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a b s t r a c t

Increasing the production and utilization of shale gas is of great significance for building a clean and low-
carbon energy system. Sharp decline of gas production has been widely observed in shale gas reservoirs.
How to forecast shale gas production is still challenging due to complex fracture networks, dynamic
fracture properties, frac hits, complicated multiphase flow, and multi-scale flow as well as data quality
and uncertainty. This work develops an integrated framework for evaluating shale gas well production
based on data-driven models. Firstly, a comprehensive dominated-factor system has been established,
including geological, drilling, fracturing, and production factors. Data processing and visualization are
required to ensure data quality and determine final data set. A shale gas production evaluation model is
developed to evaluate shale gas production levels. Finally, the random forest algorithm is used to forecast
shale gas production. The prediction accuracy of shale gas production level is higher than 95% based on
the shale gas reservoirs in China. Forty-one wells are randomly selected to predict cumulative gas
production using the optimal regression model. The proposed shale gas production evaluation frame-
work overcomes too many assumptions of analytical or semi-analytical models and avoids huge
computation cost and poor generalization for numerical modelling.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Conventional natural gas resources are unable to meet the hu-
man-being's demand. Advances of drilling and fracturing technol-
ogies enables the commercial production of unconventional
natural gas resources, and shale gas has become the significant
source of global natural gas production due to its wide distribution
and giant reserves (Fig. 1). According to the energy report in 2015
from U.S. Energy Information Administration (EIA), the global
recoverable resources of shale gas are about 214.55 trillion cubic
meters (tcm), of which the United States has 17.63 trillion cubic
meter and China has 31.58 trillion cubic meters (EIA, 2015). The U.S.
shale oil and gas production has increased significantly by applying
multi-stage fractured horizontal wells (MFHW) technology. In
2016, the natural gas exports of U.S. exceeded imports for the first
time, and the natural gas exports of U.S. even reached 5.90 � 108
e).
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cubic meters in 2020 (Zhao et al., 2021). The shale gas revolution by
the U.S. energy industry has achieved major success and reshaped
the world energy landscape. Increasing the utilization of shale gas
is of great significance for ensuring energy security, improving the
energy structure, and reducing the environmental pollution to
build a safe, clean, low-carbon, and efficient energy system to
achieve carbon neutrality.

The commercial gas production is hard to achieve due to
extremely low porosity and permeability (reaching to nano-Darcy)
of shale gas reservoirs. Stimulation of original shale gas formations
is required to enhance the permeability of shale reservoirs. Hy-
draulically fracturing technology along with horizontal wells has
been acknowledged as an effective stimulation means to achieve
the above-mentioned goal by generating complex fracture net-
works composed of natural fractures and hydraulic fractures to
provide high-permeability flow channels for shale gas (McClure
et al., 2016; Xue et al., 2021a). Sharp decline of shale gas produc-
tion has been widely observed in most of shale gas reservoirs,
leading to low gas recovery factor. Thus, accurate evaluation and
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Nomenclature

a Average distance between sample and all other
samples in the same cluster

b Average distance between sample and all samples in
the next nearest cluster

CSS Cluster sum of square
dEuclidean(x, m) Euclidean distance
dManhattan(x, m) Manhattan distance
InterfFrachits Total interference degree of gas production caused

by frac hits
InterfFrachits-i Interference degree of gas production caused by

any frac hits
m Number of clusters
MSE Mean squared error
n Number of samples in the cluster
QFrachits-i Impacted gas production by any frac hits
R2 Fitting-quality coefficient

RFrachits Total recovering degree of gas production caused by
frac hits

RFrachits-i Recovering degree of gas production caused by any
frac hits

s Silhouette coefficient
tall Total interference time of frac hits
ti Time of any frac hits
xi Sample points in cluster
xij The ith sample in the jth cluster
yi Actual value of the sample label in the test set
byi Predicted value of the sample label in the test set
y Average of sample labels in the test set
z Number of samples in the test set
ai Weight of individual frac hits
m Cluster centroid
mj Cluster centroid of jth cluster

Fig. 1. Global shale gas distribution (From https://www.worldenergy.org/assets/downloads/Summary-report_Unconventional-gas-a-global-phenomenon-World-Energy-
Resources-1.pdf).
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forecasting of shale gas production becomes a crucial issue. How-
ever, it is difficult to predict the production of shale gas wells due to
the complex fracture networks (Li et al., 2018), dynamic fracture
properties, fracturing interference (He et al., 2020; Guo et al., 2021;
Qin et al., 2022) in multi-well pads, complicated multiphase flow
(gas, water, oil, and fracturing fluids) after fracturing (Wu et al.,
2021) and multi-scale flow ( Zeng et al., 2021; He et al., 2022;
Clarkson et al., 2016) as well as data quality and uncertainty (Fig. 2).
Therefore, how to efficiently and accurately evaluate and predict
the shale gas production is significant to improve the production
performance of shale gas resources.

