
lable at ScienceDirect

Petroleum Science 20 (2023) 1788e1805
Contents lists avai
Petroleum Science

journal homepage: www.keaipubl ishing.com/en/ journals /petroleum-science
Original Paper
Interpretable machine learning optimization (InterOpt) for
operational parameters: A case study of highly-efficient shale gas
development

Yun-Tian Chen a, Dong-Xiao Zhang a, b, c, *, Qun Zhao d, De-Xun Liu d

a Eastern Institute for Advanced Study, Zhejiang, 315200, China
b Department of Mathematics and Theories, Peng Cheng Laboratory, Guangdong, 518055, China
c National Center for Applied Mathematics Shenzhen (NCAMS), Southern University of Science and Technology, Guangdong, 518055, China
d Research Institute of Petroleum Exploration and Development, CNPC, Beijing, 100083, China
a r t i c l e i n f o

Article history:
Received 2 June 2022
Received in revised form
10 November 2022
Accepted 31 December 2022
Available online 2 January 2023

Edited by Jia-Jia Fei

Keywords:
Interpretable machine learning
Operational parameters optimization
Shapley value
Shale gas development
Neural network
* Corresponding author. Eastern Institute for Advan
China.

E-mail address: dzhang@eias.ac.cn (D.-X. Zhang).

https://doi.org/10.1016/j.petsci.2022.12.017
1995-8226/© 2023 The Authors. Publishing services b
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable
machine learning, and is demonstrated via optimization of shale gas development. InterOpt consists of
three parts: a neural network is used to construct an emulator of the actual drilling and hydraulic
fracturing process in the vector space (i.e., virtual environment); the Sharpley value method in inter-
pretable machine learning is applied to analyzing the impact of geological and operational parameters in
each well (i.e., single well feature impact analysis); and ensemble randomized maximum likelihood
(EnRML) is conducted to optimize the operational parameters to comprehensively improve the efficiency
of shale gas development and reduce the average cost. In the experiment, InterOpt provides different
drilling and fracturing plans for each well according to its specific geological conditions, and finally
achieves an average cost reduction of 9.7% for a case study with 104 wells.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

In recent years, the issue of highly-efficient shale gas develop-
ment has received widespread attention. Petroleum engineers
usually design drilling and fracturing plans based on experience or
design of experiments (DOE) in practice. DOE is a method to study
the relationship between multiple variables via experiments.
Although this practice-based method has improved the recovery
rate and economic benefits to a certain extent, the cost of iterative
optimization remains high. In addition, the inability to perform
multiple drilling and fracturing experiments with different opera-
tional parameters at the same location further limits the applica-
tion of DOE. In order to improve the economic benefits of shale gas
development, a feasible method to optimize the operational pa-
rameters is to: (1) build a virtual environment that reflects real-
world scenarios; (2) analyze the impact of different operational
ced Study, Zhejiang, 315200,
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parameters based on the environment; and (3) optimize the dril-
ling and fracturing plans of different wells in consideration of
specific geological conditions. However, many challenges exist in
the above three steps/tasks, as shown in Table 1.

In terms of constructing a virtual environment that reflects real-
world scenarios for optimization algorithms to run on, the con-
ventional method is to simulate the underground physical field and
the drilling and fracturing process (Asala et al., 2017b; Cipolla et al.,
2009; Guo et al., 2014; Mi et al., 2014; Shen et al., 2016; Sun et al.,
2015; Yao et al., 2013). However, the computational cost of nu-
merical simulation is high, and optimization of parameters based
on simulations is extremely time-consuming.

In terms of feature impact analysis, researchers have utilized
manymethods to determine themost important features (i.e., main
controlling factors), such as sensitivity analysis (Wang et al., 2019),
correlation analysis (Guo et al., 2017; Luo et al., 2019), and inter-
section diagram (Li et al., 2021). Although thesemethods are simple
and easy to implement, they can only provide the global main
controlling factors and cannot analyze the influence of different
features in a specific single well (i.e., local interpretation). The main
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Table 1
Challenges of conventional methods to optimize operational parameters.

Tasks Conventional methods Challenges

Virtual environment
construction

Numerical simulations (Cipolla et al., 2009; Sun et al., 2015; Yao et al., 2013) High computational cost

Feature impact analysis Global interpretation methods (Guo et al., 2017; Li et al., 2021; Luo et al., 2019; Wang
et al., 2019)

Cannot evaluate each well according to specific
conditions
Cannot consider the interaction between multiple
features

Cross-validation based methods (Wang and Chen, 2019) High computational cost

Operational plan
optimization

Visualization (Wang and Chen, 2019) and trend graph (Luo et al., 2019) Limited to low dimensions
Genetic algorithms (Zhao et al., 2020) and digital twin-based design of experiments
(Shen et al., 2021)

Low optimization efficiency
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controlling factors of different wells may vary greatly in practice,
and the shortcomings of each well are not identical, which in-
dicates that different wells require different optimization plans. In
addition, it is difficult for existing methods based on sensitivity or
correlation to consider the interaction between multiple features.
For example, if the correlation between the amount of quartz sand
used in fracturing and the production is counted, a negative cor-
relation is usually found. This leads to the incorrect conclusion that
quartz sand is not helpful to increasing production. This misleading
phenomenon is resultant from the fact that petroleum engineers
will adopt different drilling and fracturing plans for wells with
different geological conditions. Indeed, engineers tend to use more
quartz sand to increase expected production for wells with poor
geological conditions (but the final production is still low). More-
over, they reduce the quartz sand in consideration of cost for the
wells that are expected to be highly productive. Therefore, to
objectively evaluate the impact of each feature, compared with
traditional correlation or sensitivity methods, the interaction be-
tween all features (e.g., geological conditions) should be considered
comprehensively. Cross-validation (e.g., RFECV (Wang and Chen,
2019)) is an attempt to comprehensively consider the interaction,
but it is essentially a traversal algorithm and is extremely
computationally-expensive. For instance, RFECV repeatedly trains
110 different neural networks to analyze 11 features in the exper-
iment (Wang and Chen, 2019). Consequently, an urgent need exists
to find a feature impact analysis method that can not only deter-
mine the shortcomings of each well, but also comprehensively
consider the interaction between all features.

In terms of operational parameters optimization, extant litera-
ture is mainly based on visualization (Wang and Chen, 2019) or
trend graph (Luo et al., 2019) to identify the trend of target features
under different combinations of main controlling factors, and to
find the optimal combination. Due to the limitation of the drawing
dimension, the above methods can only optimize no more than
three factors at the same time, and their essence is to traverse all
possible combinations of the selected main controlling factors,
which is inefficient. Recently, some studies have used genetic al-
gorithms (Zhao et al., 2020) and digital twin technology (Shen et al.,
2021) to optimize production. Although the genetic algorithm can
optimize multiple features simultaneously, it cannot effectively
determine the optimization direction, which results in low opti-
mization efficiency. Digital twin-based optimization is essentially a
DOE for the digital world, and does not take advantage of efficient
optimization algorithms in machine learning. The challenge in this
step is to optimize all adjustable operational parameters simulta-
neously, and to improve the optimization strategy to avoid
traversing the solution space.

