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a b s t r a c t

How to fit a properly nonlinear classification model from conventional well logs to lithofacies is a key
problem for machine learning methods. Kernel methods (e.g., KFD, SVM, MSVM) are effective attempts to
solve this issue due to abilities of handling nonlinear features by kernel functions. Deep mining of log
features indicating lithofacies still needs to be improved for kernel methods. Hence, this work employs
deep neural networks to enhance the kernel principal component analysis (KPCA) method and proposes
a deep kernel method (DKM) for lithofacies identification using well logs. DKM includes a feature
extractor and a classifier. The feature extractor consists of a series of KPCA models arranged according to
residual network structure. A gradient-free optimization method is introduced to automatically optimize
parameters and structure in DKM, which can avoid complex tuning of parameters in models. To test the
validation of the proposed DKM for lithofacies identification, an open-sourced dataset with seven con-
ventional logs (GR, CAL, AC, DEN, CNL, LLD, and LLS) and lithofacies labels from the Daniudi Gas Field in
China is used. There are eight lithofacies, namely clastic rocks (pebbly, coarse, medium, and fine sand-
stone, siltstone, mudstone), coal, and carbonate rocks. The comparisons between DKM and three
commonly used kernel methods (KFD, SVM, MSVM) show that (1) DKM (85.7%) outperforms SVM (77%),
KFD (79.5%), and MSVM (82.8%) in accuracy of lithofacies identification; (2) DKM is about twice faster
than the multi-kernel method (MSVM) with good accuracy. The blind well test in Well D13 indicates that
compared with the other three methods DKM improves about 24% in accuracy, 35% in precision, 41% in
recall, and 40% in F1 score, respectively. In general, DKM is an effective method for complex lithofacies
identification. This work also discussed the optimal structure and classifier for DKM. Experimental re-
sults show that ðm1;m2;0Þ is the optimal model structure and linear SVM is the optimal classifier.
ðm1;m2;0Þ means there are m1 KPCAs, and then m2 residual units. A workflow to determine an optimal
classifier in DKM for lithofacies identification is proposed, too.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Abbreviations

The abbreviations used in this article are summarized in Table 1
below.
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1. Introduction

Lithofacies identification is important in reservoir character-
ization since it is an important prerequisite for subsequent sedi-
mentary facies analysis and reservoir modeling (Dong et al., 2016;
Shen et al., 2019). Well logs are practical data for lithofacies iden-
tification because lithofacies usually have direct or indirect in-
fluences on the signals of geophysical logs. However, porosity,
permeability, oil and gas bearing properties, bedding, and fractures
all affect logging responses besides lithology (Mansouri-Daneshvar
et al., 2015; H Wang et al., 2021; Dong et al., 2022b). Hence,
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Table 1
Term abbreviations used in this work.

Full name Abbr. Full name Abbr.

Deep kernel method DKM Randomized coordinate shrinking RACOS
Principal component analysis PCA Soft version of max Softmax
Kernel PCA KPCA K-nearest neighbor KNN
Support vector machines SVM Linear SVM linear-SVM
Kernel Fisher discriminant KFD Radial basis function SVM RBF-SVM
Multi kernel SVM MSVM Random forest RF
Multi KFD MKFD Gradient boosting decision tree GBDT
Linear discriminant analysis LDA Naive Bayes NB
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lithofacies identification is a typical nonlinear classification prob-
lem, especially in the case of complex lithology, and nonlinear
features extraction and use are quite significant for lithofacies
identification. Nowadays, machine learning methods have drawn
wide attention in addressing the problem of lithofacies identifica-
tion (Liu et al., 2020b; Sun et al., 2020). Among them, kernel
methods are a kind of methods that employ kernel functions to
extract and use nonlinear features.

For a nonlinear classification problem using conventional logs, it
is linearly inseparable in the original space (Phillips and Abdulla,
2021). However, a proper nonlinear mapping into a higher-
dimensional nonlinear feature space can make this problem line-
arly separable according to the Cover's theorem (Cover, 1965). The
key in the process of raising dimension lies in determining the
nonlinear mapping function. Unfortunately, it is quite difficult to
obtain a proper explicit nonlinear mapping function (Yuan et al.,
2019). Nevertheless, to address the determination problem of
explicit mapping function, kernel methods use the kernel function
to indirectly calculate the inner product between all pairs of data
samples in the high-dimensional feature space to avoid explicit
calculation of nonlinear feature mapping, which is called “kernel
trick” (Dong et al., 2016, 2020a, 2020c; Shi et al., 2020). Since their
introduction in the mid-1990s, kernel methods have been proven
successful for many machine learning problems (Yan et al., 2012;
QS Wang et al., 2021).

Commonly used kernel methods can be divided into single-
kernel methods (e.g., support vector machines, SVM; relevance
vector machine, RVM; kernel Fisher discriminant, KFD; kernel
principal component analysis, KPCA) and multi-kernel methods
(e.g., multi SVM, MSVM; multi-kernel RVM, MKRVM; multi KFD,
MKFD).

(1) Applications in lithofacies identification by single-kernel
methods

SVM maps original samples into a higher dimensional feature
space by kernel function, and a hyperplane classifier is built to
identify lithofacies (Tharwat and Hassanien, 2019b; Al-Najjar and
Pradhan, 2021; Chen et al., 2021; Farouk et al., 2021). It shows su-
periority during the disposal of small samples, nonlinearity, and
high-dimensional classification problems (Liu et al., 2020b; Xiao
et al., 2020). For the crystalline rocks from Chinese Continental
Scientific Drilling Main Hole (CCSD-MH), the classification accuracy
of SVM is about 5% higher than that of back propagation neural
network (BPNN) (Deng et al., 2017). Different from SVM, RVM in-
troduces a Bayesian approach that provides a posterior probability
output (Zhang et al., 2017; Mohebian et al., 2018; Zhu et al., 2021),
which avoids determination of penalty parameter and needs few
vectors (Liu et al., 2020a). RVM is as accurate as SVM, but RVM is
1412
faster than SVM (Tipping, 2001; Liu et al., 2020a).
Improved SVM algorithms are widely used in lithofacies iden-

tification as well, such as particle swarm optimization SVM (PSO-
SVM), proximal SVM (PSVM), and least square SVM (LS-SVM). PSO-
SVM is an SVMmethod where its parameters are optimized by PSO
algorithm (Qu et al., 2020; Li et al., 2021; Xu et al., 2021). Consid-
ering the complexity of volcanic reservoirs and the influence of
alterations in the Songliao Basin of China, the PSO-SVM method
was used for lithological identification and obtained a high accu-
racy (Pan et al., 2022). Different from SVM, PSVM constructs parallel
planes to approximate data classes, which has the advantages of
reducing memory usage and computing time (Malik and Mishra,
2016). PSVM was used to distinguish between limestone and
shale obtained by Barnett shale gas. Compared with the standard
SVM, PSVM can be better used for 3D seismic lithofacies classifi-
cation (Zhao et al., 2014). LS-SVM is a special form of SVM that
considers equality type constraints (Suykens and Vandewalle,
1999). LS-SVM algorithm is suitable for solving nonlinear prob-
lems with small samples, and the speed of LS-SVM is faster than
that of SVM (Liu et al., 2021).

