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a b s t r a c t

Halite and gypsum minerals in saline shale make the retention mechanism and chemical fractionation of
residual oil unique. The Dongpu Depression in North China is a typically saline lacustrine basin with
developing halite and gypsum. The effect of gypsum minerals on residual oil content and chemical
fractionation remains unclear. In this study, shale samples with different gypsum contents were used in
organic geochemical experiments, showing that the high total organic matter (TOC) content and type II
kerogen leads to a high residual oil content, as shown by high values of volatile hydrocarbon (S1) and
extractable organic matter (EOM). XRD and FE-SEM result indicate that the existence of gypsum in saline
shale contributes to an enhanced pore space and a higher residual oil content in comparison to non-
gypsum shale. Additionally, the increase in the gypsum mineral content leads to an increase in the
saturated hydrocarbon percentage and a decrease in polar components percentage (resins and asphal-
tene). Furthermore, thermal simulation experiments on low-mature saline shale show that the per-
centage of saturated hydrocarbons in the residual oil is high and remains stable and that the storage
space is mainly mesoporous (> 20 nm) in the oil expulsion stage. However, the saturated hydrocarbons
percentage decreases rapidly, and oil exists in mesopores (> 20 nm and < 5 nm) in the gas expulsion
stage. In general, gypsum is conducive to the development of pore space, the adsorption of hydrocarbons
and the occurrence of saturated hydrocarbon, leading to large quantities of residual oil. The data in this
paper should prove to be reliable for shale oil exploration in saline lacustrine basins.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The transformation of international energy structure makes
development and utilization of unconventional hydrocarbons re-
sources to become the mainstream (Laughrey et al., 2009; Scarlat
et al., 2015; Tan et al., 2015; Cen et al., 2016; Huang et al., 2020).
etroleum Resources and Pro-
jing, 102249, China.
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The continuous development of the shale oil resources urges it
become an important supporting part of the world's oil and gas
resources, including Barnett shale (Jarvie, 2012; Han et al., 2015;
Wang et al., 2022b), Bakken shale (Schmoker, 1996; Soeder, 2018)
and Woodford shale in America (Cardott, 2012), and Duvernay
shale inwestern Canada (Wang et al., 2017). Shale interbeddedwith
evaporite, including chloride, sulfate and carbonate, in saline
lacustrine basins has become important source rocks and reservoirs
for unconventional oil and gas (Peters et al., 1996; Grice et al., 1998;
Liang et al., 2017; Zou et al., 2019a, 2019b; Hu et al., 2021a; Zhu
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et al., 2021; Wang et al., 2022a). Previous studies have shown that
the paleoenvironment of saline lacustrine basins is conducive to the
organic matter enrichment (Zhang and Yang, 1998; Zheng and
Yang, 1999; Zhu et al., 2006; Grosjean et al., 2009; Wang et al.,
2020b; Zhang et al., 2022c). Additionally, the saline shale has
lower hydrocarbon generation threshold and higher hydrocarbon
generation and expulsion capacity (Lewan and Ruble, 2002; Manzi
et al., 2007; Jiang et al. 2016a, 2018, 2019; Zhang et al., 2021a).

The saline shale in lacustrine basins is widely distributed around
the world, such as the Green River shale of Piceance Creek Basin
(T€anavsuu-Milkeviciene and Frederick Sarg, 2012) and Uinta Basin
in America, the Dongpu Depression (Huang et al., 2018a; Guo and
Jin, 2021), the Jiyang Depression (Zhang et al., 2016; He et al.,
2018) and the Huanghua Depression (Qu et al., 2018; Zhang et al.,
2020) of the Bohai Bay Basin in eastern China. The sedimentary
environments of these areas have experienced dramatic variations
from freshwater lake facies to high saline lake facies (Hackley and
SanFilipo, 2016). Because of the frequently changing sedimentary
environment, the distribution of shale is highly heterogeneous
(L�opez-Gamundí, 2010; Zou et al., 2012; Lin et al., 2013), which
makes the fractionation and retention of oil in saline shale system
more complex. The definition of shale oil is still ambiguous (Jarvie,
2012; Zou et al., 2012). Jarvie (2012) defined oil in mudstone or
mudesand interbedding as shale oil resource system. The liquid
hydrocarbons preserved in mudstone or shale are considered as
shale oil by Zou et al. (2012). In this paper, the oil stored in organic
rich laminar mudstone or closely associated lithology, such as
sandstone interbeds, is defined as shale oil (Zou et al., 2019a). Many
studies have focused on the heterogeneity of shale distribution
(Tang et al., 2018; Hu et al., 2021b), mineralogical composition (Li
et al., 2019; Zhang et al., 2019a; Hafiz et al., 2020), occurrence
space (Guan et al., 2020; Zhu et al., 2021) and shale oilebearing
properties (Su et al., 2019; Huang et al., 2020).

Previous studies have suggested that chemical fractionation
occurs during the process of oil migration (Lafargue et al., 1990).
The extracts of conventional sandstones and carbonate reservoirs
have elevated saturates, while those of the source rocks are
enriched in asphaltenes and resins which are also the results of the
hydrocarbon expulsion fractionation (Brenneman and Smith, 1958;
Tissot and Welte, 1984). Jarvie (2014) proposed that the oil migra-
tion over the distance of centimeters within source rocks leads to
the chemical fractionation. Polar compounds have a large molec-
ular size and high affinity with organic matter, which can seal
lowepermeability rocks (Leythaeuser and Schaefer, 1984;
Wilhelms et al., 1990; Sandvik et al., 1992). Therefore, the oil
components in shale oil system are not only closely associated with
the oil recovery, but also affect the economic potential of explora-
tion (Jarvie, 2015). The shale oil with developed lamina and higher
organic matter content is easier to fractionate, and the light aro-
matic component are easier to migrate and form reservoirs (Zou
et al., 2019a; Hu et al., 2020). In addition, clay minerals are also
conducive to the retention of polar compounds in shale system
(Han et al., 2015). However, due to the complex properties of saline
shale (Li et al., 2021), the chemical fractionation of oil in shale
system in saline lacustrine basins and its influence on retention
mechanism are still ambiguous, which need to further studied. The
Dongpu Depression, characterized by massive shaleegypsum
interbedded rocks, is a typical saline lacustrine basin in the Bohai
Bay Basin, eastern China (Wang et al., 2020c; Zhang et al., 2021a;
Zhu et al., 2021), which is a candidate study target for saline shale.
Therefore, based on the samples of the Dongpu Depression saline
shale, this study aims: (1) to determine the content and properties
of the retention oil; (2) to reveal the effects of organic matter and
mineral contents (especially gypsum) on the chemical composition
and the retention oil content of the saline shale system; (3) to
650
analyze the occurrence space and chemical fractionation of the
retention oil under different thermal maturities in saline shale.