Considering the aforementioned problems, a salient question is:
are there any optimization methods that are able to customize
operational parameters of each well according to their specific
1789
geological conditions (local interpretation), and comprehensively
consider the interaction between all features (including geological
and operational parameters), but do not rely on the
computationally-expensive traversal algorithm?

To answer this question, this study proposes the interpretable
machine learning optimization (InterOpt) algorithm to customize
optimal operational parameters at the single well level. The major
characteristics and advantages of InterOpt include the following.

� In order to reduce the computational cost of simulation, a neural
network-based emulator is constructed as the surrogate model
in InterOpt. Neural networks can effectively find complex
mapping relationships among variables, which have become a
powerful tool for establishing surrogate models and are widely
used in petroleum engineering, such as sweet point searching
(Tahmasebi et al., 2017; Tang et al., 2021), production prediction
(Kalantari-Dahaghi et al., 2015; Liu et al., 2020; Niu et al., 2022;
Song et al., 2020; Vikara et al., 2020), lithology identification
(Kang et al., 2021; Rogers et al., 1992), supply-chain optimiza-
tion (Asala et al., 2017a, 2019), well log analysis (Chen and
Zhang, 2020a; Luo et al., 2022; Zhang et al., 2018), etc. Mean-
while, a large amount of data has been generated and stored in
shale gas development, which forms a solid foundation for
training data-driven algorithms. Therefore, a neural network-
based emulator is able to mimic or imitate real-time behaviors
of shale gas development with low cost and high speed.

� Interpretable machine learning is utilized to analyze the specific
impact of all features in each well, which is also the basis for
InterOpt to find the operational parameters to be optimized (i.e.,
the shortcomings of each well). Interpretable machine learning
includes model-based methods and model-agnostic methods
(Molnar, 2020). Model-based methods often adopt models with
interpretable ability (e.g., decision tree) (Huang et al., 2007).
Although these methods are effective, they are only applicable
to certain specific machine learning models. Model-agnostic
methods have no requirements for the model to be explained,
which offers high flexibility. In addition, there are global inter-
pretation (Alvarez Melis and Jaakkola, 2018; Chen et al., 2018;
Shwartz-Ziv and Tishby, 2017; Zhang et al., 2019) and local
interpretation (Kim et al., 2018; Liang et al., 2021; Ribeiro et al.,
2016), as well. The global methods are similar to sensitivity or
correlation analysis, and are based on an overall understanding
of features, which is not suitable for single well optimization. In
contrast, local methods can evaluate the specific contribution of
a feature under different feature combinations (i.e., the inter-
pretability for each sample). InterOpt adopts a model-agnostic
local interpretation method based on Shapley value (Aumann
and Hart, 2002; Lundberg and Lee, 2017) to analyze the
impact of geological and operational parameters on the average
cost of shale gas wells. It is worth mentioning that the Shapley
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value method evaluates the impact of different features from
local to global (i.e., from the single well to the whole block).
Therefore, it can not only evaluate the feature impacts in the
overall sample, but it can also determine the shortcomings of
each well and optimize the operational parameters. Further-
more, since the Shapley value method uses the emulator based
on the neural network for analysis, it contains all variables and is
capable to comprehensively consider the interaction between
all features, which is another advantage over conventional
methods.

� The solution space is huge since all adjustable features (i.e.,
operational parameters) are simultaneously optimized, and it is
unrealistic to find the optimal parameters by traversal algo-
rithms (e.g., visualization methods, trend graph methods, and
cross-validation methods). In order to reduce the computational
cost of the optimization process, InterOpt utilizes covariance-
based ensemble randomized maximum likelihood (EnRML) for
optimization, in which the optimal parameters are determined
by iterative optimization without traversing the whole solution
space.

InterOpt can not only comprehensively consider the interaction
between features, but it can also evaluate the feature impact of
single wells and optimize the operational parameters with low
computational cost, which is a feasible way to improve the eco-
nomic benefits of shale gas development. This paper contains five
sections. Section 2 introduces the details of InterOpt. Section 2.1
proposes a neural network-based emulator. Section 2.2 presents
the interpretable machine learning method used to analyze the
feature impact. In section 2.3, InterOpt uses the EnRML to optimize
the operational parameters according to the specific condition of
each well. Section 3 includes the experiment results. Finally, the
conclusion and discussion are given in section 4 and section 5,
respectively.

2. Methodology

InterOpt includes three parts: (1) a neural network-based
emulator that models the mapping relationship between geolog-
ical parameters, operational parameters, and targets (e.g., average
cost); (2) feature impact analysis that uses interpretable machine
learning to determine the main controlling factors for each well;
and (3) operational parameters optimization that obtains the
optimal drilling and fracturing plan according to the specific
Fig. 1. Core steps of interpretable machi
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geological conditions of each single well. The three core steps of
InterOpt are shown in Fig. 1.

2.1. Neural network-based emulator

In order to project the real-world physical quantities into vector
space, an emulator is constructed to mimic the mapping relation-
ship between different features in shale gas development. Fig. 2
illustrates the process of transforming real-world problems into
vector space. InterOpt uses a fully connected feedforward neural
network (Eq. (1)) to build the emulator of the real world:

y¼ f ðxÞ¼ s
�
wm/s

�
w3s

�
w2s

�
w1xþ b1

�
þ b2

�
þ b3

�
/þ bm

�
(1)

where x represents the inputs (i.e., geological parameters and
operational parameters); y denotes the outputs/targets (e.g.,
average cost); s is the activation function; and wm and w¼bm are
the weights and bias of the mth layer, respectively.

The neural network has a large number of undetermined pa-
rameters, which makes the emulator have strong fitting and
expression ability (Cybenko, 1989; Hornik, 1991), and can describe
the complex nonlinear mapping relationships between different
features. Due to the limited amount of data, a simple fully con-
nected neural network is utilized to avoid overfitting (the archi-
tecture is introduced in section 3.1). It should be mentioned that
the architecture of the network is adjustable according to the data
size and the difficulty of the problem. Since the three parts in
InterOpt are decoupled from each other, the interpretable machine
learning algorithm in the second part treats the emulator as a black
box. The emulator is the basis for subsequent feature impact
analysis and operational parameters optimization.

2.2. Interpretable machine learning and feature impact analysis

InterOpt adopts an interpretable machine learning algorithm,
called the Shapley value method (Aumann and Hart, 2002;
Lundberg and Lee, 2017), to evaluate the contribution of various
geological and operational parameters on the targets (e.g., average
cost), and identify the main controlling factors of each well in the
drilling and fracturing process. Shapley value is used for two rea-
sons: (1) it can measure the importance of all of the features in the
model and will not be affected by the interaction between different
ne learning optimization (InterOpt).



