domain, the expressions of all frequency domain statis-
tical features are shown in Table 2. The feature FF1 denotes the
magnitude of the vibration energy in the frequency domain, the
features FF2 � FF5; FF9; FF11 � FF13 represent the dispersion of the
spectrum, and the features FF6 � FF8; FF10 indicate the main fre-
quency band position change (Decker, 2002; Liu et al., 2013, 2019;
Pvc et al., 2005; Yan and Jia, 2018). yðkÞ; k ¼ 1;2;/;K is the FFT
spectrum of the given signal xðnÞ, K is the number of spectrum lines
and fk is the frequency value of the k th spectrum line (Yu et al.,
2021). Due to some frequency domain features FF/ 0 or ∞, only
the first 9 frequency domain features are selected to construct the
TFS in this paper.
Table 2
Frequency-domain feature expressions.

Feature expression Feature expression

FF1 ¼
PK

k¼1 yðkÞ
K FF5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 ½ðfk � FF10Þ2yðkÞ�

K

s

FF2 ¼
PK

k¼1 ½yðkÞ � FF1�2
K � 1 FF6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 ðf 2kyðkÞÞPK

k¼1 yðkÞ

vuut

FF3 ¼
PK

k¼1 ½yðkÞ � FF1�3
Kð ffiffiffiffiffiffiffiffi

FF2
p Þ3 FF7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 ðf 4kyðkÞÞPK
k¼1 ðf 2kyðkÞÞ

vuut

FF4 ¼
PK

k¼1 ½yðkÞ � FF1�4
KðFF2Þ2 FF8 ¼ FF6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 ðf 2kyðkÞÞPK
k¼1 ðf 4kyðkÞÞ

vuut
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Interestingly, we can also divide the load-displacement curve in
Fig. 3 into 1, 2 or 8 parts to form 1D-TFS, 2D-TFS, and 8D-TFS
respectively. The relevant experimental results are described in
Appendix accordingly.

4.2. CSNN

Different from traditional CNNs, convolutional shrinkage neural
networks (CSNNs) add specific shrinkage modules to ablate low-
frequency features. The noise is suppressed by the introduction of
a low-frequency feature ablation mechanism, and the correlation
between high- and low-frequency features is enhanced. The
shrinkage refers to soft thresholding.

Soft thresholding (Isogawa et al., 2018; Zhao et al., 2020) is a
central step in many signal noise reduction methods. Features with
absolute values less than a certain threshold t are set to zero, and
features larger than that threshold t are reduced to zero. The soft
threshold function can be formulated as:
Feature expression Feature expression

FF9 ¼
PK

k¼1 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfk � FF10jyðkÞ�

p
K

ffiffiffiffiffiffiffiffi
FF5

p FF13 ¼
PK

k¼1 ½ðfk � FF10Þ4yðkÞ�
KðFF5Þ4

FF10 ¼
PK

k¼1 ðfkyðkÞÞPK
k¼1 yðkÞ

e

FF11 ¼ FF5
FF10

e

FF12 ¼
PK

k¼1 ½ðfk � FF10Þ3yðkÞ�
KðFF5Þ3

e



Fig. 4. A specific architecture of a CSNN.

Y.-P. He, C.-Z. Zang, P. Zeng et al. Petroleum Science 20 (2023) 1142e1154
y ¼
�

x� t; x> t
0; 0 � x � t

(8)

where x and y are the input feature and the output feature,
respectively, and t is the threshold value. From Eq. (8), it can be
seen that soft thresholding can set the features of any interval to
zero, and it is a more flexible method to eliminate features in a
certain value range.

The network structure of the complete CSNN is shown in Fig. 4. In
the shrinkage neural network (SNN), the absolute values of all the
features in the input feature map are first found. After global average
pooling (GAP), a feature is obtained and represented as A. Moreover,
the feature map after GAP is fed into a small FC network. The FC
network takes the sigmoid function as the last layer and obtains a
coefficientanormalized to0and1. Thefinal threshold canbedenoted
as a� A. In this way, it is ensured that the obtained noise threshold is
not only positive but also not too large. Therefore, the SNN can be
understood to some extent as a special attentionmechanism:when it
notices noisy features that are not related to the current task, it sets
them to zero by soft thresholding, and they are retained when
recording features that are associated with the current task.