2. Geological setting

In the early Cenozoic (~50e40 Ma) Himalayan movement, the
eastern China gradually developed from the early North China
craton basin to a rifting basin under the collision of the Pacific plate
and the Indian Ocean plate, resulting in the gradual formation of
the Bohai Bay Basin (Molnar and Tapponnier, 1975; Yin and
Harrison, 2000; Jia et al., 2004). The Dongpu Depression, located
in the southwest of the Bohai Bay Basin, is a typical lacustrine
rifting basin, with an area of ~5300 km2 (Chen et al., 2000; Wang
et al., 2015; Lyu and Jiang, 2017). The Dongpu Depression has an
NNEetrending and can be subdivided into Eastern Sag Belt, Central
Uplift, Western Sag Belt and Western Slope Belt from east to west
(Fig. 1) (Chen et al., 2013). The Paleogene sediments contains the
Kongdian, Shahejie and Dongying Formations (Fig. 2) (Hou et al.,
2001; Su et al., 2006; Qi and Yang, 2010). The Member 3 of the
Eocene Shahejie Formation is further divided into three sub-
emembers: upper, middle and lower formations based on the
various stratigraphic subdivision schemes (Fig. 2) (Gao et al., 2011).
The base ages of Member 3 are from 43.59 ± 0.57 Ma to
36.08 ± 0.57 Ma (Wang et al., 2020a). During the interval presented
by the Member 3 of the Shahejie Formation extensive thick salt
rock over 500 m deposited in the Dongpu Depression (Zhu et al.,
2021), and the lower Member 3 of the Shahejie Formation,
distributed in several sags with a depth of ~3000e5200 m, is the
maincarrier of shale oil and is dominated by clastic shale and
mudstones, carbonate rocks, and evaporites (Jiao et al., 2014; Shao
et al., 2018a; Hu et al., 2022a, 2022b).

3. Samples and experiment

The 16 samples in this study were from 8 wells in the north
region of Dongpu Depression (Fig. 1c), and all samples were from
the lower Member 3 of the Shahejie Formation. The sedimentary
environment of the selected wells was deep and semiedeep lake
facies.

3.1. RockeEval pyrolysis and total organic carbon content
determination

A total of 16 samples were pulverized to 100 mesh in prepara-
tion for the experiments of pyrolysis and the total organic carbon
content (TOC). The hydrochloric acid solution (12.5%) was added to
the powder samples to remove the inorganic carbon. The test
started after washing the acidic solution in the sample with
distilled water. The TOC content was determined using LECO
CSe230 analyzer, and the RockeEval pyrolysis was performed us-
ing a RockeEval II instrument (Espitali�e et al., 1977). The volatile
hydrocarbon (S1) was obtained when the temperature reached
300 �C, and the pyrolyzed hydrocarbon (S2) and the temperature of
maximum hydrocarbon generation (Tmax) were obtained when the
temperature reached 300e600 �C.

3.2. Xeray diffraction and scanning electron microscopy

Themineralogical compositionwas obtained by a TTReIII Xeray
diffractometer. 16 powder samples with particle size less than
10 mmwere extracted by using the centrifugal separationmethod to
determine the relatively mineral content, and the samples with
particle size less than 2 mmwere used for the determination of the
clay content. The energy dispersive spectroscopy (EDS) was applied
for determining the minerals composition. The thin sections of



Fig. 1. Sketch map showing (a) the Bohai Bay Basin in China mainland are in the blue position; (b) the Dongpu Depression in the Bohai Bay Basin are in the red position; (c) the
tectonic units, the shale thickness and the depositional environments of the Dongpu Depression. The location of cored wells in the study are annotated by red point (modified after
Hao et al., 2007; Li et al., 2020a; Zhu et al., 2021).
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samples with Au/Pd coating were identified by the scanning elec-
tron microscopy (Eseme et al., 2007).

3.3. Solvent extraction and fractionation

16 powder samples (100 mesh) and 5 samples after thermal
simulation experiments were used for the solvent extraction and
fractionation. The chloroform was added to samples, and the
temperature was maintained at 70 �C in Soxhlet extractor for 48 h.
Then, metallic copper was added to the mixture to remove natural
sulfur. The collected extracts were separated into maltenes (organic
solvent soluble components) and asphaltenes using hexane
(Theuerkorn et al., 2008). Saturated hydrocarbons, aromatics hy-
drocarbon and polar components were separated by the column
chromatography (based on SiO2 and Al2O3) using a 2:1 mixture of
dichloromethane (DCM) and n-hexane, and a 2:1 mixture of DCM
and methanol, respectively (Radke et al., 1980).

3.4. Closedesystem pyrolysis experiment

The sample with a high TOC content and a low maturity was
selected as for the thermal simulation experiments, which is the
most appropriate pyrolysis method to simulate petroleum reten-
tion and expulsion (Spigolon et al., 2015). The sample (30 g)
crushing to 5e8 mm size and distilled water was put into the
vacuum closed system. The closed system was filled with nitrogen
gas and checked for leaks 3e5 times. The experiments were
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conducted at 18 �C, and the pyrolysis temperatures were set at
320 �C, 340 �C, 360 �C, 380 �C and 400 �C, respectively (Lewan et al.,
2014). The heating ratewas 1 �C/min, and temperaturewas held for
48 h after reaching the pyrolysis temperature using autoclave. The
pyrolysis temperatures of 320e400 �C can be shown as the oil
window (Lewan, 1985). The temperature error was less than 1 �C,
and the pressure error was less than 0.1 MPa. After thermal simu-
lation experiments, dichloromethane solutionwas used to flush the
interior of the autoclave device and the oil discharge pipeline to
obtain the discharged oil. Then, the sample was extracted to
determine the residual oil content. The sum of the discharged oil
content and the residual oil content is the oil generation (Wu et al.,
2018). The ratio of oil generation content, gas generation content
and oil retention content to sample mass is considered as the yield
(Song et al., 2020).
3.5. N2 adsorption experiment

5 samples after thermal simulation experiments (100 mesh)
were at 110 �C for 24 h to remove water and residual gas in shale.
The nitrogen adsorption-desorption isotherms were obtained at
the pressure ranging from 0.001 to 0.990 under the condition of
77.3 K (�196 �C) liquid nitrogen. The BrunauereEmmetteTeller
(BET) (Rouquerol et al., 2007; Thommes et al., 2015) and the Barrett,
Johner and Halenda (BJH) models (Barrett et al., 1951) were used to
calculate the pore surface areas, the total pore volume and the
average pore width.