There are three methods for shale gas production prediction,
1660
including analytical approaches, numerical simulation, and
emerging data-driven models. The analytical methods mainly
include the material balance equation (MBE) and empirical pro-
duction decline model. Although the MBE approach can be applied
to estimate the oil content, gas content, and gas-oil ratio in the
unconventional reservoirs (Ojo and Osisanya, 2006), its accuracy is
significantly reduced under complex geological conditions.
Empirical decline model is the most commonly used method for
evaluating shale gas production, originally proposed by Arps (1945)
to predict oil and gas production. However, the accuracy of Arps'
original model in production evaluation of unconventional reser-
voirs is very low (Duong, 2010). Thus, the empirical decline model

https://www.worldenergy.org/assets/downloads/Summary-report_Unconventional-gas-a-global-phenomenon-World-Energy-Resources-1.pdf
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Fig. 2. Complicated static and dynamic mechanisms as well as data quality and uncertainty during the exploitation of shale gas reservoirs.
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has been improved (Fetkovich, 1973; Carter, 1985; Palacio and
Blasingame, 1993; Agarwal et al., 1999). Novel empirical decline
models for tight/shale gas reservoirs have been developed since
2008, including four categories (i.e., related to Arps' exponential
decline models (Ilk et al., 2008; Johnson et al., 2009; Mattar and
Moghadam, 2009; Valko, 2009; Yu and Miocevic, 2013; Zhang
et al., 2016), related to Arps' hyperbolic decline models (Fulford
1661
and Blasingame 2013; Maraggi et al., 2016), related to the rate
decline models during the linear flow in fracture-dominated res-
ervoirs (Josh and Lee, 2013; Ali et al., 2014; Wang et al., 2017a), and
other methods (e.g., logistic growth curves (Clark et al., 2011),
fractional decline curves (Zuo et al., 2016), and other complicated
methods (Makinde and Lee, 2017; Mishra, 2012). Many parameters
are required to be calculated by trial and error or should be adjusted
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using the corresponding dimensionless curves for the above-
mentioned models, causing them inconvenient for field applica-
tion (Wang et al., 2020b). Although other improved empirical
decline methods are emerging (Yuan et al., 2020), these models
have common shortcomings in shale gas production prediction. For
instance, the fluctuated gas production leads to inaccurate evalu-
ation results, caused by large amounts of flowback water, frac-hits,
shut-in, field tests, skin effect, workover, and other engineering
operations (Wang et al., 2020b). Fig. 3 summarizes the main
analytical models used for shale gas production prediction.

Recent advances in the numerical reservoir simulation tech-
niques of unconventional reservoirs include two parts. The first one
focuses on improving numerical modelling methods that account
for complicated mechanisms such as the migration mechanism of
natural gas (Miao et al., 2019; Ning et al., 2019), real gas effect (Wu
et al., 2017), methane adsorption (Tian and Liu, 2020), phase
behavior (Zhang et al., 2017), nonlinear flow (Liu et al., 2019), and
stress sensitivity (Wang et al., 2018). However, the reservoir
simulation requires numerical solution of partial differential
equations, which yields heavy computational costs and makes it
hard to characterize the dynamic properties of rock, fluids and
fractures as well as stress. And it is quite hard to provide real-time
reference for fracturing schemes adjustment, development plan
decision, or enhanced oil recovery measures based on the numer-
ical simulations. Also, the established geological model and nu-
merical model can only be applied to the target reservoirs, which is
limited for generalization.

The second methods intend to predict the shale gas production
through numerical simulation (Wang et al., 2017b; Hu et al., 2017,
2020) by integratingmultiple models (e.g., dual-continuummodels
(Ganzer, 2002; Azom and Javadpour, 2012; Jia et al., 2021a, 2021b),
discrete fracture models (DFM) (Moinfar et al., 2011), and
embedded discrete fracture models (EDFM) (Xu et al., 2018; Yu
et al., 2018) into reservoir simulations to handle the irregular and
complex natural and hydraulic fractures more accurately and effi-
ciently. During the large-scale fracturing operations in unconven-
tional gas reservoirs, the fracture networks near the parent well
may dynamically change (open or close) since the stress will be
changed. Even if the influence of formation pressure is not
Fig. 3. Summary of analytical models fo
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considered, the fracturing may cause that two wells are directly
connected or communicated through natural fractures or hydraulic
fractures (Sardinha et al., 2014; Guindon, 2015; Jacobs, 2017) (also
known as frac hits) due to the small well spacing, which will also
make the fracture networks dynamically change and form more
complex fracture networks. During fracturing fluid flowback, the
fracture conductivity may be reduced, and there is still fracturing
fluid retention within the fractures even after flowback (Jia et al.,
2018; Huang et al., 2020). Thus, two-phase flow of shale gas and
fracturing fluids in the fractures are definitely existing and the
impact of fracturing fluids cannot be ignored, which are hard to be
reflected by the established numerical models (Wei et al., 2020).
Furthermore, the dynamic changes of hydraulic fractures and nat-
ural fractures will also occur due to the change of stress during the
production period. For instance, the hydraulic fractures will be
partially closed due to proppant broken (Shi, 2021; Mao et al.,
2020), and the natural fractures will also be partially closed due
to the effect of stress. It may lead to the reopening of fractures and
increase of fracture conductivity if some enhanced gas recovery
(EGR) measures are performed, such as acidizing, refracturing,
water injection, and gas injection. The predicted productivity will
show a large error with the practical productivity if the originally
designed fracturing parameters are used. Fig. 4 is a brief summary
of numerical simulation methods for shale gas production
prediction.