Fig. 2. Illustration of the relationship between the real world and the emulator in InterOpt.
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features, which is more powerful than conventional methods that
can only handle a few main controlling factors; and (2) Shapley
value not only evaluates the feature impacts in the whole block, but
it can also determine the shortcomings of each well according to
the specific geological condition. The Shapley value method is a
model-agnostic local interpretation method, which can analyze the
black box model, and is especially suitable for the neural network-
based emulator in InterOpt.

The Shapley value comes from the concept of cooperative game
theory, which aims to fairly evaluate the contribution of each
participant in the game process (Roth, 1988; Shapley, 1951). In
terms of machine learning, if a specific regression or classification
mission is regarded as a game, and each feature in the model is
regarded as a player participating in the game, the theoretical
model in cooperative game theory can be applied to machine
learning to explain the impact of different features (Molnar, 2020).
Specifically, InterOpt regards the emulator in section 2.1 as a game
process. Running each data sample once in the emulator is equiv-
alent to all features participating in a game. The following example
in cooperative game theory is helpful to intuitively understand the
Shapley value: suppose that a group of players (i.e., operational
parameters) randomly participate in a game (i.e., shale gas well
development under given geological condition), and the Shapley
value of the player (i.e., the contribution of the feature) is the
change in the gain of the game (e.g., average cost) after the player
joins the game. By calculating the contribution of each player (i.e.,
feature) in a specific game (i.e., drilling and fracturing process), we
can obtain the contribution of each feature in this specific data
sample, which is the local interpretation. In addition, by averaging
the contribution of a feature in all samples, the overall importance
of a feature can be obtained, which is the global interpretation.

It should be noted that before the player enters the game, the
state of the game can be different, and thus the change is the
average of all possible scenarios. In other words, the contribution of
a player (i.e., feature) is defined as the weighted average (i.e.,
mathematical expectation) of value increment when the player
joins the game in all possible scenarios. Therefore, from a mathe-
matical point of view, the Shapley value is defined as the average
expected marginal contribution of a feature in all possible
scenarios.

According to the aforementioned definition, it is necessary to
construct a value function valx(S) to calculate the Shapley value. The
value function describes the marginal contribution of the features
contained in the subset S to the features not contained in the subset
S. In other words, valx(S) evaluates the difference of emulator
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output (i.e., gain of the game) between the scenario with the cur-
rent value of the features in the subset S and the scenario with a
random value of all features, as shown in Eq. (2):

valðSÞ¼ECUSðf ðXÞÞ�EXðf ðXÞÞ¼
ð
f ðx1;:::;xnÞdРCUS�EXðf ðXÞÞ (2)

where valx(S) denotes the value function; U is the complete set of all
n input features; S is a subset of the feature set U, representing one
of all possible feature combinations; CUS is the complement of S; f()
represents the mapping relationship between input features and
output features (i.e., the emulator in section 2.1); ECUSðf ðXÞÞ rep-
resents the mathematical expectation of the gain of the gamewhen
all features not included in the subset S take different values; and
EXðf ðXÞÞ represents the mathematical expectation of the gain of the
game when all features take different values.

In order to intuitively demonstrate the meaning of value func-
tion valx(S), the calculation process of valx(S) when S is a set con-
taining all features, except Xi and Xj (i.e., S¼CU{Xi, Xj}), is taken as an
example in Eq. (3):

val
�
CU

�
Xi;Xj

��¼ val
��

x1; ::::; xi�1; xiþ1; :::; xj�1; xjþ1; :::; xn
��

¼ ∬ f
�
x1; ::::; xi�1;Xi; xiþ1; :::; xj�1;Xj; xjþ1; :::; xn

�
dРXi;Xj

� EXðf ðXÞÞ
(3)

where {x1, …, xi-1, xiþ1, …, xj-1, xjþ1, …, xn} represents the specific
values of the features in the subset S; and Xi and Xj are the two
features not included in the subset S. When calculating the value
function valx(S), the values of these two missing features are pro-
cessed by integration to obtain the mathematical expectation.

When calculating the Shapley value of a feature, the features
contained in subset S have a variety of possible combinations. The
feature contribution under different feature combinations is
comprehensively considered by weighted summation of value
functions in different scenarios. In order to determine the weights
of the weighted summation, the number of permutations of each
feature combination needs to be calculated, which is shown in Eq.
(4):

wðU; SÞ¼
AjSj
jSjA

ðn�1Þ�jSj
ðn�1Þ�jSj
An
n

¼ jSj!ðn� 1� jSjÞ!
n!

(4)

where w(U, S) is the weight for subset S; n is the total number of
features; n! is the number of permutations of the complete set U; |S|
represents the number of features in the subset S; |S|! is the number
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of permutations of the subset S; and (n-1-|S|) is the number of
remaining features in the complete set U after removing the fea-
tures to be interpreted and the subset S, and the corresponding
permutation number is (n-1-|S|)!

Based on the value function in Eq. (2) and the weight in Eq. (4),
the Shapley value of the feature to be interpreted under different
scenarios (i.e., different feature combinations) can be evaluated, as
shown in Eq. (5):

4k ¼
X

S4U\fXkg
wðU; SÞ½valðS∪ fXkgÞ� valðSÞ�

¼
X

S4U\fXkg

jSj!ðn� 1� jSjÞ!
n!

½valðS∪ fXkgÞ� valðSÞ�
(5)

where the feature to be interpreted is expressed as Xk, and its
Shapley value is 4k; and ½valðS∪fXkgÞ�valðSÞ� denotes the value
increment before and after the feature Xk is added to the subset S.

The Shapley value has four excellent properties: efficiency,
symmetry, dummy, and additivity, which are advantages that are
not possessed by other feature impact analysis methods (Molnar,
2020; Roth, 1988; Shapley, 1951). The details of the four proper-
ties are presented in Appendix A.
2.3. Ensemble randomized maximum likelihood and operational
parameters optimization

Based on the emulator and the Shapley value with different
features at the single well level, InterOpt adopts the ensemble
randomized maximum likelihood (EnRML) to optimize the opera-
tional parameters. The EnRML is a gradient-free data assimilation
method, proposed in the field of history matching in petroleum
engineering (Gu and Oliver, 2007). The essence of EnRML is to
maximize the posterior probability through the Gauss-Newton
method, and the gradients are replaced by covariance during
optimization (Chang et al., 2017; Chen et al., 2019; Oliver et al.,
2008). The architecture of EnRML is shown in Fig. 3.