Fig. 2. Information of stratigraphy, depositional system of the Dongpu Depression. The strata for this study are annotated by a red rectangle in the lithology column (Wang et al.,
2020a; Hu et al. 2021).
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4. Result

4.1. Petrology and mineral compositions

The main minerals of the lower Member 3 of the Shahejie For-
mation shale are quartz (mean: 18.01%), calcite (mean: 32.03%) and
clay (mean: 27.49%). The carbonate mineral content, ranging from
9.4% to 72.9% (mean: 42.5%), is the highest mineral and varies
frequently (Fig. 3). The clay mineral content (12.1%e52.8%, mean:
27.49%) also occupies a dominant position and increases with the
increasing depth. Pyrite deposited in the lower Member 3 of the
Shahejie Formation, especially in ~3500e4200 m, and its content
increases to 8.8% with the increasing depth (Fig. 4). One obvious
characteristic is that evaporite minerals (gypsum and halite) ac-
count for a significant proportion. The halite content is 2.8% in the
depth of 3697.21 m, while the gypsum is distributed in all the shale
samples. The gypsum contents range from 0.20% to 13.3% (mean:
4.83%), and reaches the highest in ~3000e4000 m (Fig. 3).
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Since the halite content in the samples is very small, our focus is
on the gypsum minerals in evaporite. The quartz content is widely
distributed when the gypsum content in shale is less than 5%, the
maximum can be reached 31.3% and the minimum is 6.1%. But the
quartz content is stably distributed between 16.9% and 22.5% when
the gypsum content is greater than 5%, and the mean value is
19.77%. Additionally, the clay contents have the characteristics of
wide distribution and overall downward trend, ranging from 12.1%
to 52.8%, when gypsum content less than 5%. When the gypsum
content larger than 5%, the clay content is ranging from 23.7% to
37% with an average of 28.4%.
4.2. Organic geochemistry

The TOC content ranges from 0.15% to 2.96% (mean: 1.18%), and
the hydrocarbon generation potential (Pg) is 0.09e21.07 mg/g
(mean: 5.37 mg/g). The maximum temperature of pyrolysis yield
(Tmax) is 422e597 �C (Sample a is 573 �C in the depth of 5001.7 m;



Fig. 3. Mineralogy of saline shale in the Dongpu Depression. The variation trend of salt rocks is annotated by a red curve.

Fig. 4. FE-SEM images shows the typically petrological characteristics of saline shale in the Dongpu Depression. (a) Well W248, 3351.35 m, laminated shale; (b) Well W201,
3671.95 m, black organic-rich shale; (c) Well P7, 4178.97 m, Clay and framboidal pyrite development; (d) Well W201, 3687.21 m, Quartz development; (e) and (f) Well W155,
2991.28, Framboidal pyrite, gypsum and OM development.
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Sample b is 597 �C in the depth of 5194.3 m), and the average of
Tmax value after removing Samples a and b is 438 �C. The crosseplot
of the hydrocarbon index (HI: S2/TOC � 100, mg HC/g TOC) versus
Tmax shows that the organic matter type of the lower Member 3 of
the Shahejie Formation shale is dominated by type II1 and II2
kerogen and followed by type III kerogen. According to the TOC
contents and organic matter type, samples are divided into three
categories (Fig. 5):

Type A shale has the organic matter of type II1 kerogen, and high
TOC contents (1.08%e2.96%) and Pg contents (5.75e21.07 mg/g);
type B shale has the organic matter of type II2 kerogen, and mod-
erate TOC contents (0.63%e1.81%) and Pg contents (2.95e10 mg/g);
653
type C shale has the organic matter of type III kerogen, and low TOC
contents (0.15%e0.77%) and Pg contents (0.09e1.6 mg/g). Samples a
and b cannot determine their organic matter type through Tmax
value owing to the deeper burial depth and the highermaturity, but
they are classified as type C shale due to their low Pg contents
(Table 1).

In Fig. 6, the four black samples cannot be classified because of
the high Tmax. Excluding the four black samples buried at a depth of
more than 5000 m, the saturated hydrocarbon percentage in raw
samples, ranging from 5.41% to 77.06% (mean: 44.78%), gradually
increases and then decreases with the increasing depth, while the
aromatics percentage, ranging from 5.58% to 28.57%, decreases



Fig. 5. (a) The pyrolysis S1þS2 versus the total organic matter (TOC) of the lower Member 3 of the Shahejie Formation shale in the Dongpu Depression, showing the generative
source rock potential and (b) the hydrocarbon index (HI) versus the pyrosis Tmax of the lower Member 3 of the Shahejie Formation shale in the Dongpu Depression, showing the
kerogen type.

Table 1
Geochemical characteristics of original shale samples.

Well Depth, m TOC, % S1, mg/g S2, mg/g Tmax,
�C EOM, mg/g

Type A W155 3087.1 1.08 0.72 5.03 446 3.119873
W155 2991.28 1.94 1.14 9.92 430 4.86538
W324 2735.85 1.998 0.57 11.91 432 2.444685
W248 3351.79 2.962 5.61 15.46 442 11.42373

Type B W201 3671.95 1.352 1.04 3.75 445 1.625
P45 3480.54 0.7 0.59 2.59 441 2.86068
W248 3389.64 1.814 3.31 6.69 429 5.929412
W248 3338.83 0.6297 0.92 2.03 431 2.959514
W324 2728.61 0.9138 0.5 3.25 435 2.552894
W128 3961.72 1.15 1.43 3.21 448 4.069341

Type C P4 5194.3 0.77 0.04 0.05 597 0.117794
P4 5001.7 0.73 0.02 0.11 573 0.08957
P7 4178.97 0.1893 0.05 0.06 433 0.276805
W128 3958 0.64 0.67 0.93 422 2.069743
W201 3697.21 0.1542 0.04 0.1 458 0.271605

Note: Bolded sample was selected for the thermal simulation experiment.
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tardily and then keep stable with the increasing depth. The per-
centage of polar components (resins and asphaltenes) gradually
decreases from 8.24% to 62.90% with an average of 29.39%. When
Fig. 6. Graph showing the chemical com
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the depth exceeds 4000 m, the polar components percentage
gradually increases. It should be noted that the S1 content of
samples ranging from 0.01 to 0.02 mg/g on type C shale, there may
be experimental errors in saturated hydrocarbon percentage in raw
samples due to low residual oil content, which needed to further
discuss in the future.
4.3. Thermal simulation experiments

Easy%Ro can be determined by the kinetic model (Sweeney and
Burnham, 1990), and the value with increasing pyrolysis tempera-
ture of the post-pyrolysis shale are presented in Table 2. With the
increasing temperature, the residual oil yield decreases from
3.31 mg/g to 0.81 mg/g. The oil expulsion yield gradually increases
to 2.01 mg/g before 360 �C and then starts to decrease. The residual
oil yield follows a downward trend from 3.43 mg/g to 0.84 mg/g.
The oil generation yield remains stable at ~3.5e4.12 mg/g before
360 �C, with an average value of 3.80 mg/g, and then decreases. The
gas expulsion yields increases continuously from 0.17 mL/g to
4.78 mL/g before 360 �C, and drops to 2.60 mL/g in 380 �C, and then
increases rapidly to 10.16 mL/g.
position of residual hydrocarbon.



Table 2
Generation, expulsion and retention oil production and retention oil component content.