As a kernel method of dimension reduction, KFD can map
samples in a high-dimensional feature space into a low-
dimensional feature space with the largest category difference for
classification by kernel trick (Shi et al., 2020). In the lithology
identification of complex lithology in Junggar Basin of China, KFD
obtained an over 3% improvement compared with QDA (quadratic
discriminant analysis), which is a common nonlinear method of
linear discriminant analysis (LDA) (Dong et al., 2016).

Besides classification and regression, kernelmethods can also be
used to extract features. Kernel PCA is an improved principal
component analysis (PCA) by kernel tricks (Anowar et al., 2021; TH
Wang et al., 2021; Yu et al., 2021). KPCA is promising in decoupling
the nonlinear correlation of variables (well logs) (Ge et al., 2014;
Heidary, 2015).

Single-kernel methods are commonly used. They will choose an
optimal nonlinear mapping by determining optimal kernel pa-
rameters. How to choose proper kernel function and set kernel
parameters are important since they can significantly influence
stability, generalization, and accuracy of kernel methods (Ortiz-
García et al., 2009; Lin et al., 2017; Tharwat, 2019).

(2) Applications in lithofacies identification by multi-kernel
methods

The nature of the feature space corresponding to a single kernel
decides some deficiencies of single-kernel methods, such as
instability (Lanckriet et al., 2004). The diversity of logging param-
eters against lithology exacerbates instability of single-kernel
methods in classification problems (Lan et al., 2021). To handle
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the aforementioned problems, multi-kernel methods, which
combine effective features from different feature spaces, are
introduced to enhance the stability and accuracy of categorical ef-
fects (Gu and Liu, 2016). In recent years, more and more researches
related to multi-kernel learning have been published, such as the
extension of SVM, RVM, KFD, etc. (Areiza-Laverde et al., 2020).

MSVM integrates the nonlinear models of SVM in different
feature spaces, which makes it more flexible and stable than a
single-kernel SVM model (He et al., 2016). For the facies classifi-
cation in the Hugoton and Panoma gas fields of USA, MKRVM was
proposed and showed a better prediction performance than SVM
and RVM. SVM and RVM had similar accuracy, while MKRVM
showed about 2% improvement compared with them (Liu et al.,
2020a). MKFD can fully extract useful information in different
feature spaces through multiple KFD (Dong et al., 2022a). For the
carbonate reservoirs of Zagros Basin in Iraq, the lithofacies identi-
fication experiments show MKFD outperforms KFD with an over
10% increase in accuracy, precision, and recall (Dong et al., 2022b).
Note that MSVM has a better performance than single-kernel SVM,
but the computing speed is relatively slow (Tang et al., 2019). Time
efficiency is a common issue for multi-kernel methods.

The reviews above mentioned indicating that the ability of an
algorithm to extract nonlinear features is significant to improve the
accuracy of lithofacies recognition. In many cases, multi-kernel
methods can obtain a better lithofacies identification, especially
in complex reservoirs. This indicates a powerful ability of extracting
nonlinear log features for distinguishing lithofacies is still needed.
Therefore, this work proposes a novel method named as deep
kernel method (DKM) to deeplymine and utilize nonlinear features
for identifying lithofacies, which aims to improve kernel methods
by artificial neural networks. DKM uses a residual neural network
module to implement deep learning; employs a set of KPCAmodels
to extract nonlinear features; manipulates the extracted nonlinear
features to predict lithofacies labels by a classifier. In order to verify
the effectiveness of thismethod in lithofacies identification, a series
of comparative experiments were carried out using DKM and
auxiliary kernel methods (KFD, SVM, MSVM). In addition, the
optimal structure and classifier of DKM will be discussed, too.

2. Principle of deep kernel method (DKM) for lithofacies
identification

2.1. DKM model for lithofacies identification based on ResNet
structure and KPCA

Conventional well logs labelled by lithofacies descriptions will
be randomly divided into training (e.g., 80%) and test (e.g., 20%)
data as shown in Fig. 1a and b. The training data is used to train a
DKM model while the test data is used to validate the prediction
ability of the built model.

DKM consists of two parts, namely a feature extractor (Fig. 1c)
and a classifier (Fig. 1d).

The feature extractor is composed of a series of kernel principal
component analysis (KPCA)models, which arem1 KPCAmodels,m2
KPCAmodels with residual units, andm3 KPCAmodels in sequence.
This feature extractor aims to extract nonlinear features which help
distinguish different lithofacies by nonlinear mapping in different
scaled feature spaces. Compared with the ResNet, KPCA is used to
extract features by kernel tricks instead of full fully connected layer
or convolution layer since KPCA is more suitable for dealing with
nonlinear feature extraction. There is a skip connection (Orange
1413
arrow line in Fig. 1c) for each KPCA model in the residual unit
structure. For the i� th (between 2nd and m2 � th) KPCA model in
the residual unit structure, the input is a combination of the out-
puts of ði�1Þ � th and ði�2Þ � th KPCAmodels rather than only the
output of ði�1Þ � th KPCA. The skip connection can ensure an
effective deep feature extractor even though there are failed KPCA
models (Zhang et al., 2021). This deep feature extraction structure
allows information to flow between layers, preserving information
useful for accurate classification and preventing information loss
due to dimensional changes. The residual unit structure is
expressed by Eq. (1).

HðXÞ¼X þ FðX; siÞ (1)

where X is the input; FðX; siÞ is the kernel feature extractor KPCA;
HðXÞ is the output of each residual unit and the input of the next
residual unit; si is the parameter in the i� th kernel.