With the sigmoid function, the output of the FC network can be
scaled to the range of 0e1 and can be represented as:

ai ¼
1

1þ e�zi
(9)

where ai is the i th scaling parameter and zi is the FC network
output feature of the i th neuron. The threshold values used in the
SNN are denoted as follows:
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ti ¼ai � Average
��xw;h;i

�� (10)

where w and h are the width and height, respectively, i is the
channel of the feature map x, and ti is the threshold value of the i th
channel of the feature map.

4.3. ML-CSNN for working condition recognition

With the extraction of 4D-TFS features and the construction of the
CSNN, the ML-CSNN can be trained for well working condition
recognition. Fig. 4 specifies the architecture of the proposed ML-
CSNN. The feature size of the input layer is 4� 23�1. The network
consists of 4 successive convolutional layers, 4 SNNs and 1 FC layer
with 1� 3 and 1� 2 filters that use 64 channels. The number of FC
layer neurons is 4.

Based on the meta-learning research results, the ML-CSNN,
which is a few-shot working condition recognition model, is pro-
posed in this paper. In the ML-CSNN, the meta-learning strategy of
MAML is presented. Themain idea is to let the designed CSNN learn
to learn; i.e., the model only needs a small number of training it-
erations and a small amount of sample (N � K sample) data to
quickly adapt to a new working condition recognition task.

It is assumed that fq is the ML-CSNNmodel, q is the initial model
parameter, and q* is the optimal model parameter. The algorithm
scheme of the proposed ML-CSNN is illustrated in Algorithm 1.

Algorithm 1. ML-CSNN for Few-shot Working Condition Recog-
nition



Fig. 5. Flowchart of few-shot working condition recognition based on 4D-TFS and the ML-CSNN.
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With the 4D-TFS features and ML-CSNN as the premise, the
flowchart of the proposed oil well few-shot working condition
identification method in this paper is illustrated in Fig. 5. The
general steps of the proposed method are summarized as follows.

1) The indicator diagram data (load-displacement curve data) of
the oil well are obtained, the load-time curve data are further
obtained by a time-domain conversion, and then the 4D-TFS
features of the load-time curve are extracted. Subsequently, the
dataset is divided into training and test sets without category
repetition.

2) The training task set T i and the test task set T j are generated
using the training setD tr and the test setD ts, respectively. Each
subtask contains support sets and query sets.

3) The ML-CSNN is trained by using a training subtask set to ac-
quire optimal parameters q* that are sensitive to task changes,
which are passed to the test subtask set.

4) The network parameter q* is fine-tuned with the support set in
the test subtask set T j, and the corresponding query set is
utilized to perform few-shot working condition recognition.
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5. Experimental evaluation

5.1. Experimental platform and data collection

The developed 4D-TFS ML-CSNN is implemented using Tensor-
Flow 1.14.0, which is a machine learning toolkit released by Google.
All the experimental results are obtained by a computer with an
i7e10700k CPU and 32 GB RAM.

The oil well data used in this experiment are sourced from an
existing oil field in northern China. The data are collected period-
ically by sensors mounted on the pumping rods. We use only the
displacement and load data to generate indicator diagrams for
analyzing the pumping conditions. In addition, for the electrical
parameter data, the data vacancy values are filled by finding the
average value under the attribute to which it belongs, the data used
are constrained in the form of data constraints, and the data noise is
suppressed using the split-box method most typical of data
discretization.

Generally, the wells are mostly in normal operating conditions
and it is difficult to get multiple fault operating conditions on a



Fig. 6. Accuracy of 2 feature extraction methods with different numbers of update
steps.

Table 4
CSNN algorithm indicators.

Feature extraction method indicator diagram 4D-TFS

Feature map size 32 � 24 4 � 23
Param, MB 46.08 44.40
FLOPs, GB 7.07 4.68

Table 5
Details of the dataset partition.

Dataset Number of training categories Number of test categories

Dataset A 4 7
Dataset B 5 6
Dataset C 6 5
Dataset D 7 4

Y.-P. He, C.-Z. Zang, P. Zeng et al. Petroleum Science 20 (2023) 1142e1154
single well, so we collected data from nearly 1300 wells for more
than 90 days. This data contains multiple failure types, and we
selected 11 typical working conditions (as shown in Fig. 1) with
high sample size for the experiment. As the working condition data
are collected from different wells in the field, we used the Min-Max
normalizationmethod to normalize the collected displacement and
load data in order to eliminate the differences between different
wells.