Temperature, �C EasyRo, % Oil expulsion, mg/g Oil retention, mg/g Oil generation, mg/g Gas Expulsion, mL/g Chemical component content of retained oil

Saturates, % Aromatics, % Resins þ Asphaltenes, %

320 0.81 0.66 3.44 4.12 0.17 32.54 19.82 36.98
340 0.98 1.05 2.43 3.50 4.10 34.18 21.52 27.43
360 1.21 2.01 1.73 3.79 4.78 33.33 27.59 25.86
380 1.84 0.25 0.99 1.25 2.60 22.55 34.31 34.31
400 2.17 0.47 0.84 1.32 10.16 12.20 21.95 26.83
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5. Discussion

5.1. Factors controlling the residual oil content

5.1.1. Residual oil in saline shale
The gypsumehalite rocks mainly deposited in the deep and

semiedeep lake facies in the northern area of the Dongpu
Depression (Zhu et al., 2021) which the shale mainly deposited. The
abundance of organic matter can be determined by the TOC content
and the Pg content (Peters,1986; Tissot andWelte,1984). According
to the evaluation criteria of lacustrine source rocks, shale can be
divided into four categories: non (TOC < 0.4%; Pg < 0.5 mg/g); poor
(0.4% < TOC < 0.6%; 0.5 mg/g < Pg < 2 mg/g); fair (0.6% < TOC < 1%;
2 mg/g < Pg < 6 mg/g); good (TOC > 1%; Pg > 6 mg/g) (Huang et al.,
1984; Chen et al., 1997; Jia et al., 2016). Type A and B shale are
fairegood source rocks and have type II kerogen, indicating that
they have the high organic matter content and the high hydrocar-
bon generation potential. The hydrocarbon generation parent ma-
terial of type II kerogen mainly derives from the mixture of
plankton and microorganisms (Zhang, 1992). Type C shale is fair
and no source rocks, with the low organic matter content and hy-
drocarbon generation potential (Fig. 5). The hydrocarbon genera-
tion parent material is mainly terrestrial higher plants (Zhang,
1992). The saline shale of Jianghan Basin (Qianjiang Formation)
and Qaidam Basin (Dameigou Formation) are also mainly type II
kerogen sourced from the aquatic organisms in lakes (Hou et al.,
2017; Wang et al., 2021). The TOC contents of these basins are
1.0%e10% (mean: 1.2%) and 0.6%e10.7% (mean: 3.83%), respectively
(Wang et al., 2019b). Additionally, these lacustrine basins also have
high S1 content, mostly greater than 1 mg/g (Hou et al., 2017),
showing the potential of the saline lacustrine shale. In summary,
the saline lacustrine shale has high TOC content with developing
type II kerogen of organic matter.
5.1.2. Effect of the TOC
The light hydrocarbons (C1e4) that remain in shalewill gradually

volatilize during coring process (Zhu et al., 2015), and massive loss
of light hydrocarbons (C6e14) will also occur in the processes of the
sample preparation and solvent evaporation separation of extract
during the experiments of obtaining EOM (Bordenave, 1993). In
addition, when the temperature is less than 300 �C, the content of
residual hydrocarbons (free hydrocarbons) in the rock is the ob-
tained S1 value in the pyrolysis experiments, while the high-
ecarbonenumber hydrocarbons and NSO compounds with a
boiling point higher than 300 �C in the sample will be ignored
(Vankreve, 1965). Therefore, S1 and EOM contents can only be used
as a part of measuring the content of residual oil (Cooles et al.,
1986). The light hydrocarbon recovery coefficients at different
evolution stages in Jiyang Depression, which is adjacent to Dongpu
Depression, were selected to restore the light hydrocarbon of S1 and
EOM in this study (Zhu et al., 2015). The correlation between the
restored value and TOC content is consistent with the correlation
between the measured value and TOC content (Fig. 7). Thus, the
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following analysis still uses measured values.
The extractable organic matter (EOM) and S1 values can repre-

sent the residual oil content (Jarvie, 2012), which have a positive
correlation with the TOC content (Fig. 7a). With the increase in the
TOC content, the residual oil content of type A and B shale increases
rapidly (Fig. 7a). The correlation between the residual oil and TOC
content of type A shale is the best, and the coefficient of determi-
nation (R2) is 0.7. Whereas the residual oil content of type C shale
show a slow upward trend with the increasing TOC content and
their R2 is only 0.05. For type B shale, it is found that the coefficient
of determination between EOM value and TOC content is 0.18,
while the correlation coefficient between S1 and TOC content is 0.7
(Fig. 7b). The reason is that EOM contains some coke asphalt, while
S1 does not (Vankreve, 1965), thus the correlation between EOM
value and TOC content is low. Sandvik and Pepper propoesed that
~10 g petroleum can retained per 100 g TOC or 100 mg/gTOC in
organic matter (Pepper, 1991; Sandvik et al., 1992). The TOC content
has an obvious positive correlation with S1 and EOM (Fig. 7), indi-
cating that TOC is one of the key factors controlling the residual oil
content in the shale system (Pang et al., 2018; Zhang et al., 2019b).
5.1.3. Effect of the maturity
The organic matter maturity of shale also can affect the residual

oil content (Jarvie et al., 2007). The S1 values of samples a and b are
0.02 mg/g and 0.04 mg/g respectively, and the Tmax values are
597 �C and 573 �C, indicating that they are in the over mature stage
(Fig. 8). Because the too highmaturity can affect the real result (Luo
et al., 2011), samples a and b are excluded from Fig. 8. The shale of
the lower Member 3 of the Shahejie Formation is in the mature
stage, which is themain oil generation stage (Fig. 8). The residual oil
content gradually decreases after reaching the maximum temper-
ature at this stage. Variations of the maturity can lead to the
expansion of the kerogen structure, which affects the fractionation
and retention of petroleum in organic rich shale (Larsen and Li,
1997; Ertas et al., 2006; Kelemen et al., 2006). The similar that
the highest oil content occurs in shalewhen the Tmax value is 445 �C
is consisted with that presented in the Mississippian Barnett shale
(Texas) and the Toarcian Posidonia shale (Lower Saxony, Germany)
(Han et al., 2017).
5.1.4. Effect of the clay mineral
The low R2 value (< 0.2) indicates the correlation between clay

mineral content and residual oil content is weak. However, type A
shale shows a good positive correlation between the residual oil
content and the clay minerals content, which result from the high
residual oil content of sample c (Fig. 9a and b). It can be inferred
that sample c is affected by high organic matter content (Fig. 7). The
adsorption capacity of minerals to hydrocarbons is weaker than
that of organic matter (Jarvie, 2012; Sang et al., 2018). However,
many inorganic characteristics, such as mineral composition,
porosity, permeability, fracture and cementation, can also control
oil and gas retention (Han et al., 2015). The adsorption capacity of
clay minerals to hydrocarbons is greater than that of clastic



Fig. 7. Graphs showing the effect of TOC on S1 and EOM yield of shale from type A, B and C in the Dongpu Depression. (a) The significant relationship demonstrates the major effect
of TOC on S1 yield from type A and B; (b) the major effect of TOC on EOM yield from type A. EOM represents the extraction organic matter; (c) and (d) the effect of TOC on restored S1
and EOM yield.