At present, production prediction of unconventional reservoirs
is still challenging due to the complicated micro-flow mechanism
of fluids in shale reservoirs and engineering problems. It is neces-
sary to comprehensively consider the geological and engineering
factors as well as multi-scale data for shale gas production evalu-
ation. The emerging data-driven model provides a potential solu-
tion to the above technical challenges. Data-driven model mainly
uses machine learning methods for modeling. Machine learning
has been widely used to solve complicated problems in both en-
gineering and science fields (Tontiwachwuthikul et al., 2020; Cao
et al., 2022; Yan et al., 2022a, 2022b), including petrophysical
modeling (Syed et al., 2020), recovery factor estimation of reser-
voirs (Makhotin et al., 2022), etc. Compared with traditional
methods, data mining could identify intrinsic information and
r shale gas production prediction.



Fig. 4. Summary of numerical simulation methods for shale gas production prediction.
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potential patterns that are difficult to visualize from existing data
and provide new ideas for unsolved problems (Wang et al., 2021b;
He et al., 2021). According to the data sources (using field data or
simulation results), data-driven methods can be divided into two
categories. Firstly, Wang et al. (2021b) tried to predict the pro-
duction performance of unconventional reservoirs by combination
of representative numerical model (MFHW in shale oil reservoirs)
and deep belief network (DBN) models. Xue et al. (2021b) estab-
lished a numerical model that can simulate three flow systems (i.e.,
shale matrix, stimulated reservoir volume (SRV), and hydraulic
fracture) to obtain the modeling data set, and further developed a
data-driven model by using the multi-objective random forest
method to forecast the shale gas production. Secondly, Han and
Kwon (2021) used the data from the Montney shale reservoir in
Canada and deep neural network (DNN) models to build a data-
driven model for predicting cumulative gas production. Vikara
et al. (2020) used Marcellus shale parameters and gradient boos-
ted regression tree (GBRT) algorithm to establish a data-driven
model to evaluate shale gas productivity. Mehana et al. (2021)
developed a data-driven model using Eagle Ford shale gas param-
eters and a new unsupervised machine learning method to quickly
and accurately predict and update the estimated ultimate recovery
(EUR) of unconventional gas wells. Liu et al. (2021) designed a
deep-learning-based algorithm for EUR evaluation of shale gas
wells based on EUR evaluation results of 282 wells in the WY shale
gas field. Fig. 5 summarizes the data-driven models for predicting
shale gas production.

However, the index system used in the data-driven models is
often incomplete. And the data processing approaches in the data-
driven models are different so that it is hard to determine whether
the processed data set and the established model are optimal. A
general and effective data processing method is significant and
required.

To fill this gap, this work develops an integrated framework for
shale gas production evaluation and prediction based on data-
driven models (Fig. 6). Firstly, a comprehensive system of domi-
nated factors was established, including four categories (i.e.,
geological factors, drilling factors, fracturing factors, and produc-
tion factors) and a total of 35 dominated factors. Based on field data,
the available factors can be determined based on the developed
dominated factors. Data processing workflow is proposed to ensure
the data quality, including missing value processing, correlation
analysis, outlier analysis, data standardization, and PCA, etc. Results
1663
based on different data processingmethods need to be compared to
determine the optimal data processing method suitable for the
basic data set. Data visualization is performed by considering two
different situations to determine the final data set. The shale gas
production evaluation model can be further developed to evaluate
the shale gas production level. Finally, the random forest algorithm
is used to establish the prediction model to quantitatively forecast
the shale gas production. The proposed shale gas well production
evaluation and prediction framework highlight the practical po-
tential in shale gas production prediction.

2. Dominated factor system

The dominated factors of the shale gas production are compli-
cated due to the complexities on shale gas evolution characteristics
(free gas, absorbed gas), production and operations (multi-well pad
with massively hydraulically fracturing, sharp decline of gas pro-
duction, frac hits), and multi-scale flow mechanisms (nanopores,
micro fractures, macro fractures, hydraulic fractures) in shale gas
formations (Lawal et al., 2013; Huang et al., 2019; Wang et al.,
2020a).

The dominated factors impacting shale gas production can be
divided into four categories, including geological factors, drilling
factors, fracturing factors, and production factors. It is inaccurate
and unreasonable by only considering partial factors for estimating
shale gas production. Thus, this work establishes a relatively
completed dominated factor system of shale gas production by
incorporating the full-cycle features (i.e., geological factors, drilling
factors, fracturing factors, and production factors) and a total of 34
dominated factors. The dominated factor system for shale gas
production developed in this work can be found in Fig. 7.

2.1. Geological factors

The geological factors directly and significantly affect the shale
gas production since they represent hydrocarbon reserves and the
ability of fluid flow in the porous media. The impact of geological
factors on production is complicated so that the relationship among
different geological factors needs to be identified. For instance,
organic matter (OM) and inorganic minerals are not totally inde-
pendent. Based on this principle, 15 geological factors are deter-
mined, including total organic carbon (TOC), vitrinite reflectance
(Ro), total gas content, Poisson's ratio, minimum horizontal



Fig. 5. Summary of data-driven models for shale gas production prediction.
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principal stress, rock brittle index, porosity, permeability, reservoir
thickness, filling degree, angle between the fracture and the
maximum horizontal principal stress, pressure gradient and
reservoir depth.