The EnRML possesses advantages in small sample training, and
is suitable for petroleum engineering where data acquisition is
expensive and time-consuming. EnRML can also be combined with
neural networks to solve problems in practice, such as ENN for
tabular data in water-oil two-phase flow problem (Chen et al.,
2019), EnLSTM for series data in well log generation problem
(Chen and Zhang, 2020b), and power load forecasting problem
Fig. 3. Architecture of ensemble random
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(Chen and Zhang, 2021). The EnRML is constructed based on Bayes’
theorem. Its essence is tomaximize the posterior probability, which
is defined as follows:

pðmjdobsÞ¼
pðmÞpðdobsjmÞ

pðdobsÞ
fpðmÞpðdobsjmÞ (6)

where m denotes the model parameters; dobs denotes the obser-
vation; p(m|dobs) is the posterior probability; p(m) denotes the prior
probability; and p(dobs|m) is the likelihood function.

Under the assumption that the observation is equivalent to the
sum of the model predictions and stochastic errors and the errors
obey a normal distribution, the objective function can be obtained
by maximizing the posterior probability in Eq. (6), as shown in Eq.
(7). The details about the objective function are provided in Sup-
porting Information. The first term in Eq. (7) is called model
mismatch, and it is proportional to the square of the difference
between the model parameter and its prior estimate. The second
term is defined as the data mismatch, and it is calculated based on
the difference between the prediction and the observation.

m* ¼ argmin
�
1
2
ðgðmÞ � dobs ÞTC�1

D ðgðmÞ � dobs Þ

þ 1
2
�
m�mpr

�TC�1
M

�
m�mpr

�	
(7)

Finally, the core of EnRML is the gradient-free update formula in
the feedback process (Eq. (8)), in which model mismatch and data
mismatch are used to update between adjacent iterations. The
update formula is introduced in detail in Supporting Information.

mlþ1
j ¼ ml

j �
1

1þ ll

h
CMl

� CMl;Dl

�ð1þ llÞCD þ CDl

��1CTMl;Dl

i
C�1
M

�
ml

j �mpr;j

�
� CMl;Dl

�ð1þ llÞCD þ CDl

��1
�
g
�
ml

j

�
� dods;j

�
j

¼ 1; :::;Ne

(8)

where l and j are the iteration and realization index, respectively;
g(m) is the estimation; C denotes the cross-covariance matrix; pr is
the prior estimate; and the subscript M and D represent the model
parameters and the estimations, respectively.
ized maximum likelihood (EnRML).
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In InterOpt, the input features include operational parameters
and geological parameters. The EnRML can optimize the opera-
tional parameters on the premise of unchanged geological pa-
rameters. Specifically, the operational parameters are taken as the
optimization objects (i.e., model parameters) of the EnRML, and the
geological parameters are considered as a part of the black box
prediction model in Fig. 3 since they are fixed in the drilling and
fracturing process. It should be mentioned that the unchanged
geological parameters do not mean that the geological parameters
of all wells are the same, but rather that the geological parameters
of each well remain unchanged in the optimization.

Due to the high cost and time-consuming process of obtaining
shale gas development data, operational parameters optimization
is a typical small-data problem, where the EnRML offers advantages
over traditional methods since it can extract information from
limited data more efficiently.

2.4. Interpretable machine learning optimization (InterOpt)

InterOpt consists of three parts, and the model architecture is
shown in Fig. 4. The blue part is the neural network-based emulator
describing the mapping relationship of real-world features. The
green part analyzes the neural network through interpretable
machine learning to evaluate the impact of each feature on the
targets (e.g., average cost). Shapley value is not used to select the
input features in the neural network, but rather is utilized to
calculate the dynamic weights (Appendix C) in the optimization
process of InterOpt. The yellow part uses the EnRML to iteratively
optimize the adjustable operational parameters to reduce the cost
and increase the efficiency of shale gas development. Specifically, in
order to optimize operational parameters via EnRML, the opera-
tional parameters, geological parameters, and outputs (e.g., average
cost) are taken as the adjustable model parameters (m), fixed pa-
rameters, and target features in EnRML, respectively. The optimi-
zation objective of EnRML is to minimize the average cost or
maximize production while the optimized drilling and fracturing
plan are as close to the prior plan as possible.

It should be mentioned that the neural network prediction may
contain negative values since the data are normalized. Therefore,
the data mismatch term in EnRML (Eq. (B.1) in Appendix B) cannot
be directly used to minimize the average cost; otherwise, the
output value will approach negative infinity, resulting in optimi-
zation failure. InterOpt solves this challenge by transforming the
network output value into a bounded closed interval (please refer
Fig. 4. Illustration of the iterative
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to Appendix B for details).
For different well conditions, the importance of each operational

parameter varies. However, conventional optimization methods
treat all features equally, and cannot provide customized optimi-
zation plans for each well. InterOpt adjusts the iterative optimiza-
tion process based on the specific contributions of different features
(i.e., the Shapley value of operational parameters) using dynamic
weights to overcome this challenge, and its approach is detailed in
Appendix C.

In addition, InterOpt proposes two strategies to increase opti-
mization efficiency and avoid training failure in practice: adaptive
step size and block optimization, which are introduced in Appendix
D. The primary goal of adaptive step size is to adjust the optimi-
zation process based on the model performance of each iteration
step (i.e., self-adjusting). Furthermore, the block optimization as-
sists InterOpt to avoid divergence in the optimization process by
balancing exploration and exploitation.

3. Experiments

3.1. Data description and experiment settings

To test the performance of InterOpt, several experiments are
carried out in this section. The operational parameters of 104 shale
gas wells in the Sichuan Basin are optimized as a study case. The
data are preprocessed to ensure the completeness of features and
values. The features with a high number of missing values (i.e.,
features that are not included in many wells) are removed. Finally,
the dataset contains a total of 13 features (12 operational and
geological parameters as input features and one target feature), of
which eight features can be changed in the drilling and fracturing
process (i.e., operational parameters) and the other four features
are fixed in the shale gas development. The 12 input features are
shown in Table 2. In addition, we normalized the data before
modeling, which is a common data preprocessing operation for
neural network modeling.

The target feature is the average cost (USD/m3), which is defined
as the total cost of a single well divided by the estimated ultimate
recovery (EUR). The total cost comes from the accounting report of
each well, including pre-drilling cost (civil engineering), drilling
cost (drilling bit cost, casing cost, top drive drilling cost, mud fluid
service cost, geosteering service cost, environmental protection
cost), cementing cost, logging cost, etc. It is worth mentioning that
all 104 wells have been settled, which means that the total cost of
updating process of InterOpt.



Table 2
Input features of 104 shale gas wells in the Sichuan Basin study case.