L*i ¼
Li �minðLÞ

maxðLÞ �minðLÞ (11)

D*
i ¼

Di �minðDÞ
maxðDÞ �minðDÞ (12)

where L*i and D*
i are the normalized load and displacement data, for

i ¼ 1;2; :::; 200, and minðLÞ;maxðLÞ;minðDÞ and maxðDÞ are the
minimum load, maximum load, minimum displacement and
maximum displacement, respectively (Cheng et al., 2020).

It is important to reiterate that the working condition categories
for the training and test sets are completely different. For each
working condition category, 5000 samples are screened. To follow
the typical experimentalN-way K-shot scheme (Vinyals et al., 2016)
and considering the small number of working condition types, 4-
way 1-shot and 4-shot experiments are conducted in this paper,
which means that 4� K labeled samples are used for training and
new samples of the same working conditions are used for testing
while obtaining good classification ability. More specifically, 5000
labeled samples for each work condition category are used to train
the model during the model training phase. And in the model
testing phase, only K (1 or 4) samples of the new working condi-
tions used to fine-tune the model have known labels, and the
remaining 5000� K samples are used to test the recognition ac-
curacy of “few-shot” model.

5.2. 4D-TFS feature extraction of a sucker-rod pumping system

In the 4D-TFS feature extraction stage, each complete load-time
curve is divided into 4 segments with no overlap points between
segments. In the time-domain conversion stage of the indicator
diagram, the sampling period is set to 0.01 s. The length of each
time-domain signal segment is also the input length when
extracting the frequency- and time-domain features. To ensure the
reliability of the outcome, normalization is applied in the 4D-TFS
feature extraction process.

The indicator diagram method has been successfully applied to
the identification of sucker-rod pumping system conditions.
Inspired by this, a comparison of the indicator diagrammethod and
the proposed method is studied. The size of the original indicator
diagram in this paper is 640� 480, and the image signal is com-
pressed to 32� 24 using the Lanczos algorithm. Based on the 4-way
4-shot task, 4 fault categories are randomly selected from the
dataset containing 11 working condition types for 4D-TFS and in-
dicator diagram feature extraction.
Table 3
Working condition recognition accuracies based on different feature extraction methods

Feature extraction method

Accuracy (step ¼ 10) 1-shot
4-shot

Accuracy (step ¼ 20) 1-shot
4-shot

Accuracy (step ¼ 50) 1-shot
4-shot
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The accuracy of these features in identifying the few-shot
working conditions was assessed using the CSNN, as shown in
Fig. 4. Different from 4D-TFS, for the indicator diagram, the input
size is 32� 24, and the convolution kernel and step size are 3� 3
and 2� 2, respectively. K-shot samples of each condition category
are trained and tested with the CSNN during the work condition
recognition process. To prevent results that occur due to chance and
specificity, the experiment was replicated 300 times, and the
average results are shown in Table 3.

As seen from Table 3 and Fig. 6, the 4D-TFS method proposed in
this paper has good results compared with the indicator diagram
method, and the accuracy of 4D-TFS can reach 85.35% for the same
number of update steps. That is, with the same classifier, 4D-TFS
can achieve more discriminative features that are critical for
working condition recognition compared with the indicator dia-
gram method, thus obtaining higher recognition accuracy, which
also demonstrates the high sensitivity of 4D-TFS for few-shot work
condition recognition. In addition, Fig. 6 shows that the accuracy of
using the CSNN.

indicator diagram 4D-TFS

52.33 ± 2.73% 77.83 ± 2.19%
71.81 ± 1.61% 81.77 ± 1.66%
52.25 ± 2.78% 79.00 ± 2.25%
72.60 ± 1.60% 84.02 ± 1.54%
52.75 ± 2.79% 79.00 ± 2.29%
73.17 ± 1.56% 85.35 ± 1.44%



Table 6
Working condition recognition accuracies based on 4D-TFS and the ML-CSNN.

Dataset 4-way 1-shot 4-way 4-shot

Dataset A 83.83 ± 2.74% 89.31 ± 1.35%
Dataset B 87.00 ± 2.34% 92.83 ± 1.01%
Dataset C 87.08 ± 2.33% 92.10 ± 0.96%
Dataset D 88.92 ± 2.20% 94.08 ± 0.87%
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the model has basically reached a stable value after 20 update steps
for both the indicator diagram and the 4D-TFS feature extraction
methods. Therefore, the number of iterations for the following
experiments is uniformly set to 20 in this paper.