In this work, the classifier can be any classifier rather than
softmax classifier in ResNet. In artificial neural networks, the error
back propagation, chain rule and gradient-based optimization are
commonways to optimize parameters in networks. However, these
will not work in DKM since the component of DKM is non-
derivable. Hence, a gradient-free optimization method (random-
ized coordinate shrinking, RACOS) is introduced to handle this
problem, which is presented in Section 2.4. In the parameter
optimization of DKM, negative accuracy is adopted as loss function.
The parameters to optimize include the numbers of KPCA (m1, m2,
and m3), the feature dimension of each layer, the parameters in
classifier, and parameter si in each KPCA model. According to the
principle of minimum loss, the parameters will be updated itera-
tively to make the DKM model with a minimum loss.
2.2. Feature extractor (KPCA) in DKM

The main idea of KPCA is to project original data into high-
dimensional feature space through nonlinear mapping, and then
perform linear dimensionality reduction in the high-dimensional
space. It is proven to be an effective method with a good theoret-
ical foundation to handle nonlinear classification problems.

By nonlinear mapping F, each sample in the low dimensional
input space X will be mapped as a sample in the high-dimensional
feature space (Rq), where X ¼ ðX1;X2;…;XpÞðXi 2Rn;i ¼ 1;2;…;pÞ.

F :

�
Rn/Rq q � n
X/FðXÞ (2)

As shown in Fig. 2, the combination of a proper nonlinear
mapping by kernel functions and dimension reduction by PCA can
make data separable. This makes KPCA able to work in the feature
extractor of DKM.

In KPCA, the data has been centralized, which means that the
data has zero mean, and the covariance matrix can be calculated by
Eq. (3) (Sch€olkopf et al., 1998).

C¼1
p

Xp
j¼1

F
�
Xj
�
FT�X j

�
(3)

where p is the number of samples. The eigenvector formula is
constructed to find non-zero eigenvalue l and eigenvector v2Y as
displayed in Eq. (4).



Fig. 1. Schematic diagram of the deep kernel method (DKM) for lithofacies identification.

Fig. 2. Schematic diagram of KPCA.
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lv¼Cv (4)

According to Mercer's condition (Mercer, 1909), the following
kernel function can be obtained:
1414
k
�
X i;Xj

� ¼ FTðXiÞF
�
Xj
� ¼ FðXiÞ$F

�
Xj
�

(5)

Because any feature vector in space Y can be linearly repre-
sented by all samples in the space, namely
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v¼
Xp
i¼1

aiFðXiÞ (6)

Then Eq. (4) can be transformed into

l
Xp
i¼1

aiFðXiÞ¼
1
p

Xp
j¼1

F
�
Xj
�
FT�Xj

�Xp
i¼1

aiFðXiÞ (7)

Multiply FT ðXkÞ in both sides of Eq. (7), Eq. (8) can be obtained.
Combine Eq. (3) with Eq. (8), and then Eq. (9) will be obtained.

l
Xp
i¼1

aiF
TðXkÞFðXiÞ¼

1
p

Xp
i¼1

0
@FTðXkÞ

0
@Xp

j¼1

F
�
Xj
�
FT�Xj

�1AaiFðXiÞ
1
A

(8)

lKa¼1
p
K2a (9)

where K is the kernel function matrix of p� p dimension; a is the
column vector containing a1; a2; …; ap. Eq. (9) can be further
simplified as

pla¼Ka (10)

Then l and a can be determined by solving Eq. (10).
For a new sample Xjðj ¼ 1;2;…;pÞ, its principal component after

nonlinear dimension reduction will be

vT ,F
�
Xj
�¼ Xp

i¼1

ai

h
FðXiÞT ,F

�
Xj
�i

(11)

In this process, the determination of nonlinear mapping is a
difficult problem. However, KPCA cleverly employs kernel function
to implement a nonlinear mapping and avoids determining the
explicit nonlinear mapping function (Esmaeili et al., 2020). At
present, Gaussian kernel function is the most commonly used
kernel function, as shown below.

k
�
Xi;Xj

� ¼ exp
�
� s

��Xi � Xj
��2� (12)

where s is the parameter that determines how much the input
variable is scaled in a learning algorithm.

Replace the inner product with a kernel function, then Eq. (11)
becomes

vT ,F
�
Xj
�¼ Xp

i¼1

aik
�
Xi;X j

�
(13)

By default, FðXÞ has been centralized in the above derivation
process. If it is not centralized, diagonalized Kc should be used to
replace K for the above solution process (Li et al., 2020). The
expression for Kc is
1415
Kc ¼K � lpK � Klp þ lpKlp (14)

where lp is the p� p matrix, and each of its elements is 1
p.

2.3. Classifier in DKM

In this work, eight representative methods in Fig. 3 are selected
as candidate classifiers for DKM, namely soft version of max
(Softmax), conventional machine learning methods (linear
discriminant analysis, LDA; Naive Bayes, NB; K-nearest neighbor,
KNN; linear SVM, linear-SVM), kernel method (radial basis function
SVM, RBF-SVM) and ensemble learning methods (random forest,
RF; gradient boosting decision tree, GBDT). The performances of the
eight classifiers in DKMwill be compared. Aworkflow to determine
an optimal classifier will be provided in Section 4.3.

(1) Softmax maps the output of multiple neurons to the interval
of (0,1), which makes a multi-classification transform into a
probability comparison problem;

(2) LDA aims tomaximize the inter-classmean andminimize the
intra-class variance. This means that the data is projected on
a low dimension, the projection points of the same type of
data are as close as possible, and the center points of the
projection points of different types of data are as far as
possible;

(3) NB is one of the top 10 data mining algorithms (Zhang et al.,
2020). It is a classification method based on Bayes' theorem
and characteristic condition independence hypothesis. For a
given training set, the joint probability distribution of input
and output is first learned based on the independent
assumption of feature conditions. Then, for a given input x,
the output y with the maximum posteriori probability is
obtained based on this model using Bayes' theorem;

(4) KNN only determines the classification of the samples to be
divided according to the category of the nearest one or
several samples. KNN has the advantages of simplicity and
small recognition error (Pablo et al., 2016);

(5) The basic idea of SVM classification is to use maximum in-
terval for classification (Yin and Yin, 2016; Hou et al., 2020).
The application condition of linear-SVM is that when sam-
ples are linearly separable in the feature space, a hyperplane
can be found that can completely divide samples of different
classes. The application condition of RBF-SVM is when the
sample is nonlinearly separable in the feature space. The data
is mapped to the higher dimensional feature space by kernel
function to make the sample linearly separable in the higher
dimensional space, and then the classification hyperplane is
constructed (Tambe et al., 2018);