Fig. 8. The effect of organic matter maturity on S1 and EOM yield of shale in the Dongpu Depression. (a) The effect of pyrolysis Tmax on S1 yield. (b) The effect of pyrolysis Tmax on
EOM yield. The red curve represents the variation trend.
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minerals such as quartz and carbonate (Li et al., 2016), which can be
attributed to the fact that the unique surface area of clayminerals is
significantly larger than that of brittle minerals and can increase the
adsorption area for hydrocarbons (Wang et al., 2016). Nevertheless,
the high adsorption capacity of clay minerals to petroleum can also
reduce the reservoir porosity and permeability, resulting in the low
fluidity of shale oil (Ning et al., 2020). In the present study, the clay
mineral contents of most samples are less than 30% and have a
weak influence on the residual oil content (Fig. 9a and b). Huang
et al. (2018a and b) suggested that the increase of clay content in
shale from the Dongpu Depression corresponds to the decrease of
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residual oil content (Huang et al., 2018a; 2018b). Chen et al. (2020)
believed that the clay mineral content which is more than 30% is
negatively correlated with the residual oil content in shale of Ordos
Basin.
5.1.5. Effect of the brittle minerals
Since there are too few samples in the downward trend, refer-

ring to Shao et al. (2018) research data on saline shale in Dongpu
Depression, it shows that quartz and gypsum and residual oil
content increase first and then decrease. Before the quartz content
reaches 21.1%, the residual oil content increases with the increase of



Fig. 9. The effect of clay, quartz and gypsum on S1 and EOM yield of shale in the Dongpu Depression. (a) The effect of the clay mineral content on S1 yield; (b) the effect of the clay
mineral content on EOM yield; (c) the effect of the quartz mineral content on S1 yield; (d) the effect of the quartz mineral content on EOM yield; (e) the effect of the carbonate
mineral content on S1 yield; (f) the effect of the carbonate mineral content on EOM yield; (g) the effect of the gypsum mineral content on S1 yield; (h) the effect of the gypsum
mineral content on EOM yield. The black circles in (c), (d), (e), (f), (g) and (h) is quoted from Shao et al., (2018).
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quartz content, which can be attributed to the fact that quartz can
provide support for pores, and can further block out diagenesis and
maintain high liquid hydrocarbon storage capacity of shale (Yang
et al., 2018). The organic acids produced during the kerogen
decomposition can migrate during hydrocarbons generation,
resulting in the corrosion of quartz and feldspar minerals
(Bjørlykke, 1997, 1998; Nygård et al., 2004; Oelkers et al., 1996;
Mondol et al., 2007), and the corroded space can further provide
intraparticle pores for residual oil. In addition, the existence of
evaporite minerals indicates that the bottomwater was a relatively
reducing environment, in which quartz cementation can occur
(Emmings et al., 2019, 2020), which can inhibit the compaction of
mudstone (Fishman et al., 2015; Milliken and Olson, 2017) and
provide storage space for oil occurrence (Fig. 9c and d).

On the other hands, the residual oil content decreases rapidly
after the quartz content exceeding 21.1%. Although quartz can still
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provide the storage space for residual oil, the synchronous occur-
rence of high contents of clay mineral (mean: 40.2%) may reduce
the storage space (Fig. 9e and f) (Chen et al., 2020). If the clay
mineral content is too high, the mixed layer of illite and mont-
morillonite can be transformed into illite at ~60e100 �C (Ro ~0.8%)
during diagenesis (Merriman, 1999; van de Kamp, 2008; Peltonen
et al., 2009). Montmorillonite can release a large amount of silica
and form smaller and harder micro quartz during the process of
transformation to illite, which fills large number of pores (van de
Kamp, 2008; Thyberg et al., 2010). These processes can further
affect the physical properties of mudstone and reduce the storage
space of residual oil (Lindgreen et al., 1991; Bjørlykke, 1998). The
transformation from montmorillonite to illite of samples occurred
at ~2500e4000m (Ro ~0.8%e1.2%) (Fig. 3), which contributed to the
formation of micro quartz and reduction of the storage space for
residual oil (Shou and Yuan, 1990; Zhao et al., 1992; Sun, 1996).



C.-X. Zhu, F.-J. Jiang, P.-Y. Zhang et al. Petroleum Science 20 (2023) 649e669
Additionally, the TOC contents of samples with quartz content of
more than 21.5% are less than 0.65%, and these samples have a
weaker adsorption capacity of organic matter (Fig. 7). The effect of
carbonate minerals, as another brittle mineral, on the content of
residual oil has the same trend as that of quartz (Fig. 7e and f).
Carbonate minerals are not only easily dissolved to form inter-
granular or intra-granular dissolved pores and easily recrystal-
lized to form inter-granular pores (Jiang et al., 2016b). The higher
content of brittle minerals such as quartz and carbonate can result
formation of natural fractures which is easy to form complex
fractures and achieve the extension and connection of fracture
networks. The developedmicrofractures would promote the oil loss
in the shale system and then result in the decreasing oil enrichment
(Rodriguez and Philp, 2010).

Gypsum (CaSO4), found to be usually interbedded with organic
rich source rocks, is a typical evaporite mineral in saline lacustrine
basins (Valyashko, 1963; Huang et al., 2003; Jiang et al., 2004; Jin
et al., 2008). The saline lakes generally distributed in arid regions
with sensitive climate (Torgersen et al., 1986; Wang et al., 2002).
Although, it is still controversial whether the sedimentary envi-
ronment of the lake water is deep or shallow water during gypsum
deposition process (Gao et al., 2011). It can be determined that it
has been frequently diluted and concentrated (Anderson, 1977),
and finally forms the interbedded deposition with organic-rich
shale. The residual oil content gradually increases with the
increasing gypsum content (Fig. 9g and h), which is due to the fact
that large number of prosperous halophilic algae can be as hydro-
carbon generating parent materials in the brackishesaline envi-
ronments, and the organic rich sediments can also provide
hydrocarbon basis for residual oil (Song et al., 2019; Hu et al. 2021).
Actually, previous studies have found that the S1 and EOM values of
Qingshankou Formation shale in Songliao basin (freshwatere-
brackish water lacustrine basin) are 0.1 mg/ge7.0 mg/g (mean
value: 1.1 mg/g) and 0.01%e1.1% (mean value: 0.34%), respectively
(Tang et al., 2014). The S1 and EOM values of Chang 7 shale in Ordos
Basin (freshwaterebrackish water lacustrine basin) are
1.24e7.41 mg/g (mean value: 3.03 mg/g) and 0.24%e1.56% (mean
value: 0.66%), respectively (Liu et al., 2017; Zhang et al., 2021b). But
in the saline lacustrine basin, the S1 value of Qianjiang Formation in
Jianghan Basin is 0.17e21.2 mg/g (mean value: 5.02 mg/g) (Hou
et al., 2017). Additionally, the inherent wettability of surface at
the nanoscale also controls the petroleum migration in nanosized
channels (Salehi et al., 2008; Xue et al., 2015). Gypsum, as a super
hydrophilic mineral, is preferentially wetted by water at the scale,
which can hinder the migration of oil in shale system and increase
the retained oil content (Chang et al., 2018). The retained oil con-
tent begins to decrease after the gypsum content exceeding 7.5%
(Fig. 10a, b and c), which may result from the formation of fracture
pores during tectonic activities, further facilitating the interlayer
migration of shale oil (Wang et al., 2017).