Additionally, Table 4 shows the impact of two different feature
extraction methods on the CSNN performance. It is obvious that
4D-TFS has a significant improvement in both time complexity and
algorithm complexity, especially in algorithm complexity; the
complexity of 4D-TFS is only 66.20% of that of the indicator diagram
method. Through the analysis of Table 3, Table 4, and Fig. 6, the
rationality of the solution proposed to solve the first problem is
preliminarily verified.
5.3. Few-shot working condition recognition based on meta-
learning

This section validates the performance of the ML-CSNN in few-
shot working condition recognition. As shown in Table 5, the
datasets were divided into training and test sets at different scales.

In the model training phase, the training step number is set to
10000, and the number of subtasks in the meta-learning task is 4.
To reduce the computational effort, the update step of the subtask
is set to 10. The meta-task learning rate is 0.001, and the subtask
learning rates of 4D-TFS and the indicator diagrammethod are 0.01
and 0.2, respectively. Furthermore, 200000 training subtasks are
generated using the training set. In the training process of each
subtask, 4 classes are randomly extracted from the training set, K
samples from each class are taken to form the subtask support set,
and another K new samples are taken to form the query set. In the
model testing phase, 600 test subtasks are generated from the test
set with the same parameter settings as those in the training
subtasks. The network is fine-tuned using the support set in each
subtask, and the optimal parameters q*

0
of the fine-tuned network

are acquired. The query set samples are then input to the neural
network to realize few-shot working condition recognition.
Different from the model training phase, the update step of the
subtask is set to 20 at this time. Finally, the accuracy of all test
subtasks is averaged to obtain the test accuracy of the final
experiment.
5.3.1. Few-shot working condition recognition based on 4D-TFS and
ML-CSNN

Few-shot working condition recognition of pumping wells un-
der the two scenarios of 4-way 1-shot and 4-way 4-shot using
Fig. 7. Working condition recognition accuraci
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datasets A, B, C and D is performed. The test results for the two
scenarios under the four datasets are shown in Fig. 7, and the final
accuracy after 10000 training and 20 update steps are displayed in
Table 6.

As shown in Fig. 7 and Table 6, it is obvious that with the same
dataset, when the number of training samples is increased from 1-
shot to 4-shot, the model's working condition recognition accuracy
is greatly improved. In the case where the support set is a 4-way 1-
shot, as the types of sampling working conditions decrease during
training, the accuracy of working condition recognition decreases
to varying degrees. Interestingly, under the 4-way 4-shot task, the
accuracy on dataset B is higher than that on dataset C. This may be
caused by the fact that the characteristics of the samples in each
category are different. The above analysis is identical to the fact that
reducing the number of training samples or working condition
categories increases the difficulty of working condition
identification.

In addition, on dataset D, the recognition accuracies of the ML-
CSNN for the 1-shot and 4-shot tasks are 88.92% and 94.08%,
respectively, which are much higher than the 79.00% and 85.35%
accuracies of the CSNN, as illustrated in Table 3. The results
demonstrate that the trained model has higher recognition accu-
racies for different few-shot tasks. Even if the types of working
conditions for training (dataset D/ dataset A) are reduced and the
difficulty of working condition recognition is increased, the accu-
racy of the ML-CSNN model is still higher than that of the CSNN,
demonstrating that the proposed ML-CSNN model has strong fast
learning and generalization capabilities. The above analysis also
verifies the effectiveness of the MAML framework used in this pa-
per for few-shot learning and provides a solution to the second
problem.
5.3.2. Few-shot working condition recognition based on an
indicator diagram and the ML-CSNN

To further validate the effectiveness of the proposed 4D-TFS
feature extraction method under the meta-learning strategy, an
es for the 4-way 1-shot and 4-shot tasks.



Fig. 8. The 4-way 1-shot and 4-shot recognition accuracies with different learning
rates a when using dataset D.

Table 7
Working condition recognition accuracies based on the indicator diagram method
and the ML-CSNN.

Dataset 4-way 1-shot 4-way 4-shot

Dataset A 81.42 ± 2.41% 84.92 ± 1.51%
Dataset B 88.09 ± 1.94% 90.83 ± 1.06%
Dataset C 87.00 ± 2.06% 91.13 ± 1.02%
Dataset D 87.42 ± 1.91% 92.88 ± 0.95%

Table 8
Working condition recognition accuracies based on 4D-TFS and the MAML.