The TOC content affects both the gas saturation and the quality
of shale gas reservoirs, and it plays a key role in assessing the
production potential and the subsequent EGR techniques in shale
gas reservoirs (Wang et al., 2019). The lower limit of TOC content for
economic exploitation of shale gas reservoirs is about 2.5e3 wt%
(Bowker, 2007), and the limit of TOC content available for shale gas
reservoirs will become even lower with the technical advances.

There are two main mechanisms affecting shale gas production
by TOC. On one hand, shale gas is in-situ generated and stored in the
reservoirs. After shale gas is generated, there is almost nomigration
or the migration distance is extremely short. Thus, the hydrocarbon
generation potential and shale gas production may be higher under
higher TOC. For instance, theMarcellus Shale and Bakken Shale also
show high TOC (greater than 7 wt%) in specific zones (Bhattacharya
et al., 2016). On the other hand, TOC has strong effect on porosity
and pore structure (Song et al., 2019). OM-hosted pores are the
most prevalent pores in organic-rich shale (Wang et al., 2021c).
Song et al. (2019) analyzed the samples from different shale gas
reservoirs, and found that the presence of OM in shale strongly
enhances the storage capacity by increasing the specific surface
area and pore volume, which represents absorption storage ca-
pacity and free-gas storage capacity.

The thermal maturity and clay mineral content play an impor-
tant role in evaluating the storage capacity of shale gas reservoirs.
Shale samples with vitrinite reflectance (Ro) higher than 1% have a
greater surface area, which indicates that more micropores are
formed in the OM to further enhance shale storage capacity when
the shale maturity reaches the oil window level (Li et al., 2019).
Based on theMarcellus Shale andMahantango Formation, although
clay minerals have a bigger specific surface area, there is a negative
correlation between the storage capacity of clay minerals and shale
content (Ambrose et al., 2010), which may be attributed to the
accessibility of the pore space. Marcellus shale is a pore system
dominated by OM, and the OM content and shale storage capacity
decrease with the increase of clay minerals. Therefore, clay min-
erals show a negative effect on shale gas reserves when shale is rich
in OM.

Compared with TOC and organic maturity, the shale gas content
can intuitively reflect the upper limit of shale gas production. Shale
gas is composed of free gas, adsorbed gas and solution gas. The
solution gas may be merged into adsorbed gas since solution gas
1664
content is relatively quite limited (Ambrose et al., 2010). There are
still some difficulties in calculating the adsorbed gas content using
the previous models. The first principle methods and empirical
models are commonly applied to obtain the adsorbed gas content.
However, the first principle method is hard to fully consider the
complexity of the storage mechanism (Chen et al., 2017). Therefore,
the empirical models are the preferred choice. The Langmuir model
is the most commonly used method (Langmuir, 1918; Ross and
Bustin, 2007), and adsorption experiments are regarded as an
effective method to obtain Langmuir parameters.

However, these experiments are time-consuming since the
adsorption process within the microscale and nanoscale shale
pores is slow, and absorbed gas leakage during the coring process
affects the accuracy of the adsorption experiments and causes
testing errors (Chen et al., 2017). Besides, obtaining the shale
samples is expensive. These challenges lead to the difficulty in
determining the corresponding Langmuir parameters and the high
uncertainty in the evaluation of the adsorbed gas content. Thus,
desorption, isothermal adsorption, and logging interpretation
methods are often used to measure the total gas content roughly. If
the content of different types of shale gas can be calculated, the
shale gas production can be evaluated more accurately.

Natural fracture is a key factor that affects the migration accu-
mulation and production of shale gas. The natural fractures can
increase the reservoir connectivity and the accumulation of free
gas, improve the effective formation permeability, and finally in-
crease the cumulative gas production. The shale reservoir charac-
teristics in North America indicated that matrix permeability
influences gas production potential significantly. Furthermore, the
formation pressure coefficient is a key indicator reflecting the
preservation conditions (Wang et al., 2016; Pang et al., 2018), and
the high formation pressure coefficient is conducive to the shale gas
enrichment. The formation pressure coefficient will increase with
the increase of reservoir depth. Meanwhile, the rock near the
fractures or faults may occur plastic deformation and enhance the
sealing of the fractures or faults, inhibiting the escape of shale gas.

The large-scale natural fractures with good conductivity may
destroy the formation sealing properties and be unfavorable for
shale gas preservation. Filling degree and the angle between the
fracture and the maximum horizontal principal stress are impor-
tant factors for formation sealability. When the angle between the
maximum horizontal principal stress and natural fracture is closer
to 90�, the fracture generally remains closed, inhibiting the escape
of shale gas (Patil et al., 2017).

Large-scale hydraulic fracturing is often used in shale gas
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Fig. 7. The dominated factor system for shale gas production established in this work.
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reservoirs. The final fracturing performance is directly related to
rock properties such as rock brittleness and stress conditions
(Grieser and Bray, 2007). Poisson's ratio, rock brittleness index and
minimum horizontal principal stress can be used to quantify the
above properties (Bhattacharya et al., 2019). The content of brittle
minerals will affect the fracturing and the evolution of shale pores
and natural fractures. There is a certain internal connection be-
tween the OM and brittle minerals. And the correlation coefficient
between brittleness index and TOC is high (Yin et al., 2018),
demonstrating that the brittle minerals significantly impact shale
gas production.