(6) RF is an ensemble algorithm composed of many decision
trees based on Bagging idea (Qiao and Chang, 2021; Zhou
et al., 2022). Sub-datasets are generated by random sam-
pling with replacement and random features selection, and
the predicted result on the strength of votingmechanism (Xu
and Sun, 2018). On account of the above basic ideas, RF is
more robust to noise and has better generalization ability
(Yates and Islam, 2021);



Fig. 3. Schematic diagram of candidate classifiers for DKM.
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(7) GBDT integrates multiple weak classifiers into strong classi-
fiers using the boosting approach (Liang et al., 2020). GBDT
has been widely used in many fields due to its strong inter-
pretation and good application effect.
2.4. Parameter optimization in DKM

Gradient-based optimization algorithms (SGD, Adam, etc.) can
effectively solve most neural network models which support the
success of deep learning (Wu et al., 2021). Due to the basis of
gradient, the model is required to be differentiable. However, the
proposed DKM model is a generalization of a neural network and
the characteristics of differentiable may not be guaranteed. Hence,
a gradient optimization method will not be the first choice since it
may only obtain local optimum. Gradient-free optimization
method based on “smart” sampling is a good choice since it does
not depend on derivatives and can reach a global optimization (Liu
et al., 2015). The fewer requirements on the nature of the problem
make it more suitable for DKM. In this work, a global gradient-free
optimization algorithm, called randomized coordinate shrinking
(RACOS) (Yu et al., 2016), will be employed to determine optimal
parameters in kernels, classifier, and layer structure. RACOS is good
1416
at addressing high-dimensional complex optimization problems.
Its optimal parameter selection range keeps the shape of hyper-
cube, which enables it to quickly find a suitable solution in the
high-dimensional searching space.

Algorithm 1 is the process of optimization algorithm in DKM. X
is the solution space of DKM parameters. The initial solution set is
sampled from UX , namely fx1; /; xmg, and the current optimal
solution ~x is obtained. The global optimal solution is found through
T times of iterative updating. Each cycle in T contains m times
resampling. Firstly, m samples in solution set are divided into
positive and negative samples by function sign½at �f ðxiÞ� according
to the selected threshold at . The positive samples are expressed as
htðxÞ ¼ þ 1, and the negative samples are expressed as htðxÞ ¼ �
1. Then m samples will be resampled. A classifier ht needs to be
found tomake the positive regionDht

¼ fx2XjhtðxÞ¼þ1g induced
by it as close to region Dat ¼ fx2Xjf ðxÞ� atg through continuous
learning. The new samples are generated by sampling from the
uniform distribution UDht

on the positive class region Dht
with

probability l and from the uniform distribution UX on the whole
solution space X with probability 1� l through the process of
Sampling ðht ;lÞ. Finally, the samples obtained by resampling will be
recorded, and the best DKM parameters will be found.
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Algorithm 1. Optimization algorithm in DKM.
1417



(continued).
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The classifier ht satisfying the above is not unique. RACOS pro-
vides an algorithm, referring to lines 7e24 in Algorithm 1, where Bþt
and B�t are the positive and negative sample set divided by the
previously selected threshold at . In DKM, only the continuous case
is considered. For the number of model layers in DKM parameters,
the method of rounding after optimization is adopted. The sche-
matic diagram of two-dimensional continuous process is shown in
Fig. 4, where m ¼ 6 is selected and the yellow area on the x plane
representsDht

. Six sample points are sampled from thewhole space
and the current optimal solution is recorded. Then the current
optimal solution needs to be constantly updated after T iterations
to find the global optimal solution. The first step is shown in Fig. 4a,
the threshold a1 is selected to divide the samples into four positive
samples and two negative samples. Bþt and B�t are positive and
negative sample set, respectively. Then find a classifier ht, andmake
the positive region Dht

¼ fx2XjhtðxÞ¼þ1g induced by it as close
as possible to region Dat ¼ fx2Xjf ðxÞ� atg. Initially, Dht

is the
entire space and xþ is randomly selected from the positive samples.
Sincedx2B�t s:t:htðxÞ ¼ þ 1, so enter the while loop for the second
step, as shown in Fig. 4b. Here, k ¼ 1 and x� ¼ xa� are randomly

selected. Since xð1Þþ � xað1Þ� , r1 is randomly selected in the interval

ðxð1Þþ ; xað1Þ� Þ, so the positive sample region is Dht
¼ Dht

�
fx2X

��xð1Þ > r1g. Since x2B�t s:t:htðxÞ ¼ þ1 still exists, step 3 is

performed, as shown in Fig. 4c. Select k¼ 2 and x� ¼ xb� at random.

Since xð2Þþ � xbð2Þ� , r2 is randomly selected in the interval ðxbð2Þ� ;xð2Þþ Þ,
so the positive sample region is Dht

¼ Dht
� fx2X

��xð2Þ < r2g. The
next step is the resampling process, by sampling ðht ; lÞ, x1 can be
resampled from the positive sample region with a probability of l
and from the whole space with a probability of 1� l. After
updating a sample point, repeat steps 2 to 3 until all six sample
1418
points are updated. The above is an iteration process. Step 4 is to
reselect the threshold, as shown in Fig. 4d. Ensure that a1 >a2, and
then repeat the above iteration process. Throughout the process,
the best sample points to date will be recorded. RACOS algorithms
are constantly learning and shrinking. Sampling from any region in
a high-dimensional space is not easy. The RACOS algorithm's
shrinking region is always a hyperrectangle, making sampling
straightforward and efficient.
2.5. Workflow of lithofacies identification by DKM

Theworking principle of DKM is shown in Fig. 5, where Nc is the
number of iterations. fxi; yig is the input data, where xi is a vector
composed of conventional logging curves, and yi is lithofacies label
code. Then all log data is standardized by ðxij � meanðxiÞÞ=stdðxiÞ,
where xij is the i� th log of j� th sample, meanðxiÞ and stdðxiÞ are
the average value and standard deviation of the i� th log. Note
deep and shallow latero logs are standardized after logarithm
transforming. Then, the data is divided into blindwell data, training
set, and test set, and then the model is trained with the training set.
If DKM performs well in test set and blind well, it can be applied to
lithology prediction of new wells.
3. Lithofacies identification in the Daniudi Gas Field (DGF) of
Ordos Basin, China

In this work, all methods are programmed by Python and all
lithofacies identifications and calculations are conducted on an
Intel (R) Core (TM) computer with 2.4 GHz CPU and 64 GB of RAM.