Dataset 4-way 1-shot 4-way 4-shot

Dataset A 84.42 ± 2.46% 88.56 ± 1.27%
Dataset B 86.75 ± 2.23% 92.00 ± 1.04%
Dataset C 85.17 ± 2.52% 90.44 ± 1.09%
Dataset D 88.83 ± 2.05% 93.77 ± 0.90%
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indicator diagram is used as input for comparison. Unlike in Section
5.2, the ML-CSNN strategy is used instead of the CSNN framework
alone.

It is well known that the learning rate is the most important
hyperparameter. When the learning rate is too large, gradient
descent may inadvertently increase the training error. When the
learning rate is too small, training is not only slow, but may also be
permanently stuck at a local minimum (Goodfellow et al., 2016).
Unfortunately, we cannot analytically compute the optimal
learning rate for a given model on a given dataset. Instead, a good
learning rate must be discovered through iterative trials. According
to the empirical value setting, the 4-way 1-shot and 4-way 4-shot
Fig. 9. Working condition recognition accuracies of different featu
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recognition accuracies with different learning rates a when using
dataset D are shown in Fig. 8. Obviously, the best classification
accuracy of 87.58% and 92.88% is obtained for 1-shot and 4-shot,
respectively, when the learning rate is 0.2, and the classification
stability is also the best.

The work condition recognition accuracies for the different
datasets of the two tasks are presented in Table 7. Fig. 9 exhibits the
work condition recognition accuracies of the 2 feature extraction
methods with different training steps. From the comparisons in
Fig. 9 and Tables 6 and 7, it is obvious that the 4D-TFS feature
extraction approach outperforms the indicator diagram approach
in terms of work condition recognition accuracy with the ML-CSNN
strategy both in the 4-way 1-shot and 4-shot tasks, which also il-
lustrates that 4D-TFS has better model recognition under few-shot
conditions. In addition, Table 3 also verifies the reasonableness of
the proposed solution for the first problem.
5.3.3. Few-shot working condition recognition based on 4D-TFS and
MAML

For the second question, this section uses 4D-TFS as input, and
the MAML strategy is used for comparison. Unlike the ML-CSNN
strategy, the MAML does not insert the SNN module; i.e., the
MAML directly uses a normal CNN network architecture without
introducing a soft thresholding mechanism to ablate the low-
frequency features. Table 8 depicts the work condition recogni-
tion accuracies for the different datasets under the two tasks. Fig.10
displays the comparison of the working condition recognition ac-
curacies of the ML-CSNN and MAM strategies with different
training steps.

The accuracy comparisons of working condition recognition in
Fig. 10 and Tables 6 and 8 demonstrate that the working condition
recognition performance of the ML-CSNN strategy is better than
that of the MAML strategy on the same dataset and few-shot task,
especially the 4-shot task. This indicates that the performance of
well condition recognition under small sample conditions can also
re extraction methods for the 4-way 1-shot and 4-shot tasks.



Fig. 10. Working condition recognition accuracies of the different strategies for the 4-way 1-shot and 4-shot tasks.

Fig. 11. Working condition recognition accuracies of various proposed strategies.
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be improved by introducing a low-frequency feature ablation
mechanism to ablate low-frequency features, thus verifying the
effectiveness of the solution for the second problem proposed in
this paper.

5.4. Discussion

To evaluate the performance of the various solutions presented
in this paper as a whole and to facilitate the comparison of the
working condition identification results of the various solutions,
Fig.11 exhibits thewell working condition recognition accuracies of
the various strategies on different datasets and different small
sample tasks.

The results in Fig. 11 show that the accuracy of the 4D-TFS
feature extraction method is better than that of the indicator dia-
grammethod with the same ML-CSNN or CSNN strategy, except for
the recognition accuracy of the 1-shot task when using dataset B.
For example, using dataset D and ML-CSNN strategies, under the
conditions of 4-way 4-shot, the accuracy of the indicator diagram as
input is 91.96%, while the accuracy of 4D-TFS is 94.08%, which is
2.12% higher than the accuracy of the indicator diagram. This con-
firms the high sensitivity of 4D-TFS features for the recognition of
the few-shot working state. Moreover, it can be concluded from
Table 4 that 4D-TFS can compress the data, which reduces the
computational complexity to 66.20% compared with the indicator
diagram. Hence, the first problem is solved successfully.