The shale formation thickness will also affect the shale gas
production. High shale gas production is easier to be achieved for
thick shale reservoirs (Fan et al., 2020).

2.2. Drilling factors

The purpose of drilling is to form an effective channel between
shale gas formations and wellbore. Baihly et al. (2015) analyzed the
gas production of major shale gas reservoirs in the United States
and indicated that drilling factors can affect the initial gas pro-
duction of shale gas wells. The horizontal wellbore length, drilling
encountered rate of different sub-layers, and drilling length of
different sub-layers significantly affected the shale gas production.

As the horizontal wellbore length increases, the well-controlled
reserves and the stable production period are also enhanced.
Longer horizontal wellbore means bigger fracturing spacing and
weaker fracture interference if the number of fracturing perfora-
tions is constant. There exists an optimal length of horizontal
wellbore considering the drilling success rate and economic costs.

The reserves of different layers may be different for the same
shale gas reservoir. Thus, the drilling encountered rate and drilling
length of different sub-layers especially for gas-rich layers have
significant impact on shale gas production, which are the vital
factors to evaluate drilling quality and potential gas productivity.

2.3. Fracturing factors

The massively hydraulic fracturing is performed after drilling to
generate the fracture networks to allow gas flowing to the wellbore
1666
from the tight formations. The properties of fracturing networks
are tightly related to the shale gas production. Ten fracturing factors
are proposed to represent the effect of fracturing on shale gas
production, including fracturing stages, fracture half-length, frac-
ture spacing, SRV, effective stimulated reservoir volume (ESRV),
volume of fracturing fluids, volume of injected sand, fracturing
fluids flowback rate, leak-off volume of fracturing fluids, and
proppant properties.

The number of perforations can be used to approximatively
characterize the fracturing scale. Generally, more fracturing fluids
and sand need to be pumped for more perforations, and the final
fracturing scale will be larger. The SRV is often used to estimate the
range of the complex fracture networks (Cipolla andWallace, 2014;
Al-Rbeawi, 2020; Umar et al., 2021). SRV can be measured based on
microseismic maps while it cannot accurately reflect the effective
stimulated volume since the microseismic may not identify the
natural fractures (Eisner and Stan�ek, 2018). Thus, a new factor,
ESRV, is proposed to better describe the stimulated volume. Moos
et al. (2011) tried to estimate ESRV of shale gas reservoirs by geo-
mechanically modeling. The ultimate gas recovery, optimal fracture
length and fracture spacing can be evaluated after the ESRV is
determined. It can be also benefit of determining the percentage of
the effective fractures (Umar et al., 2021). However, the data
acquisition is limited and ESRV is hard to calculate so that SRV is
still often used to evaluate fracturing performance and recoverable
reserves without ESRV.

The hydraulic fracture half-length will affect the complexity of
the fracture networks so that reasonable fracture half-length can
enhance the gas production. Fracture spacing is also a significant
parameter influencing shale gas production. Wide fracture spacing
can only control partial shale reservoirs and resources. Tight frac-
ture spacing will cause fracturing interference, which may cause
difficulty in fracture initiation. Therefore, it is necessary to
reasonably design reasonable fracture spacing to maximize gas
productivity based on the specific formation properties of different
reservoirs.

The impact of fracture conductivity on gas production is sig-
nificant. The fracture conductivity is related to fracturing fluid
volume, injected sand volume, fracturing fluid flowback rate, leak-
off volume of fracturing fluids and proppant properties (e.g., sand-
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liquid ratio, sand strength). Although fracture conductivity shows
positive correlation to shale gas production, increasing fracture
conductivity will not increase the gas production significantly
when the conductivity is high enough. Thus, there exists optimal
fracture conductivity.
2.4. Production factors

Well pad is applied in shale gas reservoirs to reduce the cost of
drilling and fracturing. Generally, onewell pad is composed of six to
eight horizontal wells. Well spacing is about 300e500 m, causing
well interference or even frac hits. Horizontal wells are connected
through hydraulic fractures or natural fractures after frac hits, and
fracturing fluids from the child wells flow into the parent well,
increasing water production and significantly decreasing gas pro-
duction of the parent well. And the dynamic stress and pore
pressure may change the fracture networks, such as fracture
closure. After drilling and fracturing operations, shale gas well can
be opened for fracturing fluid flowback and production. Thus, it is
hard to evaluate shale gas production potential only using absolute
open flow rate, early gas production or average gas production due
to complicated flow mechanisms and special features of shale gas
reservoirs. The production time needs to be kept the same to
equally evaluate the gas production. Cumulative gas production
during the same production time was used as the measure of shale
gas production. Multiple factors are also required to represent the
gas production potential, such as initial gas production, average gas
production in the first year.

Since well interference especially fracturing interference im-
pacts the shale gas production a lot, the factors related to fracturing
interference cannot be ignored (Guo et al., 2022; Zhang et al., 2022).
The existing evaluation system hardly considers the fracturing
interference for shale gas prediction. The gas production impacted
by fracturing interference, impact degree, recovering degree of gas
production, and interference time are determined to evaluate the
effect of fracturing interference on shale gas production. However,
these field data may not be used directly and need to be processed.