Fig. 4. Schematic diagram of two-dimensional continuous process.

Fig. 5. Flow chart of lithofacies identification by DKM.
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3.1. Geologic settings and dataset used

An open-sourced dataset from the Daniudi Gas Field, China (Xie
et al., 2018) is selected to test the proposed method for lithofacies
identification. The Daniudi Gas Field is located in the Yishan slope
of Ordos Basin as shown in Fig. 6a. The Yishan slope lies in the east
of asymmetric syncline, which is the main body of the Ordos Basin.
It is the focus of oil and gas exploration and development in the
basin. The target formation is the Upper Paleozoic reservoirs, which
are of low porosity and permeability and formed in a fluvial-deltaic
depositional environment. There are clastic rocks, coal (C), and
carbonate rock (CR). Based on the detrital grain size classification of
the oil industry standard of China, the clastic rocks can be sub-
divided into six kinds of lithofacies, namely pebbly sandstone
(PS) > 1 mm, coarse sandstone (CS) 0.5e1 mm, medium sandstone
(MS) 0.25e0.5 mm, fine sandstone (FS) 0.01e0.25 mm, siltstone (S)
0.005e0.05 mm, mudstone (M) < 0.005 mm (Xie et al., 2018).

In this work, seven wells are used, namely D2, D4, D6, D9, D13,
D17, and D23. For each well, seven conventional logs (GR, CAL, AC,
DEN, CNL, LLD, and LLS) are measured as shown in Fig. 6b. The
lithofacies labels in different depths of each well are given based on
core analysis reports provided by Huabei branch of Sinopec Group
(Xie et al., 2018). The sections of D2, D4, D6, D9, D13, D17, and D23
with core descriptions are 208m,156m, 421m, 51m, 337m,180m,
and 123 m, respectively. In total, there are 915 samples in the
dataset used. 80% of the samples will be randomly selected to be as
training data to build a DKM model for lithofacies identification
while the other 20% will be as the test data to test the validation of
the built model. Meanwhile, the section between 2682 m and
2850 m of Well D13 will be used for blind well test.



Fig. 6. Location of the study area (from Dong et al., 2020b) and a well profile with logs and lithofacies labels.
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3.2. Well log responses of lithofacies

The range of well log data in the study area is shown in Table 2.
The mean and standard deviation represent average values and
fluctuations in the data, respectively. The minimum and maximum
values correspond to the upper and lower limit of value, respec-
tively. 25% quantile, median, and 75% quantile are the corre-
sponding quartiles in the cumulative probability distribution of log
data, which can reflect the centralized distribution and central
tendency of data. If the median value is closer to 25% quantile than
to 75% quantile, the values tend to be near small values and left-
skewed, and vice versa.

Cross plots of well logs against lithofacies in the study area are
shown in Fig. 7. Probability density curves of logs against different
lithofacies are shown on the up and right sides of the cross plots.
Probability density curves are obtained by kernel density method.
The separations among one probability density curve of one well
log and others indicate that this lithofacies is easy to be distin-
guished from others (Dong et al., 2022b). For example, the density
of coal is lowest compared with other lithofacies, which makes AC
high and DEN low. As shown on the right side of Fig. 7a, the peak of
AC corresponding to coal is obviously separated from the others,
which indicates AC is suitable for identifying coal from other lith-
ofacies. Similarly, DEN of coal formation is lower than other
Table 2
Statistical characteristics of conventional logging data in the study area.

Variables GR CAL AC DEN CNL log (LLD) log (LLS)

Unit API cm ms/m g/cm3 % log(U$m) log(U$m)
Mean 109.6 24.2 229.9 2.48 20.6 1.99 1.96
Std 55.1 2.5 54.8 0.32 14.7 0.63 0.54
Min 24.3 21.4 159.0 1.21 0.4 1.06 1.03
25% quantile 78.0 22.7 204.4 2.51 10.9 1.69 1.66
Median 95.1 23.5 213.8 2.58 15.8 1.85 1.84
75% quantile 133.1 25.0 228.1 2.63 24.4 2.03 2.01
Max 771.3 44.8 608.6 2.97 92.8 5.00 4.42
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lithofacies. On the upper side of Fig. 7c, the peak corresponding to
coal is also far from the other peaks of lithofacies. Due to joints in
coals, CNL values of coal is commonly high as shown on the upper
side of Fig. 7c. While drilling, the CAL will be enlarged to some
extent as shown on the upper side of Fig. 7b due to relatively loose
structure of the coal formation. Besides coal usually has the char-
acteristics of high resistivity as shown in Fig. 7d. Hence, these logs
can be used to predict coal.

For carbonate rocks, characteristics of low CNL and high DEN can
be observed in Fig. 7c. Besides characteristics of low AC can be
observed on the right side of Fig. 7a, too.

For clastic rocks, mudstone is different from other clastic rocks.
Typically, it has the characteristics of high GR and high CNL. The
small grain size of mudstone makes radioactive elements absorbed
in mudstone which subsequently leads to high GR values. CNL
measures the hydrogen content index in rocks. Bound water in
mudstone makes it high CNL values. For other clastic rocks, even
though there are some separations in GR as shown on the upper
side of Fig. 7a, there are still a lot of overlaps among these proba-
bility density curves of each lithofacies. Identifying clastic rocks
with different grain sizes is important for reservoir characteriza-
tion, analyses of sedimentary facies, and evaluation of fracture
density. It is necessary to distinguish these clastic rocks (PS, CS, MS,
FS, S). However, the overlaps make this prediction problem a
complex nonlinear issue. Hence, extraction and utilization of
nonlinear log features against of lithofacies is a difficult problem to
solve for the lithofacies identification in the study area.

3.3. DKM model for lithofacies identification

A general framework of DKM is provided in Fig. 1. Typically, m3
will be set small even as zero as discussed in Section 4.2. Hence,m3
is set as zeros here. The analyses in Section 4.3 show that linear-
SVM is better than other classifiers. Therefore, linear-SVM was
selected as the optimal classifier for DKM.

The parameters used in the DKM model for lithofacies identifi-
cation are shown in Table 3, where m1 represents the number of



Fig. 7. Cross plots of well logs against lithofacies labels. (b)e(d) share the same legend with (a).

Table 3
Optimization of parameters in DKM.