5.2. Fractionation of the residual oil

According to the chromatographic fractionation effect based on
the polarity of petroleum components (Leythaeuser et al., 1987),
the component fractionation of petroleum usually occurs during
the initial migration and discharge of oil in shale. The preferential
discharge sequence of hydrocarbon chemical components in pe-
troleum is aliphatic, aromatic, resins and asphaltenes (Leythaeuser
et al., 1987; Sandvik et al., 1992). The saturated hydrocarbon per-
centage in raw samples increases with the increase of the residual
oil content (Fig. 11a and b). The saturated hydrocarbon percentage
in raw samples tends to be stable and has a slight downward trend
when the S1 exceeds 1 mg/g, while its still remain high values of >
50% (Fig. 11a and b).
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As shown in Fig. 6, the OSI values of samples with S1 contents
exceeding 1 mg/g are greater than 1, which indicates that the pe-
troleum in the shale system is industrial movable oil, further
implying that the residual oil contains both free oil and adsorbed oil
(Bao et al., 2016; Gorynski et al., 2019). However, the free oil
generally exists in intergranular pores and has a high saturated
hydrocarbon percentage in raw samples (Wang et al., 2019a). Thus,
it is considered that type A and B shale have high free oil content
and are better exploration target for shale oil. The change of aro-
matic hydrocarbon percentage in raw samples, ranging from 5.69%
to 28.57% (average 13.37%), is not obvious, and the influence of
other factors on the aromatic hydrocarbon percentage in raw
samples is weak (Fig. 11c and d). Although there may be experi-
mental errors in the chemical component percentage of residual oil
in type C shale, it does not affect the overall trend of saturated
hydrocarbon and polar components percentage in raw samples.

Although the influences of TOC content and clay minerals on
saturated hydrocarbons are not significant (Fig. 12a and b), the
organic matter content of type A and B shale has a significant in-
fluence on aromatic hydrocarbons and polar components percentage
(Fig. 12d and g). The selective adsorption of petroleum components
on clay mineral (asphaltenes > resins > aromatics > aliphatics) may
be the main reason (Sandvik et al., 1992; Han et al., 2015; Zou et al.,
2019a). Adsorption of saturate hydrocarbon onTOC content and clays
appears to be of less importance (Espitalie et al., 1980; Schettler and
Parmely, 1991). The increase of organic matter content not only
contributes to the generation and retention of hydrocarbons, but also
promotes the adsorption of polar components (Fig. 12g). Generally,
the residual oil components in the organic lean interval are mostly
nonepolar components, and the residual oil components in the
organic rich interval and clay mineral rich interval are mostly aro-
matic hydrocarbons and polar components (Zou et al., 2019a).
However, type C samples, the organic lean shale, have higher per-
centage of polar components (Fig. 12g, h and i). The polar compo-
nents percentage of type C shale increases significantly with the
increasing clay mineral content, and type C shale has a higher clay
mineral content. Han et al. (2015) proposed that the higher clay
mineral content can increase the adsorption capacity of polar com-
ponents, which may be the reason for high polar components and
low saturated hydrocarbon percentage in saline shale.

When the gypsum mineral content is less than 7.5%, the satu-
rated hydrocarbon percentage in raw samples shows an upward
trend (Fig. 12c), while the saturated hydrocarbon percentage in-
creases slightly and tends to be gradually stable when the gypsum
content exceeds 7.5% (Fig. 12c) with the increased fracture storage
space (Fig. 10a, b and c). Therefore, shale with high gypsummineral
contents has more storage space for residual oil, especially
contributing to the enrichment of the residual oil with high satu-
rated hydrocarbons percentage in raw samples. It is worth noting
that the gypsum content of sample d reaches 12.2% and the satu-
rated hydrocarbon percentage in raw samples reaches 73.60%, but
the S1 value is only 0.67 mg/g (Fig. 12c). As mentioned above, the
shale with high gypsum minerals content may be enriched in
fractures (Wang et al., 2017), which may reduce the content of re-
sidual oil. However, the fractures of shale caused by the high gyp-
sum content make the residual oil migrate between layers in shale
system, and the saturated hydrocarbon percentage in raw samples
increases relatively (Zou et al., 2019a). Therefore, the residual oil of
sample d migrated from nearby shale reservoirs, and the prefer-
ential migration of saturated hydrocarbon caused the high per-
centage of saturated hydrocarbon.

Due to the high content of quartz in felsic minerals, so the effect
of quartz minerals on the chemical composition of residual oil is
mainly discussed. The saturated hydrocarbon percentage in raw
samples increases with the increasing of quartz mineral content of



Fig. 10. Typical mineral of gypsum and quartz. (a) and (b): 2991.28 m, well W155, the gypsumminerals are developed in the middle of shale laminae; (c): 2991.28 m, well W155, the
abundant gypsum minerals occur in the shale surface; (d) and (e): 3351.79 m, W248, nmescale quartz cementation; (f): 2991.28 m, well W155, Intergranular pores of pyrite are
filled with microcrystalline quartz. (b1): EDS analyses of the point marked red rectangle sign in Image (b); (c1): EDS analyses of the point marked red rectangle sign in Image (c);
(d1): EDS analyses of the point marked red rectangle sign in Image (d); (e1): EDS analyses of the point marked red rectangle sign in Image (e); (f1): EDS analyses of the point marked
red rectangle sign in Image (f).
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which the maximum is 21.1% (Fig. 12j). The polar components
percentage in type A and B shale decreases with the increase of
quartz mineral content (Fig. 12l). When the quartz content is less
than 21.1%, the residual oil content increases with the increasing of
quartz content, resulting in the corresponding increase of saturated
hydrocarbon percentage in raw samples (Fig. 9c and d). The quartz
minerals have more interparticle pores at micron scale than clay
minerals, resulting in the enrichment of aliphatic and aromatic
compounds (Gorbanenko and Ligouis, 2014; Liu et al., 2020). The
biogenic quartz-rich Barnett marine shale have high proportions of
polar components (especially the resins fraction) retained in the
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Barnett samples due to the high adsorption capacity of the small
inter-particle pores on biogenic quartz (Yue et al., 2021). But in this
study, the intergranular pore formed by detrital quartz minerals is
about 10e50 nm (Fig. 10d, e and f), leading to the reducing
adsorption capacity of quartz minerals for polar components (Xi
et al., 2019), and resulting in its favor of the fractionation and
migration of residual oil (Shao et al., 2018). Therefore, the effect of
gypsum and quartz on petroleum component fractionation of re-
sidual oil cannot be ignored.