Second, the fine-tuning strategy using meta-learning, i.e., the
ML-CSNN architecture, achieves higher work condition recognition
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accuracy than the CSNN architecture without meta-learning with
the same feature extraction method and K-shot task. For example,
using 4D-TFS as input, under the few-shot sample condition of 4-
way 4-shot, the accuracy of CSNN is 85.35%, and the accuracy of
ML-CSNN architecture under dataset D is 94.08%, which is 8.73%
higher than the accuracy of CSNN without the meta-learning strat-
egy. This verifies that the trainedmodel can achieve highly accurate
few-shot work condition recognition with fewer samples and iter-
ations. Finally, the overall accuracy of the ML-CSNN architecture is
better than that of the MAML architecture using 4D-TFS features as
input. Forexample, usingdatasetBand4D-TFSas input, under4-way
4-shot conditions, the accuracy of theMAML architecture is 92.00%,
while the accuracy of the ML-CSNN architecture is 92.83%, which is
0.83% higher than the accuracy ofMAML. This indicates that the soft
thresholding mechanism can effectively improve the accuracy of
working condition recognition for few-shot tasks by ablating low-
frequency features, which also verifies the effectiveness of the pro-
posed improvement scheme to solve the secondproblem.Hence, the
second problem proposed in the paper is successfully solved.

6. Conclusions and future work

In this paper, a few-shot working condition recognition method
for a sucker-rod pumping system based on 4D-TFS and the ML-
CSNN is proposed and realizes few-shot working condition recog-
nition with the ML-CSNN after the load-displacement curve is
converted to the time-domain and the 4D-TFS features of the load-
time curve are extracted. The results of the experiments show that
the method can realize few-shot new working condition identifi-
cation of oil wells with great recognition accuracy and good
generalization ability, and therefore, it is of great significance for
the rapid diagnosis of new working conditions with few samples in
the late stage of oilfield exploitation and the rapid identification of
operating conditions for new oil wells.

The 4D-TFS with integrated working condition information is
more sensitive to few-shot working condition recognition than the
traditional two-dimensional indicator diagram, and there is a sig-
nificant reduction in computational effort. In addition, compared
with the classic MAML framework, the ML-CSNN introduces a low-
frequency feature ablation mechanism SNN, which can achieve
more accurate few-shot sampleswork condition recognition results.
Finally, the ML-CSNN has a strong fast learning capability, which
means that only few-shot samples and updates are needed to fine-
tune the network to quickly adapt to new work conditions. The ex-
periments indicate that the proposedmethod is useful for the rapid
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identification of new working conditions of actual sucker-rod
pumping systems.

However, due to condition limitations, only 11 commonworking
conditions are collected in this paper, while the number of actual
well working conditions can be more than 20. The generalization
performance will be stronger if more categories of working con-
dition data are collected to train the model, which means that the
few-shot sample fault diagnosis performance higher than 94.08%
under new working conditions can be obtained in practical appli-
cations. In addition, 4D-TFS, as a novel feature extraction method
for indicator diagrams, 23 time domain and frequency domain
features are selected in this paper for feature extraction, and each
feature has a different impact on the performance of small sample
working condition recognition. Therefore, selecting and optimizing
the 23 fusion time-frequency features is also the next research
content.
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A. Appendix

Table 9 shows the accuracy of working condition recognition
based on ML-CSNN under different time-frequency signals (TFS).
Obviously, dividing the load-displacement curve into 1 part, and 2
parts respectively forming 1D-TFS and 2D-TFS can not extract
enough characteristic information for working condition recogni-
tion, which reduces the accuracy of small sample working condi-
tion recognition. However, splitting the load-displacement curve
too much is also not conducive to improving the recognition ac-
curacy. This is because the load-displacement curve data is only
composed of 200 points, and too few sample points will cause the
time-frequency feature extraction effect to be poor, which reduces
the 8D-TFS recognition accuracy.
Table 9
Working condition recognition accuracies based on ML-CSNN under different TFS

Dataset 4-way 1-shot

1D-TFS 2D-TFS 4D-TFS 8D-TFS

Dataset A 67:58±3:30 84:17±2:50 83:83±2:74 82:83±2
Dataset B 71:17±2:97 83:92±2:56 87:00±2:34 86:42±2
Dataset C 75:17 ± 2:61 84:00±2:45 87:08±2:33 83:58±2
Dataset D 78:92±2:73 87:17±2:29 88:92±2:20 87:92±2
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