Tuned parameters Search range Optimal parameters setting

n1 100e500 340
n2 500e1000 978
m1 0e10 2
m2 0e10 4
SVM-kernel linear linear
C 0e150 137
KPCA-kernel rbf rbf

Table 4
The optimal parameter s of each kernel in DKM.

No. 1 2 3 4 5 6

s 0.27 0.27 0.26 0.25 0.26 0.30
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KPCA layers without residual structure, n1 represents the feature
dimension of the first m1 � 1 layers of KPCA layers without residual
structure, m2 represents the number of KPCA layers with residual
structure, n2 represents the feature dimension of KPCAwith residual
structure and the m1 � th layer of KPCA layers without residual
structure, C represents the penalty coefficient in the SVM model,
SVM-kernel represents the kernel function in the SVM model, and
KPCA-kernel represents the kernel function in the KPCA module.

Iterative optimization of kernel parameter s in Eq. (12) is
required in DKM, and the search range is set within [0,0.3]. The
optimal parameter s of each kernel in DKM are shown in Table 4. All
parameters with search range mentioned in Tables 3 and 4 were
optimized by RACOS optimization algorithm. Compared with deep
neural network, DKM uses a gradient-free optimization method to
determine parameters automatically, which solves the problem of
parameter tuning due to a large number of parameters.
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3.4. Comparisons of identification by DKM and other kernel
methods

The confusion matrices of SVM, KFD, MSVM, and DKM for the
test data are displayed in Fig. 8, where the ordinate is the real label
category and the abscissa is the predicted label category. Green
squares and text indicate correctly classified results, and red
squares and text indicate incorrectly classified results. Accuracy is a
common and intuitive evaluation index. Generally, the higher the
accuracy, the better the classifier. The formula is expressed as
(TP þ TN)/(TP þ TN þ FP þ FN), where TP, FP, TN, and FN respec-
tively represent the number of positive samples correctly predicted,
the number of negative samples incorrectly predicted, the number
of negative samples correctly predicted and the number of positive
samples incorrectly predicted. TPþ TN is the sum of the numbers in
the green squares, TPþ TNþ FPþ FN is the total number of tests, so
accuracy means the proportion of all correctly predicted samples in
the classification model to the total test samples (XX Wang et al.,
2021). The accuracy with error lines of different models is shown
in Fig. 9, which is the result of random training 20 times for each
model. The height of the column in the figure represents the



Table 5
Training time of optimal models.

Model Time

SVM 20800

KFD 20200

MSVM 80200

DKM 40500

Fig. 8. Confusion matrices by SVM, KFD, MSVM, and DKM. The labels are pebbly sandstone (PS), coarse sandstone (CS), medium sandstone (MS), fine sandstone (FS), siltstone (S),
mudstone (M), coal (C), and carbonate rock (CR).

Fig. 9. Accuracy of lithofacies identification by different kernel methods. The bar
height and error line represent the mean accuracy and standard deviation of 20 re-
peats, respectively.
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average accuracy of the test set, and the length of the error line
represents the fluctuation of the mean square error of the test set. It
can be seen that the average accuracy of SVM, KFD, MSVM, and
DKM is 77%, 79.5%, 82.8%, and 85.7%, respectively. The difference
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between training accuracy and testing accuracy can reflect the
generalization ability of the classifier. The 12.8% gap between
training and test accuracy of DKM is smaller than 16.4% ofMSVM, so
DKM has a better generalization ability (about 3.6%) than the
common multi-kernel method MSVM. SVM, KFD, and MSVM are
the optimal model obtained by grid search optimization algorithm,
and DKM is the optimal model obtained by RACOS optimization
algorithm. The running time of the optimal model is shown in
Table 5, which shows that DKM is twice faster than MSVM. In
conclusion, considering accuracy, generalization ability, and
training time, DKM has the best comprehensive performance.

To further test the built DKM model, a blind well test is carried
out using Well D13, in which there are five lithofacies, namely
pebbled sandstone (PS), coarse sandstone (CS), medium sandstone
(MS), fine sandstone (FS), and carbonate rock (CR). As shown in
Fig. 10, the predicted lithofacies by DKM, KFD, MSVM, and SVM are:
(1) 2682.1e2686.4 m, prediction of DKM is consistent with rock



Fig. 10. Lithofacies identification of Well D13 by DKM, SVM, KFD and MSVM methods.

Table 6
Quantitative evaluation of different methods on a blind well test.

Model Accuracy, % Macro-precision, % Macro-recall, % Macro-F1 score, %

DKM 76 82 81 78
SVM 42 28 29 28
KFD 52 47 40 38
MSVM 39 29 32 29
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cores, SVM and MSVM misidentify fine sandstone (FS) as siltstone
(S), KFD misidentifies medium sandstone (MS) as coarse sandstone
(CS); (2) 2686.4e2704.8 m, prediction of DKM is basically consis-
tent with rock cores, with only two misidentification errors, that is,
fine sandstone (FS) and coarse sandstone (CS) are misidentified as
medium sandstone (MS). Due to the complexity of lithology, SVM,
KFD, and MSVM misidentified some sandstones (MS) and fine
sandstone (FS) as other lithologies; (3) 2704.8e2778.2 m, the rec-
ognitions of DKM and MSVM are relatively good, SVM did not
recognize pebbled sandstone (PS), and KFD incorrectly identified
medium sandstone (MS) as pebbled sandstone (PS); (4)
2778.2e2787.3 m, all models failed to identify fine sandstone (FS),
and SVM also incorrectly identified coarse sandstone (CS) as
pebbled sandstone (PS); (5) 2787.3e2849.9 m, DKM predicted well,
SVM, KFD, and MSVM incorrectly identified fine sandstone (FS) as
medium sandstone (MS). Carbonate rock (CR) is well recognized by
these methods. In general, DKM has a good capability of lithofacies
identification, although some lithofacies identification is wrong.
From the results in Fig. 10, fine sandstone is more difficult to
identify than other lithologies and is easily misclassified asmedium
sandstone (MS) and siltstone (S). In general, most of the predicted
lithofacies by DKM are consistent with core observation; DKM
outperforms the other three methods (KFD, MSVM, and SVM); KFD
and MSVM perform better than SVM.