Firstly, if the well receives multiple frac hits from different child
wells, new factor is required to reflect the impact of multiple frac
hits. The weight of individual frac hits can be estimated based on
the impacted gas production by different frac hits.

ai ¼
QFrachits�iPn

i¼1
QFrachits�i

(1)

where ai represents the weight of individual frac hits; and QFrachits-i
means the impacted gas production by any frac hits.

The total interference degree of gas production caused by frac
hits can be determined by

InterfFrachits¼
Xn
i¼1

ai � InterfFrachits�i (2)

where InterfFrachits is the total interference degree of gas production
caused by frac hits; and InterfFrachits-i denotes the interference de-
gree of gas production caused by any frac hits.

The total recovering degree of gas production caused by frac hits
can be characterized by

RFrachits¼
Xn
i¼1

ai � RFrachits�i (3)

where RFrachits means the total recovering degree of gas production
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caused by frac hits; and RFrachits-i shows the recovering degree of gas
production caused by any frac hits.

The total interference time of frac hits can be calculated by

tall ¼
Xn
i¼1

ti (4)

where tall is the total interference time of frac hits; and ti means the
time of any frac hits.

Furthermore, shut in is also a key factor for shale gas production
evaluation since shut in can be often observed for gas wells due to
frac hits, low gas production, or other reasons. Except for the ab-
solute shut-in time, the ratio of shut-in time to total production
time may also be considered for different wells.

3. Shale gas production evaluation framework

An integrated and improved production evaluation method is
developed for shale gas reservoirs, including the production level
evaluation model and production regression prediction model.

3.1. Data processing

The available field data is limited compared to the compre-
hensive evaluation system so that the factors covering the full cycle
of shale gas exploitation need to be obtained to ensure the evalu-
ation accuracy. The practical factors can be determined using the
field data of the A shale gas reservoir based on the developed factor
system. Data processing is required to improve the data quality,
such as the abnormal data and missing data.

Data processing methods mainly include missing value inter-
polation, data standardization, correlation analysis, outlier analysis
and principal component analysis (PCA). Firstly, missing value
interpolation is used to supplement the missing data. Secondly,
data standardization is applied to avoid the ignorance of some
parameters. Thirdly, spearman correlation analysis can be used to
provide a basis for outlier analysis and subsequent processing of the
modeling dataset. Finally, Mahalanobis distance method is used to
remove the abnormal data to improve data quality. Other compli-
cated data processing methods, such as PCA, are further used to
figure out whether the use of complicated data processing methods
can improve the modeling accuracy.

3.2. Shale gas production level evaluation model

The production evaluation is significant for making related
measures to enhance shale gas recovery. The unsupervised learning
algorithm (i.e., clustering algorithm) is used to develop the shale
gas production evaluation model since the corresponding produc-
tion level of individual well is not known before modeling. The
adopted factor system is important for evaluation results.

Firstly, two factor systems are established, including the whole
factors and related factors. Secondly, this work introduces a novel
factor system for modeling according the above-mentioned two
systems using the PCA. In this way, it can visualize the data, reduce
the model uncertainty. Thirdly, data visualization for cumulative
shale gas production is performed to show which factor system
achieves better performance. Fourthly, Kmeans algorithm is used to
cluster the data sets more suitable for modeling. Finally, KNN al-
gorithm is applied to develop the model for predicting shale gas
production levels based on the cluster analysis results. The princi-
ple of the Kmeans algorithm is shown in Fig. 8.

The clustering quality needs to be optimized by achieving minor
difference within the cluster and large difference outside the



Fig. 8. The principle of the Kmeans algorithm.

Fig. 9. The principle of the KNN algorithm.
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cluster. The distance from the sample point to the centroid of its
cluster can be used to evaluate the clustering quality, which can be
calculated by the specific parameters. Euclidean distance
(Danielsson, 1980) is equal to

dEuclideanðx;mÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � mÞ2
vuut (5)

where dEuclidean(x, m) is the Euclidean distance; n is the number of
samples in the cluster; xi is the sample points in the cluster; and m is
the cluster centroid.

Manhattan distance (Ouarda and Souad, 2022) can be calculated
by

dManhattanðx;mÞ¼
Xn
i¼1

ðjxi �mjÞ (6)

where dManhattan(x, m) is the Manhattan distance.
If the Euclidean distance is used, the cluster sum of squares (CSS)

(McKenna et al., 2014) of the distances from all sample points in a
cluster to the centroid can be expressed as

CSS ¼
Xm
j¼1

Xn
i¼1

�
xij � mj

�2
(7)

where m is the number of clusters; xij is the ith sample in the jth
cluster; and mj is the cluster centroid of the jth cluster.

Generally, minor CSS indicates good clustering. However, CSS is
hard to quantitatively evaluate the clustering quality since it will be
impacted by many factors. The silhouette coefficient is preferred to
assess the clustering (Wang et al., 2021a). The silhouette coefficient
for an individual sample is expressed as

s¼ b� a
maxða; bÞ (8)

where s is the silhouette coefficient; a is the average distance be-
tween sample and other samples in the same cluster; b is the
average distance between sample and all samples in the next
nearest cluster.