Adjustable operational parameters Fixed geological parameters

Content of acid fluid in drilling fluid, m3 Content of ceramsite in fracturing fluid, t High-quality reservoir thickness, m
Content of guanidine gum in fracturing fluid, m3 Fracturing stages Pressure coefficient
Content of slick water in fracturing fluid, m3 Horizontal section length, m Depth, m
Content of quartz sand in fracturing fluid, t Number of wells on the platform Daily gas production of the first year, m3/day
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each well can be accurately calculated. In addition, the input fea-
tures in InterOpt are replaceable, and thus InterOpt can be applied
directly to new datasets in the future whenmore data are available.

In terms of neural network settings, a simple fully connected
neural network is utilized to avoid overfitting. The architecture is
determined by trial-and-error according to the cross-validation
results. InterOpt uses a three-layer fully connected neural
network with 12 input features to form the emulator. The first
hidden layer contains 20 neurons, the second hidden layer contains
10 neurons, and the output layer has one neuron. It is worth
mentioning that the number of features and the number of wells
available for training need to be considered when defining the
network architecture. Indeed, it is not the case that a more
complicated network is better. In real-world engineering applica-
tions, there is frequently a problem of insufficient data, and a too-
complicated network will result in overfitting. However, with the
increase of problem complexity and training data, a reasonable
increase in network complexity can assist to enhance model ac-
curacy. For instance, a more complicated five-layer fully connected
neural network with 50 neurons per layer was utilized in another
study case which contains 43 features and 140 wells in Appendix E.
If we want to automatically determine the neural network archi-
tecture, neural architecture search (NAS) methods could be useful
tools. Since the three parts in InterOpt are decoupled, researchers
can modify the neural network architecture of the emulator ac-
cording to the specific problem, which is one of the advantages of
InterOpt. In addition, the maximum training epoch is 500, and the
Adam optimizer is used. In the feature impact analysis, InterOpt
uses an interpretable machine learning algorithm called SHAP
(Lundberg et al., 2020; Molnar, 2020) to calculate the Shapley value.
This algorithm accelerates the calculation process of the Shapley
value, which improves model efficiency.

In order to obtain a reliable experiment result, the leave-one-out
cross validation method is used to evaluate the performance of
InterOpt (Cawley, 2006; Evgeniou et al., 2004; Kohavi, 1995).
Essentially, cross-validation is a resampling method that is espe-
cially useful when there are insufficient data. Cross-validation can
utilize the data more efficiently because it does not require a
separate validation set from the data by dividing the data into
different groups and utilizing them in turn, which means that more
data can be used in the training process. The process of cross-
validation is as follows: first, the data are randomly divided into k
parts; second, one part is taken as the test set, and the remaining k-
1 parts are used as the training set to obtain the model; and third,
the model performance is evaluated on the test set. The above
process is repeated k times until each part of data has been eval-
uated once as a test set. Finally, the average of the k evaluation
results is taken as the performance of the model. The k in the cross-
validation is a hyperparameter with a common value of 10, which
corresponds to the 10-fold cross-validation. When k is the same as
the total number of samples in the dataset (i.e., 104 in this study
case), it is called leave-one-out cross-validation, which makes full
use of all of the data and ensures the objectivity of the performance
evaluation.
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3.2. Emulator performance evaluation

The performance of the emulator is evaluated based on 104
shale gas wells in this section. Fig. 5 presents the scatterplot of the
predictions of the neural network-based emulator versus their
corresponding observations. Overall, the closer is the distribution
of points to the 45� diagonal (blue line), the more precise are the
predictions. Specifically, Fig. 5a shows the experiment results of the
leave-one-out cross-validation, reflecting the prediction accuracy
of the model. The fitness of the emulator to the training data is
presented in Fig. 5b. The coefficient of determination (R2) provides
a measure of how well observed outcomes are replicated by the
model, based on the proportion of total variation of outcomes
explained by the model. The R2 of the cross-validation results
(Fig. 5a) and fitting results (Fig. 5b) are 0.71 and 0.85, respectively.
When analyzing the feature impacts of emulators based on inter-
pretable machine learning algorithms, the fitting model (i.e.,
Fig. 5b) can be used if the analysis is performed on wells that have
already been produced. As shown in Fig. 5b, the emulator based on
104 wells has good fitness to the observations, which lays the
foundation for subsequent optimization in InterOpt. It should also
be mentioned that as the amount of training data increases, the
accuracy of the emulator can be further improved.

3.3. Feature impact analysis

Based on the neural network-based emulator, InterOpt calcu-
lated Shapley values for different features using the interpretable
machine learning algorithm. The global Shapley value reflects the
impact of each feature on the target feature in all wells, while the
local Shapley value can measure the importance of each feature in
different wells under different geological conditions.

3.3.1. Local analysis for each well
The results of feature impact analysis for Well 10, Well 50, and

Well 100 in InterOpt are shown in Fig. 6. The red bars represent
positive Shapley values, which means that the values of the cor-
responding features cause the average cost of the well to be higher
than the mathematical expectation of all wells. The blue bars
represent negative Shapley values, which indicates that the feature
values result in lower average cost. In addition, the longer is the bar
in the figure, the greater is the absolute value of the Shapley value,
and the greater is the importance of the corresponding feature. A
positive or negative Shapley value of a feature simply means that
the current feature value causes the average cost of the well to be
respectively larger or smaller than the mathematical expectation of
all wells, and it does not reflect the positive or negative correlation
between the feature and the average cost. For example, a small
value of a feature that is positively correlated with average cost will
also result in a negative Shapley value. Each bar in Fig. 6 shows the
impact of the corresponding feature when taking the value in the
current well. Therefore, the sum of the Shapley values for all fea-
tures in onewell represents the deviation between the average cost
of that well and themathematical expectation of the average cost of



Fig. 5. Scatterplot of predictions and observations of the neural network-based emulator. (a) cross-validation results; (b) fitting results.

Fig. 6. Local Shapley value of Well 10, Well 50, and Well 100 in feature impact analysis.
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all wells. Specifically, if the sum of the Shapley values is negative,
this means that the average cost of that well is lower than the
mathematical expectation of all wells, and vice versa. The adjust-
able operational parameters are shown in bold font in Fig. 6.