Four quantitative metrics are used to evaluate the predictions of
different methods on the blind well, which are accuracy, macro-
precision, macro-recall, and macro-F1 score. (1) Accuracy is
(TP þ TN)/(TP þ FP þ TN þ FN), which is an overall evaluation of all
lithology categories and is the most commonly used performance
indicator; (2) Precision is TP/(TPþ FP), which measures the accuracy
of each lithology predicted by the model. Macro-precision is the
average of precisions corresponding to each lithology as positive
category; (3) Recall is TP/(TP þ FN), which measures the model's
ability to find positive samples for each lithology. Similarly, macro-
recall is the average of each recall corresponding to each lithology;
(4) F1 score is (2 � precision � recall)/(precision þ recall), which
takes both precision and recall into account, and can reflect the ac-
curate and complete capability of a predictionmodel.Macro-F1 score
is also the average of F1 scores corresponding to different lithologies.
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As shown in Table 6, DKM is obviously superior to the other
three kernel methods in this blind well test. Its accuracy, macro-
precision, macro-recall, and macro-F1 score is 76%, 82%, 81%, and
78%, respectively. Compared with the other three kernel methods
in the blind well test, there are improvements of about 24%, 35%,
41%, and 40% in accuracy, macro-precision, macro-recall, and
macro-F1 score, respectively.
4. Discussions

The lithology label is important for the following lithofacies
identification by machine learning methods. To build a stable and
accurate model of lithofacies identification, more attention should
be paid to quality control of labelled well log data. In this work, the
lithology labels of well logs used are obtained based on core anal-
ysis from Huabei branch of Sinopec Group, which ensures the
labeled data reliable.
4.1. Why is DKM suitable for identification problems of complex
lithofacies

Lithofacies identification is usually a nonlinear classification
problem, especially in the complex cases. Typically, multi-kernel
methods can perform better than single-kernelled methods. This
indicates that more powerful ability to deal with nonlinear features
is helpful to distinguish lithofacies. Hence, deeply mining nonlinear
features for distinguishing lithofacies is still needed to be further
strengthened. DKM is a combination of kernel feature extraction
and deep learning. From the aspect of theory, the addition of deep
learning can enhance the ability of addressing nonlinear features of



Fig. 11. Schematic diagram of model structures.

Fig. 12. Accuracy with error lines for different model structures.
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lithofacies. This was proven in the lithofacies identification in this
work, too. The outperformance of DKM compared with other
common kernel methods indicates that DKM is suitable for iden-
tification problems of complex lithofacies.
1424
In general, DKM has the following advantages: (1) Compared
with deep neural network, DKM uses a gradient-free optimization
method to automatically optimize parameters and structure, which
can avoid complex tuning of parameters in models; (2) Residual
units ensure DKMperformswell in deepmining lithofacies features
by reducing information loss using skip connections; (3) DKM in-
herits the advantages of kernel methods in nonlinear feature
extraction; (4) DKM is an improvement of both neural networks
and kernel methods, which let neural networks not limited to
neurons, and kernel methods with the ability of deep mining in
neural networks.

4.2. Analyses on structures in DKM

Different structures of DKM will have certain impacts on the
prediction results, so it is very important to choose a suitable
structure. In this work, four structures for DKM are considered as
shown in Fig. 11. Fig. 11a shows the structure of ðm1;m2;m3Þ, which
is composed ofm1 � 1 KPCA layers with n1 dimensions, them1 � th
KPCA layer with n2 features, m2 layers of KPCA residual units with
dimension n2, and m3 KPCA layers with dimension n3. Fig. 11b
shows the structure of ðm1;m2; 0Þ, which is composed of m1 � 1
KPCA layers with n1 dimensions, the m1 � th KPCA layer with n2
features, and m2 layers of KPCA residual units with dimension n2.
Fig. 11c shows the structure of ð0;m2;m3Þ, which is composed ofm2



Fig. 13. Accuracy of lithofacies identification by different classifiers. The bar height and error line represent the mean accuracy and standard deviation of 20 repeats, respectively.

Table 7
Training time of different classifiers.

Classifier Time

Softmax 40600

LDA 30500

Naive Bayes 503900

KNN 305300

Linear-SVM 40500

RBF-SVM 602300

Random forest 50400

GBDT 1504200
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layers of KPCA residual units with dimension 7, andm3 KPCA layers
with dimension n3. Fig. 11d shows the structure of ð0;m2;0Þ, which
is composed of m2 layers of KPCA residual units with dimension 7.

Theoretically, KPCA feature extraction and residual module can
extract nonlinear features well, but different combinations have
different effects on the model. Therefore, we transform and
combine them into four different structures to explore which
combination can better improve the model accuracy and which
module has a significant impact on model prediction.

Each model structure was randomly trained 20 times. Fig. 12
shows the experimental results of different model structures. It
can be seen that ðm1;m2;0Þ is the optimal structure, on average, the
accuracy of the test set is 85%. According to the model ð0;m2;0Þ, it
can be seen that the extracted information containing only residual
structure is not sufficient, and the model has the problem of under-
fitting. Compared with model ð0;m2; 0Þ, model ðm1;m2;0Þ added
feature extraction module before residual module, and the average
accuracy of test set was 19.5% higher, indicating that adding sepa-
rate KPCA extraction module before residual structure and
increasing feature dimension can improve feature extraction ac-
curacy without losing original information. The average accuracy of
model ðm1;m2;0Þ andmodel ðm1;m2;m3Þ on the test set is 85% and
71.3%. It can be seen that after residual module extraction, if the
dimensional-reduction KPCA module is added, effective informa-
tion will be lost, resulting in reduced classification accuracy. The
comparison between model ðm1;m2;m3Þ (71.4%) and model
ð0;m2;m3Þ (69.5%) shows that the dimension enhancement before
residual plays a key role in better feature extraction, while the re-
sidual plays a role of information supplement. Residual can effec-
tively reduce information loss and improve the final prediction
accuracy through information transfer across layers.
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4.3. Analyses on classifiers in DKM

Based on Section 4.2, the optimal structure ðm1;m2;0Þ is
selected. In this Section, eight classifiers are selected to analyze the
optimal classifiers for DKM in lithofacies identification. For each
method, experiments using randomly selected training data are
repeated 20 times. An optimal classifier for DKM should have high
accuracy, good generalization ability, simplicity, and stability. The
high accuracy means that the classifier has a high accuracy in test
data. The good generalization ability means there is a small gap
between accuracies of training and test data. The simplicity means
the classifier has fewer parameters to determine and needs less
time to predict. The stability means that the classifier has small
standard deviation.

Accuracy of each classifier is shown in Fig. 13 while the
consumed time is listed in Table 7.