The range of silhouette coefficient is between �1 and 1. Best
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clustering performance can be achieved when s is equal to 1. The
number of clusters depends on the silhouette coefficient and
practical purposes. After the production levels of shale gas wells are
obtained by Kmeans algorithm, KKN approach can be used to
predict the production level. Fig. 9 shows the principle of the KNN
algorithm. The prediction results of production level can be helpful
for making targeted EOR measures.

3.3. Shale gas production prediction model

The regression and classification ability of non-integrated
models (e.g., linear regression and decision tree) are limited since
minor data fluctuation may lead to large deviations. Random forest
shows high accuracy and good stability, and the complexity of
random forest is also lower compared with XGBoost and neural
network. Therefore, the random forest is applied to develop the
regression prediction model of shale gas well production. The
schematic of the Random Forest approach can be found in Fig. 10.

Although there are some regression prediction models for pro-
duction prediction, there lacks standardized data processing pro-
cesses and methods, increasing the uncertainty of prediction
results and reducing the reliability of results. Thus, this work also
tries to response to these issues by performing different modelling.

Firstly, the data set obtained from the basic data processing
steps (missing value interpolation, correlation analysis, outlier
analysis and data standardization) is used as the benchmark for
modeling, using the random forest. Secondly, the data set pro-
cessed using the combination of the basic data processing steps and
Spearman correlation analysis results and PCA is used for modeling
and parameter adjustment. Finally, two modeling results are
compared to determine the optimal model as the regression model
to predict shale gas well production.

4. Application

The basic data are from the shale gas reservoirs in China. The
developed framework is used to evaluate and predict the shale gas
production.

4.1. Field data processing

Firstly, the cumulative gas production for 6 years are collected as
the evaluation factor of shale gas production. Secondly, the



Fig. 10. Schematic of the Random Forest approach.
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dominated factors are determined based on the developed factor
system and field data. Thirdly, data processing is conducted to
check and improve data quality. The results of Spearman correla-
tion analysis before outlier analysis are shown in Fig. 11 and the
correlation results should be checked. For instance, the shut-in time
and ratio of shut-in time to total production time may only affect
Fig. 11. Results of Spearma
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the cumulative production, and they have no correlationwith other
factors. Thus, the shut-in time and ratio of shut-in time to total
production time need to be removed from the relevant factors
when using the Mahalanobis distance method. Furthermore, TOC is
negatively correlated with porosity and brittleness index, which is
inconsistent with the Yin et al., (2018). Thus, TOC needs to be
n correlation analysis.



Fig. 12. Spearman correlation analysis after deleting outliers.

Fig. 13. Data visualization: (a) all factors for cumulative gas production, (b) the factors correlated with cumulative gas production based on Spearman correlation coefficient
analysis.

Table 1
Silhouette coefficients corresponding to clusters.

Number of clusters Silhouette coefficient

2 0.5373
3 0.4363
4 0.4148
5 0.3964
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eliminated from the related factors.
Then, the Mahalanobis distance method is further applied to

check the abnormal values of various factors. It is found that the
abnormal values continue to appear in some wells for multiple
times so that these wells can be deleted. Spearman correlation
analysis is performed again after deleting outliers (Fig. 12). The
correlation results of only few factors are changed after deleting
outliers compared with Fig. 11, indicating that the proposed data
processing method used in this work is reliable.
1670



Y.-W. He, Z.-Y. He, Y. Tang et al. Petroleum Science 20 (2023) 1659e1675

1671



Y.-W. He, Z.-Y. He, Y. Tang et al. Petroleum Science 20 (2023) 1659e1675
4.2. Data visualization

Firstly, the PCA is carried out for all factors (F1) and the factors
related to the target (F2) respectively. Two influencing factors (A
and B) characterizing the two kinds of factors are determined. Then,
the cumulative gas production of shale gas wells and the two
influencing factors are used for data visualization (Fig. 13). The data
dispersion is minor by using the influencing factor (B) (Fig. 13a and
b), indicating the clustering performance is also better (Fig. 13b)
and the modelling accuracy becomes higher.
4.3. Shale gas production level evaluation

The Kmeans algorithm is used to perform clustering for the F2.
The cumulative gas production is used as the classification evalu-
ation standard, and the silhouette coefficient is selected as the
clustering index. Firstly, the number of clusters is divided into 2 to 5
clusters, and the silhouette coefficients from 2 to 5 clusters are
shown in Table 1.

Fig. 14 shows the silhouette coefficient analysis for Kmeans
clustering on sample data from 2 to 5 clusters. Left figures are the
visualized clustered data for different clusters, and right figures are
the silhouette coefficient histograms for different clusters. The two
clusters show the highest average silhouette coefficients after
clustering and the number of samples in the cluster corresponding
to the low-production wells. Therefore, two clusters are preferred
and achieve high accuracy for shale gas wells with low production.
Although the average silhouette coefficients gradually decrease
with the increase of cluster number, the silhouette coefficients of
more than half of the data are still higher than the average value for
three and four clusters. Thus three or four clusters can be used if
low-production wells need to be investigated. For five clusters, the
average silhouette coefficients is further decreased, and the cluster
center difference between lower-middle and medium is minor so
that the recommended final cluster number is two to four clusters.
4.4. Shale gas production prediction

The KNN algorithm is used to predict the production level based
on the production level evaluation results.