Fig. 6 shows that the most important feature in Well 10 is the
fracturing stages, and the red color of the bar indicates that the
average cost tends to be higher than the mathematical expectation
for the entire block since the well has 28 fracturing stages. Finally,
the average cost of Well 10 is 0.57 CNY/m3 (i.e., 0.090 USD/m3). The
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main controlling factors of Well 50 are different from those of Well
10, where the most important feature is the content of slick water
in fracturing fluid. This result indicates that Well 50 has a lower
average cost because slick water consumption is only 32,067 t. In
other words, under current geological conditions, reducing the
amount of slick water has a smaller impact on production than on
total costs. The top three main controlling factors of Well 50 also
include horizontal section length and fracturing stages. Regarding
Well 100, the average cost is approximately 0.45 CNY/m3 (i.e., 0.071
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USD/m3), mainly because the well produces 144,800 m3 of gas in
the first year, and the high production reduces the average cost.
Other main controlling factors for Well 100 include fracturing
stages and the content of slick water in fracturing fluid. It can be
seen from Fig. 6 that the main controlling factors of different wells
are not the same, which requires different drilling and fracturing
plans, and optimization strategies for different wells.
3.3.2. Global analysis of the entire block
InterOpt can not only analyze the main controlling factors for a

single well, but it can also provide global main controlling factors
for the entire block, as shown in Fig. 7. The left side of Fig. 7 presents
the bar chart of the global Shapley value (defined as Eq. (7)), which
is equal to the average of the absolute value of the local Shapley
values in all wells, reflecting the global comprehensive impact of
each feature on emulator output. Overall, the larger is the global
Shapley value, the larger is the average expected marginal contri-
bution of the feature, which indicates that the average cost is more
sensitive to that feature in the block. Although the Shapley value is
not equal to the sensitivity, it can effectively reflect the sensitivity of
the feature. As can be seen from Fig. 7, for the average cost, the top-
five global main controlling factors are: daily gas production of the
first year; fracturing stages; the content of slick water in fracturing
fluid; depth; and the content of guanidine gum in fracturing fluid.

shapglobal ¼
XN
i¼1

jshapij
,

N (9)

where shapglobal denotes the global Shapley value; shapi denotes
the local Shapley value of the ith well; andN represents the number
of wells.

The right side of Fig. 7 shows the scatterplot of the global
Shapley value, which reflects the specific impact of different fea-
tures on different wells. Each row in the figure corresponds to a
feature, and each point corresponds to a well. Since the value of the
feature is different in each well, the feature impact is also different
(i.e., different positions in Fig. 7b). The color of the dot indicates the
Fig. 7. Feature impact analysis results. (a) bar chart of globa
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feature value in the current well. The position of the point on the
abscissa corresponds to the Shapley value of the feature in the
current well. Therefore, if the distribution of scatter points of a
feature deviates greatly from the 0 value (i.e., the central axis), the
influence of that feature is large. Moreover, the color of the scatter
points reflects the correlation information. If the color of the points
gradually changes from red to blue from left to right, this means
that the feature is negatively related to the average cost (e.g., daily
gas production of the first year). If the scatter points corresponding
to the feature change from blue to red, it is a positive correlation
(e.g., fracturing stages). If there is no regularity in the color change,
the correlation is weak (e.g., the number of wells on the platform).

In order to show the meaning and difference of Figs. 6 and 7, we
take the content of acid fluid in drilling fluid as an example to
demonstrate the method of analyzing Shapley values in InterOpt.
This feature is ranked ninth in Fig. 7a, indicating that this feature is
not one of the most important features at the block level (i.e., not a
global main controlling factor). However, as shown in Fig. 6, it is one
of the main controlling factors in Well 10. This difference shows
that the main controlling factors of each well are related to their
geological conditions, and thus the main controlling factors of a
single well are not necessarily consistent with the global main
controlling factors.

Therefore, each well possesses its own shortcomings, and the
major contribution of InterOpt is to propose an optimization
strategy for each well. According to Fig. 7b, it can be seen that the
content of acid fluid in drilling fluid is positively correlated with the
average cost. As a consequence, InterOpt tends to reduce the con-
tent of acid fluid in drilling fluid. However, since the global Shapley
value of this feature is small (Fig. 7a), the amount of change of this
feature in the optimization strategy is generally not large in prac-
tice, which is consistent with the experimental results of three
example wells in Figs. 9e11.

On the one hand, the global Shapley values comprehensively
reflect the importance of features and provide correlation analysis
results. On the other hand, the local Shapley values can reflect the
influence of features in a single well, which establishes the
l Shapley value; (b) scatterplot of global Shapley value.
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foundation for operational parameters optimization at the single
well level.

3.4. Operational parameters optimization results

In this section, eight adjustable operational parameters of 104
shale gas wells are optimized by InterOpt, and then the perfor-
mance is evaluated by the neural network-based emulator. The
results show that the average reduction rate of the 104 wells’
average cost is 9.7%. The red bar chart in Fig. 8 shows the distri-
bution of the average cost reduction. It can be seen that 33.7% of the
wells (i.e., 35 wells) have an average cost reduction greater than
10%. In addition, the average cost reduction of 9.6% of the wells (i.e.,
10 wells) is greater than 30%. The blue line in Fig. 8 represents the
mean of the average cost reductions for the wells in each group.
Experiments show that the existing operational parameters of
approximately one-third of the wells (i.e., 31 wells) are close to the
optimal drilling and fracturing plans (reduction rate less than 1%),
which indicates that there is little room for further improvement.
Approximately one-fourth of the wells have limited space for
optimization, and the reduction rate is only 1%e5%. Nevertheless,
nearly half of the wells have large room for improvement (i.e., 46
wells with a reduction rate higher than 5%). Therefore, InterOpt can
optimize the operational parameters of these wells under the
premise of unchanged geological parameters, and provide different
optimal drilling and fracturing plans for each well to reduce the
average cost.

This study evaluates the effects of adaptive step size and block
optimization (Appendix D) in InterOpt by comparing the results of
ablation experiments. It can be seen from Table 3 that block opti-
mization is crucial to ensure convergence of the model, and one-
quarter to one-third of the wells (i.e., 25 to 33 wells, respectively)
in the model without the block optimization strategy will diverge.
Furthermore, the adaptive step size can automatically adapt the
optimization process, which is conducive to balancing exploration
and exploitation, and can improve the model performance.

In addition, three shale gas wells are taken as examples to
demonstrate the optimization process and results of InterOpt. Their
operational parameters before and after optimization are compared
in Figs. 9e11. Specifically, Fig. 9a shows that the average cost
reduction for Well 10 gradually increased to 9.2% and converged as
the iteration progressed. Fig. 9b shows the optimization process of
the eight operational parameters in Well 10. Fig. 9c compares the
values of the operational parameters before and after the optimi-
zation. It can be seen that the operational parameters are fine-
tuned on the basis of the original plan. For Well 10, InterOpt
mainly optimizes the fracturing stages. Ultimately, InterOpt
reduced the average cost of Well 10 from 0.57 CNY/m3 (i.e., 0.090
USD/m3) to 0.52 CNY/m3 (i.e., 0.081 USD/m3).
Fig. 8. Distribution plot of average cost reduction for InterOpt optimization results.
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In Well 10, InterOpt mainly optimized the fracturing stages;
whereas, in other wells, InterOpt may adjust other operational
parameters according to the specific geological conditions of the
well. For example, Figs. 10 and 11 show the optimization process of
Well 41 and Well 52, respectively, where InterOpt also optimizes
the number of wells on the platform and the horizontal section
length, in addition to adjusting the fracturing stages. It is worth
noting that although the number of wells on the platform is not the
global main controlling factor in Fig. 7, this feature plays an
important role in Well 41, which indicates the significance of local
interpretation in practice.