As shown in Fig. 13, the accuracies of the five classifiers (KNN,
84.3%; linear-SVM, 85.7%; RBF-SVM, 85.7%; random forest, 84.8%;
GBDT, 81.7%) are all more than 80% while those of Softmax (65.4%),
LDA (67.8%) and Naive Bayes (50.3%) are all less than 70%. From the
aspect of accuracy, Softmax, LDA and Naive Bayes will not be
selected as the optimal classifier even though they are all simple
and less time consuming.

In the five rest classifiers (KNN, linear-SVM, RBF-SVM, random
forest, and GBDT), GBDT is most time consuming (15’42’’); the ac-
curacy gap between training and test data is highest; the accuracy
of GBDT is relatively low. Hence, GBDT will not be the optimal
classifier either.

For the remaining four methods (KNN, linear-SVM, RBF-SVM,
random forest), gaps between accuracies of training and test data
are 15.0%, 12.5%, 12.8%, 14.4%, respectively. The generalization
abilities of linear-SVM and RBF-SVM are better than those of KNN
and random forest.

Accuracy standard deviations of KNN, linear-SVM, RBF-SVM and
random forest are 2.6%, 2.4%, 2.3%, 2.8%, respectively. The stabilities
of prediction of linear-SVM, RBF-SVM are a little better than those
of KNN and random forest.

The consumed time of KNN, linear-SVM, RBF-SVM, and random
forest is 3’53’’, 4’5’’, 6’23’’, and 5’4’’. They are between 3’ and 7’. The
speed efficiencies of KNN, linear-SVM are a slightly better than RBF-
SVM and random forest.

Except speed efficiency, RBF-SVM and linear-SVM perform
similarly and best in accuracy of the eight classifiers. Noted that
linear-SVM is simpler than RBF-SVM. According to Occam's Razor
principle, the simpler the classifier selected, the better (Zah�alka and
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�Zelezný, 2011). Hence, from this aspect, linear-SVM is more suitable
for being the classifier in DKM than RBF-SVM. Because linear-SVM
is also faster than RBF-SVM. Therefore, linear-SVM is finally
selected as the classifier for DKM.

From the analyses abovementioned, aworkflow to determine an
optimal classifier can be summarized: (1) choose a series of
candidate classifiers; (2) remove classifiers with low accuracy; (3)
remove classifiers with high standard deviations of accuracy or bad
generalization ability; (4) choose a simpler classifier with high
speed as the optimal classifier for DKM. According to this workflow,
an optimal classifier can be determined. It is not unique, which
depends on the series of candidate classifiers.

Analyzing the advantages and disadvantages of different clas-
sifiers can give some hints to determining a good classifier for DKM.
For example, linear-SVM has many advantages as a classifier in
DKM since it’s simple, fast, of good generalization ability, and so on.
It canworkwell inmost cases and it is recommended as classifier in
DKM. However, if geologists want to improve DKM further, the
workflow abovementioned to find an optimal classifier for DKM
from a series of candidate classifiers by comparison experiments is
needed.

4.4. Which are important parameters in DKM

Table 3 lists the parameters used by DKM, among which the
most important parameters are n2, m2, and C, where n2 represents
the feature dimension of KPCA with residual structure, m2 repre-
sents the number of KPCA layers with residual structure, C repre-
sents the penalty coefficient in the SVM model. A proper n2 can
map features from lower dimensions to higher dimensions in a
linearly separable state, making it easier to classify categories, and
in three dimensions it is shown that different categories can be
divided by plane. m2 controls the number of layers of extracted
features with residual structure. A small number of layers makes
extracted features insufficient, while a large number of layers
makes extracted features more abstract. C is the penalty parameter
in the Linear-SVM classifier. If the value of C is set large, SVM can
better find the decision boundary of all training points, but it will
make the training time of the model longer. If the set value of C is
smaller, the SVM decisionwill be simpler, but the training accuracy
will be reduced. C has a significant impact on the classifier, so it will
affect the performance of DKM. In this paper, parameters n2, m2
and C are optimized to improve the performance of the DKMmodel
and the accuracy of kernel methods for lithology identification.

4.5. Drawbacks and future work

It should be noted that DKM still has some issues to be
addressed.

(1) In terms of parameter optimization, DKM may encounter
difficulties in global optimization. Selecting an appropriate
set of kernel parameters can improve model performance.
We choose RACOS optimization algorithm, which can
maintain a certain accuracy and has the advantage of high
speed in high-dimensional feature space, but it may
converge to a local minimum if the number of iterations is
not enough, so it is not the best optimization method, and
adopting a better optimization method in the future is the
focus of research.

(2) In terms of the model feature extraction structure, we con-
ducted comparative experiments and selected the optimal
model structure. However, the KPCA feature extraction
module of each layer uses a single kernel, so the model can
try to use multiple kernels in the future to further improve
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the model generalization ability and improve the model
performance.

(3) In terms of residual structure, only the model depth is
considered, and the model width can be increased in the
future to further improve the model performance.

5. Conclusions

In this paper, a deep kernel method (DKM) combining deep
learning and a kernel method is proposed to improve lithofacies
recognition. DKM adopts the gradient-free optimization method to
automatically adjust parameters, which solves the problem of
parameter tuning due to a large number of parameters and can
quickly establish the lithofacies recognition model. To verify the
effectiveness of this method in lithofacies identification, a series of
comparative experiments were carried out using DKM and auxil-
iary kernel methods (KFD, SVM, MSVM). The optimal structure and
classifier of DKM are also discussed. The following conclusions can
be drawn:

(1) DKM (85.7%) outperforms SVM (77%), KFD (79.5%) and
MSVM (82.8%) in accuracy. DKM has a better generalization
ability (3.6%) than the commonly used multi-kernel method
MSVM.

(2) DKM is about twice faster than that of MSVM, which has the
best accuracy in the commonly used kernel methods (KFD,
SVM, MSVM).

(3) ðm1;m2;0Þ is the optimal model structure which is
composed of m1 � 1 KPCA layers with n1 dimensions, the
m1 � th KPCA layer with n2 features, and m2 layers of KPCA
residual units with dimension n2. After the input data,
improving the feature dimension through KPCA and then
adding residual module has a significant influence on
improving the accuracy.

(4) Linear-SVM is the optimal classifier recommended for DKM
in most cases. A workflow to determine an optimal classifier
is proposed.

The future model can be further studied in kernel feature
extraction structure and parameter optimization method to
improve DKM.
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