Cross-validation. Cross validation is used to verify the stability
and generalization of the developed model to effectively avoid the
error caused by selecting different testing sets. The cross-validation
accuracy for two clusters, three clusters, four clusters are 99.09%,
97.23%, and 96.27% respectively. The accuracy of random testing set
(accounting for 20% data) for two clusters, three clusters, four
clusters reach to 100%, 96.42%, and 96.43%. It is obvious that the
validation accuracy for different clusters is very high since the shale
gas production level prediction model is established on the corre-
sponding production level evaluationmodel. New data can be input
to forecast shale gas production level after the production levels are
determined.

Shale gas production regression prediction. The data set after
basic data processing is regarded as the basic data set and directly
used for modelling and parameters adjustment (without consid-
ering correlation and using PCA) to ensure the accuracy (Baseline).
Other complicated data processing steps are divided into three
categories according to whether the correlation and PCA are
considered. The first one is considering correlation and not using
PCA (Score1). The second one is using both correlation analysis and
Fig. 14. Silhouette coefficient analysis for Kmeans clustering on sample data: (a) clustered da
data visualization with three clusters, (d) silhouette coefficients for three clusters, (e) cluste
clustered data visualization with five clusters, (h) silhouette coefficients for five clusters.
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PCA (Score2). The third one is using the PCA while the Spearman
correlation analysis is not performed (Score3). Three data pro-
cessing methods are used for modeling and parameter adjustment
respectively. The accuracy of the corresponding models is
compared with Baseline, and the optimal model is selected as the
regression model.

Two indicators (MSE and R2) are regarded as the evaluation
indexes during parameter adjustment (Oke et al., 2020). MSE can
reflect whether the model is fitted with the correct value (Eq. (10)),
and R2 shows whether the model is fitted with enough information
to capture the data quality (Eq. 11).

MSE¼1
z

Xz
i¼1

ðyi � byiÞ2 (9)

whereMSE is themean squared error; z is the number of samples in
the test set; yi is the actual value of the sample label in the test set;
and byi is the predicted value of the sample label in the test set.

R2 ¼1�

Pz
i¼0

ðyi � byiÞ2
Pz
i¼0

ðyi � yÞ2
(10)

where R2 is the fitting-quality coefficient; and y is the average
sample labels in the test set.

The optimal model is established using the factors related to
cumulative gas production, and data set is processed using PCA to
reduce the error caused by data noise and collinearity. The optimal
models based on MSE and R2 are the same (Table 2). Data pro-
cessing methods may be different for different data sets so that
three data processing methods are required to obtain the optimal
one.

The optimal model is used for cross validation. The R2 and MSE
equal 83.07% and 0.0078. 41 wells are randomly selected to predict
cumulative gas production using the optimal regression model. The
prediction results are shown in Fig. 15. The R2 is 92.8% which in-
dicates the prediction results are accurate and can be used for cu-
mulative gas production prediction of shale gas wells.

5. Conclusions

This work develops a novel shale gas production evaluation
framework, including dominated factor system of shale gas pro-
duction, data visualization and data processing methods as well as
production prediction model to evaluate shale gas well production
more accurately. Field application is performed based on the shale
gas reservoirs in China using the proposed evaluation framework.

(1) The shale gas production evaluation framework is developed
to evaluate shale gas production qualitatively and quantita-
tively, including dominated factor system, data processing
workflow, data visualization, production evaluation and
prediction model.

(2) A comprehensive dominated factor system for shale gas
production is developed by incorporating the full-cycle fea-
tures (i.e., geological factors, drilling factors, fracturing fac-
tors, and production factors) and introducing the new
indicators related to frac hits and well shut in, improve the
accuracy of data-driven models.
ta visualization for two clusters, (b) silhouette coefficients for two clusters, (c) clustered
red data visualization with four clusters, (f) silhouette coefficients for four clusters, (g)



Table 2
MSE and R2 after parameter adjustment.

Cases Evaluation index Cross-validation Optimal parameters

MSE R2 Number of trees Maximum depth Minimum samples split Minimum samples leaf Maximum features

Baseline MSE 0.0125 0.5111 49 14 2 1 20
Baseline R2 0.0124 0.5510 111 13 2 2 20
Score1 MSE 0.0150 0.4563 71 13 11 4 8
Score1 R2 0.0151 0.4556 70 7 11 4 8
Score2 MSE 0.0078 0.8307 91 17 2 1 4
Score2 R2 0.0079 0.8307 91 12 2 1 4
Score3 MSE 0.0121 0.4348 101 18 2 1 6
Score3 R2 0.0126 0.4583 91 9 2 1 6

Fig. 15. The prediction results of cumulative gas production using the optimal
regression model.
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(3) A data processing workflow is proposed including basic data
processing steps (missing value interpolation, data stan-
dardization, correlation analysis, and outlier analysis) and
complicated data processing methods (Spearman correlation
analysis and PCA) to improve data quality and modeling
accuracy.

(4) Field application indicates that evaluation accuracy of shale
gas production level exceeds 95%. Forty-one wells are
randomly to predict cumulative gas production using the
optimal regression model and the R2 achieves 92.8%, which
indicates the prediction results are accurate and can be used
for shale gas production prediction.

The shale gas production evaluation framework can quickly
evaluate and predict the shale gas production, effectively improve
the development efficiency of shale gas reservoirs and reduce the
development cost.
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