In addition, Well 52 obtained two sets of plans during the
optimization process, i.e., the in-process plan and the converged
plan (Fig. 11c). The in-process plan is more aggressive, and the
average cost reduction is higher, but it deviates further from the
original plan and increases the engineering difficulty. For instance,
although the average cost of the in-process plan is only 0.59 CNY/
m3 (i.e., 0.093 USD/m3), it requires that the horizontal section
length be increased to 2,432m. However, this length is only 1,277m
in the converged plan, which is easier to implement. Moreover, the
average cost of the converged plan is reduced to 0.63 CNY/m3 (i.e.,
0.099 USD/m3), which is still lower than the original plan. In most
practical situations, the easy-to-implement converged plan is
chosen.

It should be mentioned that it is meaningless to simply reduce
various operational parameters and ignore the impact on produc-
tion. By optimizing average cost, we hope to find a balance between
total cost and production, i.e., an “economic sweet spot” is sought.
In fact, InterOpt does not directly reduce all operational parame-
ters. For example, in Fig. 11c, InterOpt proposes to increase the
horizontal section length by 23%, which indicates that although
increasing the length will bring a higher total cost, the increase in
production results in lower average cost.

The operational parameters optimized for different wells in
Figs. 9e11 are not consistent, which also reflects the advantage of
InterOpt over other methods, such as correlation or sensitivity
analysis. InterOpt can provide different optimization plans for
different wells based on their specific geological conditions via
local interpretation.

It is worth noting that InterOpt's input features and optimiza-
tion objectives can be flexibly altered to meet diverse needs and
adapt to varied conditions in practice. Another study case based on
140 wells and 43 features is taken as an example to verify the
transferability and scalability of InterOpt to different optimization
objectives, the details of which are given in Appendix E.

3.5. Inspiration from InterOpt optimization result

InterOpt tends to lower the number of fracturing stages in the
optimization process according to the results in section 3.4, which
has attracted the interest of oilfield experts. This phenomenon re-
veals InterOpt's finding that the marginal contribution of the
number of fracturing stages to production will decrease rapidly.
Once the number of fracturing stages reaches a certain threshold,
the increase in production cannot offset the rapid increase in cost
and results in higher average cost (i.e., total cost of a single well
divided by the EUR).

In order to verify this finding, oilfield experts analyzed and
evaluated actual historical exploration and development data from
the Changning Block in the Sichuan Basin. The data show that the
number of fracturing stages of a single well generally has increased
from 20 stages to more than 30 stages since 2017 (Fig. 12a). How-
ever, the estimated ultimate recovery (EUR) of a single well did not
exhibit an upward trend, as shown in Fig. 12b. In other words,
increasing the number of fracturing stages beyond 20, according to



Fig. 9. Optimization process of InterOpt in Well 10. (a) average cost reduction curve; (b) optimization process of operational parameters; (c) operational parameters before and after
optimization (the numbers in parentheses are the outputs of InterOpt, which are rounded up to the nearest decimal point).

Fig. 10. Optimization process of InterOpt in Well 41. (a) average cost reduction curve; (b) optimization process of operational parameters; (c) operational parameters before and
after optimization (the numbers in parentheses are the outputs of InterOpt, which are rounded up to the nearest decimal point).
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historical data, does not improve thewell's performance. Therefore,
the optimization strategy of InterOpt (i.e., reducing the number of
1798
fracturing stages) is consistent with the historical data, and is in
accordance with experience in oil and gas development.



Fig. 11. Optimization process of InterOpt in Well 52. (a) average cost reduction curve; (b) optimization process of operational parameters; (c) operational parameters before and
after optimization (the numbers in parentheses are the outputs of InterOpt, which are rounded up to the nearest decimal point).

Table 3
Effect of block optimization and adaptive step size in InterOpt.

Training methods Number of wells that failed to optimize Average cost reduction, %

Block optimization Adaptive step size Not converged No improvement Total

✓ ✓ 0 3 3 9.7
✓ 0 25 25 9.0

✓ 25 0 25 7.1
33 0 33 8.5

Fig. 12. (a) trend of the number of fracturing stages in horizontal wells; (b) trend of estimated ultimate recovery.
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4. Discussion

The task of reducing costs and increasing efficiency by opti-
mizing operational parameters in shale gas development is
extremely challenging. This paper provides a feasible solution to
this challenge based on interpretable machine learning. Because
InterOpt is essentially a mathematical tool, different optimization
objectives may be assigned to specific problems in different sce-
narios, and a different optimization strategy for each well can be
used as a reference for well site engineers. The study case used in
the experiment section is only to verify the effectiveness of Inter-
Opt. Input and output features can be adjusted according to the
needs of the well site engineer in practical applications. In addition,
InterOpt does not require input features to be independent of each
other since the emulator is based on the neural network and the
Shapley value can measure the importance of correlated features.
Therefore, as long as we have access to the data of a feature, we can
include it into InterOpt without relying on complex feature engi-
neering, which reduces the difficulty of applying InterOpt in
practice.

The optimization of each well by InterOpt does not require
retraining the neural network and has high computational effi-
ciency. InterOpt is also compatible with both CPU and GPU
computing. Despite the fact that GPU computation is faster, due to
the restricted GPU resources at the well site, InterOpt is computed
by default using the CPU. InterOpt takes approximately 3 min to
optimize one well for 100 iterations based on an Intel Xeon Gold
5120 (workstation-class CPU). It takes 5e8 min using an Intel Core
i5-10210U (laptop-class CPU).

Because the Shapley value calculation in the feature impact
analysis (i.e., step 2 in Fig. 1) and the EnRML algorithm in the
operational parameters optimization (i.e., step 3 in Fig. 1) have
strict mathematical proofs that can ensure correctness, the accu-
racy of InterOpt is primarily determined by the emulator in virtual
environment construction (i.e., step 1 in Fig. 1), which is essentially
a data-driven neural network. The performance of the emulator in
InterOpt is dependent on the quality and quantity of training data.
If critical features are absent from the training data, InterOpt cannot
guarantee its accuracy. The users are capable to assess whether the
current data are sufficient to support the modeling via the cross-
validation procedure described in section 2.2. It should be
mentioned that since the neural network has theoretically infinite
expressive ability, the accuracy of the emulator can be further
improved with the accumulation of data in practice.

5. Conclusion

In this study, interpretable machine learning is applied for the
first time to an operational parameters optimization problem in
petroleum exploration and development. InterOpt can optimize the
shortcomings of each well according to specific geological
conditions.