Fig. 11. The effect of S1 and EOM on saturate, aromatic, resins and saphaltenes content of shale in the Dongpu Depression. (a) The effect of S1 yield on saturate; (b) the effect of EOM
yield on saturate; (c) the effect of S1 yield on aromatics; (d) the effect of EOM yield on aromatics; (e) the effect of S1 yield on the sum of resins and saphaltenes; (f) the effect of EOM
yield on the sum of resins and saphaltenes.
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5.3. Effect of maturity on residual oil

In the above discussion, the shale samples are basically in the
mature stage. However, different thermalmaturities may also affect
the retention and component changes of residual oil (Snarsky,
1962; Pelet and Tissot, 1971; Zou et al., 2004). The thermal simu-
lation experiment of closed system is adopted to analyze the
changes of residual oil content and chemical composition under
different thermal maturities.
5.3.1. Residual oil and pore structure characteristic
The oil expulsion yield and gas generation yield vary intricately

(Fig. 13a and b), which was divided into two stages: Stage I
(320e360 �C) and Stage II (360e400 �C) (Table 2). In the Stage I and
II, there is a downward trend of the residual oil yield, which may be
attributed to the partial conversion of extractable asphalt into
insoluble coking asphalt (Ertas et al., 2006; Wei et al., 2014). In
addition, continuous oil expulsion can also lead to a continuous
decrease in the residual oil content (Guo et al., 2017).

The N2 adsorption and desorption are carried out for the shale
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before extraction (SBE) and the shale after extraction (SAE)
(Table 3). IUPAC divides the adsorption isotherms into 6 types
(IeⅥ), and the desorption isotherms (i.e. hysteresis curves) into 4
types (H1eH4) (Ross and Bustin, 2009). The nitrogen adsorption
capacity of SBE and SAE increases with the increase of relative
pressure (Fig. 14). The adsorptionedesorption curve hysteresis
loops of samples can be divided into type II and H3, respectively,
indicating that the pores in shale are narrow shaping parallel plate
pores, which are open in all directions (Sing, 1985). The adsorption
capacity of samples increases significantly at P/P0 < 0.5, indicating
the process of single-layer adsorption of gas (Tang et al., 2017).
When P/P0 is greater than 0.5, the adsorptionedesorption curve
shows a lag loop (Mastalerz et al., 2013; Gou et al., 2019).When P/P0
approaches 1, the adsorption capacity increases significantly and
the horizontal platform disappears, indicating that there is a large
number of macropores (Ravikovitch and Neimark, 2002).

The adsorption capacity of SAE is greater than that of SBE,
indicating that the pore volume of SAE is larger (Fig. 15). In Stage I,
the total pore volume of SAE increases by 1.4 times, the specific
surface area increases by 2.2 times, and the average pore diameter



Fig. 12. The effect of TOC, clay and gypsum on saturate, aromatic, resins and saphaltenes content of shale in the Dongpu Depression. (a) The effect of TOC content on saturate; (b)
the effect of clay mineral content on saturate; (c) the effect of gypsum mineral content on saturate; (d) the effect of TOC content on aromatics; (e) the effect of clay mineral content
on aromatics; (f) the effect of gypsum mineral content on aromatics; (g) the effect of TOC content on the sum of resins and saphaltenes; (h) the effect of clay mineral content on the
sum of resins and saphaltenes; (i) the effect of gypsum mineral content on the sum of resins and saphaltenes.
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decreases by 20%e40%. In Stage II, the total pore volume of SAE
maximum increases by 1.8 times, the specific surface area increases
by 1.9 times, and the average pore diameter decreases by 20%e30%
(Fig. 16). These indicate that the SAE in Stage II are more enriched in
small pores. The difference of pore characteristics in SAE and SBE
can characterize the occurrence characteristics of residual oil (Guo
and Li, 2000; Li et al., 2020b).

In Stage I, the pores of SAE with pore width > 20 nm increase
greatly, indicating that the residual oil mainly exists in these pores,
including quartz mineral intergranular pores, calcite mineral
intergranular pores and clay mineral pores (Fig. 17a, b, c and h). The
difference in Stage II, the total pore volume and specific surface area
of SAE and SBE, is greater than that in Stage I. These indicate that
more mesopores (< 5 nm) which do not exist in Stage I appear in
Stage II with the increasing temperature. The sudden increase of
gas generation in Stage II may result from the existence of organic
matter pores and mineral matrix corrosion pores that lead to a big
increase of total pore volume and specific surface area in SAE (L€ohr
et al., 2015; Cao et al., 2020) (Fig. 17d, e, f and i). Most of the organic
matter pores are formed by pyrite intergranular filling with organic
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matter. The organic matter biofilm around pyrite indicates a better
chemical environment for the formation and preservation of pyrite
(Zhu and Reinfelder, 2012). Pyrite can also promote the hydrocar-
bon generation, and facilitate the formation of organic pores (Ma
et al., 2016; Cao et al., 2018). Studies on the Muskwa and Besa
River shales in Northern British Columbia, western Canada, also
implied that the organic matter content can contribute to the
development of mesopores (Ross and Bustin, 2009; Dong et al.,
2019). The average pore size of SAE and SBE has little difference,
while the average pore size of shale in Stage II is lower than that in
Stage I. Therefore, the increase of polar component percentage in
Stage II may also result from the emergence of organic matter
pores, which is conducive to the adsorption of polar components
(Fig. 17d and e).

However, there is an exception in Stage I, that is, when the
temperature is 360 �C, the total pore volume of SAE increases by
only 1.09 times, the average pore diameter is the highest at
21.83 nm, and the specific surface area is the smallest at 2.36 m2/g.
These show that there are no organic matter pores, resulting in the
decrease of specific surface area and increase of average pore size of



Fig. 13. (a) The oil generation, expulsion and retention yield, gas generation yield in
different pyrolysis temperatures of shale; (b) The chemical component of residual oil in
different pyrolysis temperature of shale.

Table 3
The pore structure parameters of thermal simulation samples before and after extraction

Samples before extration

Temprature, �C BET surface area,
m2/g

Total pore volume,
cm3/100g

Average pore width, nm

320 2.79 1.53 19.77
340 2.08 1.27 29.36
360 2.70 1.03 17.45
380 3.60 1.37 18.11
400 3.91 1.41 16.87

Fig. 14. The N2 adsorption isotherm of the thermal simulation sample before and after extra
360 �C; (d) 380 �C; (e) 400 �C.
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SAE. Combined with the discussion in 5.2, polar components are
preferentially adsorbed in the mineral pores and organic matter
pores in the reservoir during the process of oil expulsion (Sandvik
et al., 1992). In Stage I, many pores with pore width < 5 nm of SAE
can be observed at 320e340 �C, while many pores with pore width
less than 5 nm of SBE can be even found at 360 �C, and the mini-
mum pore diameter of SAE is 8 nm at this moment (Fig. 16), which
can be attributed to that the polar components of the residual oil
are adsorbed on the pore surface, resulting in the smaller pore size
of SBE and the larger pore size of SAE without the influence of re-
sidual oil. In Stage II, the pore volume of samples with pore
diameter < 5 nm or > 20 nm increased after extraction, indicating
that the residual oil exists in both types of pores at this stage.
5.3.2. The chemical component of residual oil
Stage I: The saturated hydrocarbon percentage of residual oil

remains stable at 33%, while the oil expulsion yield increases from
0.67 mg/g to 2.01 mg/g, and the oil generation yield basically re-
mains stable (3.50e4.12 mg/g) (Fig. 13). During the continuous
transformation of kerogen into hydrocarbons, the saturated hy-
drocarbons percentage remains stable, and the aromatic hydro-
carbons percentage increases from 19.82% to 27.59% (Fig. 13), but
the polar components percentage decreases from 36.98% to 25.86%
(Fig. 13). Previous studies have shown that asphalt is used as an
intermediate product in the process of oil generation of type II
.

Samples after extration

BET surface area, m2/g Total pore volume, cm3/100g Average pore width, nm

5.23 2.00 17.69
4.67 1.81 18.63
2.36 1.12 21.83
7.05 2.00 13.10
7.74 2.52 14.49

ction (the blue line and the red line); Simulated temperature: (a) 320 �C; (b) 340 �C; (c)



Fig. 15. The BET surface area, pore volume and average pore width of the sample before and after extraction in different pyrolysis temperatures.

Fig. 16. The distribution of pore diameter of the sample before and after extraction; Simulated temperature: (a) 320 �C; (b) 340 �C; (c) 360 �C; (d) 380 �C; (e) 400 �C.

C.-X. Zhu, F.-J. Jiang, P.-Y. Zhang et al. Petroleum Science 20 (2023) 649e669
lacustrine kerogen (Lewan,1997), and the asphalt composition here
is roughly equivalent to the polar components in the present study
(Song et al., 2020). During the continuous decomposition of
kerogen, the consumption of asphalt occurs simultaneously with
the large expulsion of oil (Behar et al., 2008; Lewan and Roy, 2012),
and the polar components in the residual oil may become the main
source of saturated hydrocarbons in the expulsion oil (Behar et al.,
2010). Therefore, the oil expulsion has a great impact on the com-
ponents in the shale residual oil at this moment (Wu et al., 2019).

Stage II:The residual oil decreased continuously, and the com-
ponents are more complex (Fig. 13). The saturated hydrocarbon
percentage significantly decreases from 33.33% to 12.2% (Fig. 13). At
360e380 �C, the oil generation and oil expulsion yields begin to
decrease significantly, and the asphalts stored in shale pores begin
to discharge hydrocarbons under the influence of the increasing
temperature and pressure (Lafargue et al., 1990). Therefore, the
saturated hydrocarbons percentage is preferentially discharged
during the fractionation of chemical components of the residual oil
(Leythaeuser et al., 1988; Pepper and Corvi, 1995; Ritter, 2003).
However, aromatic hydrocarbons and polar compounds percentage
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follows a similar pattern, initially increasing and then decreasing.
The transformation processes, kerogen / asphalt / oil, make the
inner surface of source rock lipophilic (Lewan, 1993), accompanied
with the microfracture (Fig. 17g) which increases the porosity and
pore network interconnection of rock matrix (Jarvie et al., 2007; Ko
et al., 2016). This lipophilicity of the kerogen surface can promote
the further discharge of saturated hydrocarbons percentage, and
also provide favorable storage conditions for aromatics and polar
components (Ritter, 2003). At 380e400 �C, the saturated hydro-
carbon percentage still decreases, and the resins and asphaltene
percentage also start to decrease (Fig. 13), which may be related to
the cracking of crude oil (Tissot and Welte, 1984). Most carboxylic
acids (polar components) can crack into a large amount of gas at
high temperature, and the rock can also expel hydrocarbons to the
greatest extent (Shao et al., 2018b).

In this study, the retention mechanism and the fractionation
characteristics of residual oil in saline shale have been revealed. The
saline shale has high residual oil content and high saturated hy-
drocarbon percentage, which is conducive to the exploration and
development of shale oil. In addition, the existence of gypsum



Fig. 17. Scanning electron microscopy (FEeSEM) of thermal simulation samples; (a) The pyrolysis temperature: 320 �C. The Interparticle pores of calcite; (b) The pyrolysis tem-
perature: 360 �C. The Interparticle pores of clay; (c) The pyrolysis temperature: 340 �C. Interparticle pores; (d) and (e) The pyrolysis temperature: 380 �C. Inter-crystalline pores
filled with organic matter and the organic matter pores; (f) The pyrolysis temperature: 400 �C. Intragranular dissolved pores; (a1): EDS analyses of the point marked red rectangle
sign in Image (a); (e1): EDS analyses of the point marked red rectangle sign in Image (e); (g) The pyrolysis temperature: 400 �C. Microfractures; (h) The pyrolysis temperature:
360 �C. The Interparticle pores of clay; (i) The pyrolysis temperature: 360 �C. The shrinkage fracture and interparticle pores.
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minerals is conducive to the formation of fractures in saline shale,
which can guide the future exploration direction of shale oil in
Dongpu Depression and other saline basins in China. The saline
shale in this study only contains gypsum minerals, but there are
many shale containing other salt minerals (including salt rock,
alkalinemineral, etc.) in other saline basins in China, so the shale oil
retention mechanism still needs to be deeply explored.
6. Conclusions

Typical saline lacustrine shales of the Member 3 of the
664
Paleogene Shahejie Formation (43.59 ± 0.57Ma to 36.08 ± 0.57Ma)
in the Dongpu Depression were taken to explore the main con-
trolling factors on the residual oil content and its chemical frac-
tionation in saline lacustrine shale. The TOC content is the key
factor to control the residual oil content of saline shale, while clay
minerals contents have little effect on the residual oil content of
saline shale, which can be attributed to the high adsorption ca-
pacity reducing the reservoir porosity and permeability. However,
the saline shale with high TOC content and clay mineral content is
conducive to the adsorption of polar components. The intergran-
ular pores of quartz (about 21.5%) and gypsum (about 7.5%) are
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conducive to the occurrence of residual oil in saline shale, the
increasing of saturated hydrocarbon percentage and the decreasing
of polar components in the residual oil, which owe to the increasing
migration channel caused by the preferential wettability of gypsum
and interlayer fractures owing to too high content of brittle
minerals.

The saline mature shale is in the main oil generation stage,
which have higher residual oil content and shale oil potential. The
residual oil mainly occurs in mesopores with pore diameter >
20 nm. The existence of gypsum minerals improves the pore con-
nectivity, resulting in the high saturated hydrocarbon percentage
and the gradual reduction of polar components of residual oil. In
the gas generation stage, residual oil exists in mesopores which >
20 nm or < 5 nm. With the gradual cracking of the residual oil, the
saturated hydrocarbon percentage decreases rapidly, and the polar
component percentage begins to increase. There are also many
organic matter pores which also provide storage space for residual
oil.
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