InterOpt starts by modeling the mapping relationship between
different physical parameters with neural networks (i.e., virtual
environment construction), then uses interpretable machine
learning to analyze the influence and importance of features at the
single well level (i.e., feature impact analysis), and finally uses the
ensemble randomized maximum likelihood algorithm to improve
drilling and fracturing plans (i.e., operational parameters optimi-
zation). In the experiment, InterOpt proposed different optimiza-
tion plans for 104 wells, respectively, and achieved an average cost
reduction of 9.7% by adjusting eight operational parameters, such
1800
as fracturing stages, content of slick water in fracturing fluid, and
horizontal section length. In addition, the transferability and scal-
ability of InterOpt to different optimization objectives is verified
based on the optimization of test production in Appendix E, in
which the final production increase rate is 16.9%.

The contributions of InterOpt include the following.

� In comparison to conventional main controlling factor methods,
InterOpt can not only provide global main controlling factors,
but it can also give local (i.e., single well level) main controlling
factors to support different optimization of each well.

� InterOpt can evaluate the genuine contribution of each feature
more comprehensively and fairly by taking into account the
interaction and coupling between multiple features, as opposed
to typical algorithms that assess the impact of each feature
independently.

� InterOpt can optimize all adjustable operational parameters
simultaneously, unlike existing algorithms that can only opti-
mize a few main controlling factors. As a result, InterOpt's
optimization is more thorough and flexible.

� Two optimization techniques, adaptive step size and block
optimization, are proposed in Appendix D, both of which are
critical for ensuring convergence of the optimization process.

In future studies, we will focus on small data learning and
transfer learning to reduce the data requirement of the emulator. In
addition, it is necessary to further explore the methods of embed-
ding physical constraints into InterOpt since the optimization re-
sults of InterOpt may not adhere to the physical mechanisms.
Potential physical constraints include restricting the data distri-
bution of operational parameters to avoid results that violate
physical rules, and combining the mathematical programming to
optimize parameters (e.g., fracturing stages) to prevent the opti-
mization results from being decimals (Zhang et al., 2017a, 2017b).
These topics will be explored in depth in future studies.
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Appendix A. Four properties of Shapley value: efficiency,
symmetry, dummy, and additivity

The following four properties of Shapley value are the advan-
tages that are not possessed by other feature impact analysis
methods (Molnar, 2020; Roth, 1988; Shapley, 1951).

https://doi.org/10.1016/j.petsci.2022.12.017
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� Efficiency means that the sum of all feature contributions of a
sample is equal to the difference between the prediction of the
sample and the mathematical expectation of all samples, i.e., Eq.
(A.1) is satisfied.

Xn

j¼1
4j ¼ f ðX¼ xÞ � Exðf ðXÞÞ (A.1)
� Symmetry means that if two features xj and xk contribute
equally to all possible feature combinations, their overall
contribution should also be the same (i.e., their Shapley value is
the same). According to Eq. (5), for any S4fx1; :::;xng\fxj;xkg, if
Eq. (A.2) is satisfied, then we have 4j ¼ 4k (i.e., the definition of
symmetry).

val
�
S∪

�
xj
��¼ valðS∪ fxkgÞ (A.2)
� Dummymeans that a feature should have a Shapley value of 0 if
it does not affect the output of the model in any possible feature
combination. According to Eq. (5), for any S4fx1; :::; xng\fxjg, if
Eq. (C.3) is satisfied, then we have 4j ¼ 0. Therefore, Shapley
value has the property of dummy.

val
�
S∪

�
xj
��¼ valðSÞ (A.3)
� Additivity means that when there are multiple gains in a game
(i.e., the model has multiple outputs, or the model results
depend on multiple sub-models, such as random forests), the
contributions of the same feature to different outputs can be
added. In other words, when there are multiple games, the
distribution of the gains of one game does not affect the other
games, which is obvious from Eq. (5).
Appendix B. Neural network output values transformation
method

The output values of the neural network are transformed in
InterOpt to avoid approaching negative infinity in the optimization
process. Specifically, a hyperbolic tangent transformation is firstly
applied to the outputs to ensure that the results are in the (�1, 1)
value range. Then, the target value is set to a matrix with all ele-
ments of �1, so that the outputs of the neural network-based
emulator can approach the lower limit of the value range and
minimize the average cost in the optimization process.

Specifically, the original data mismatch term in EnRML is shown
in Eq. (B.1), and the transformed data mismatch term in InterOpt is
shown in Eq. (B.2). In addition to the data mismatch term, the
optimization process of the EnRML also minimizes the model
mismatch term (Eq. (B.3)), so that the optimized results are similar
to the prior adjustable parameters (i.e., the original operational
plan).

dEnRML
Data ¼uData

�
g
�
ml

j

�
� dobs;j

�
(B.1)

dInterOptData ¼uData

�
tanh

�
g
�
ml

j

��
�ð�1Þ

�
(B.2)
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dModel¼uModel

�
ml

j �mpr;j

�
(B.3)

where dEnRML
Data and dInterOptData represent the data mismatch term in the

EnRML and the transformed data mismatch term in InterOpt,
respectively; ml

j and g(ml
j) denote the parameters to be optimized

and the predictions of the jth realization in the lth iteration,
respectively; tanh() represents the hyperbolic tangent function;
dobs,j represents the observed value of the jth realization; dModel
represents the model mismatch term; mpr,j represents the prior
value of the adjustable parameter in the jth realization (e.g., the
original operational plan); and wData and wModel represent the co-
efficients of the data mismatch term and the model mismatch term
in the EnRML, respectively, which are related to the covariance
between observations CD, the covariance between parameters and
observations CM,D, and the covariance between parameters CM. The
specific calculation process can be seen in EnRML (Gu and Oliver,
2007).
Appendix C. Calculation method of dynamic weights based
on Shapley value

In the optimization process of the EnRML, each iterative step
will generate a correction to update the adjustable parameters
according to the loss function. In order to take advantage of the
importance of different features, InterOpt employs an interpretable
machine learning model to calculate the Shapley values of all of the
adjustable parameters of the well to be optimized. Overall, the
greater is the value, the more important is the corresponding
feature in the existing feature combination of the well to be opti-
mized, and its optimization should be prioritized.

Specifically, the dynamic weight w is defined as Eq. (B.1) in
InterOpt. First, the absolute value is used to quantify the Shapley
value (shap) since the positive or negative of the Shapley value has
no influence on its importance. Then, the base 10 logarithm of the
absolute value of the Shapley value (log|shap|) is used to measure
the magnitude. Finally, considering that most of the absolute value
of the Shapley value is less than 1 and results in a negative
magnitude, the reciprocal of the opposite number is taken as the
dynamic weight to ensure that the weight is positively correlated
with the importance of the corresponding feature.

w¼ 1
�logjshapj (C.1)

Intuitively, the dynamic weight adjusts the corrections in the
optimization process according to the importance of the feature to
be optimized. Specifically, it amplifies the corrections of important
features and weakens the corrections of other features. Eq. (B.2)
shows the dynamic weighted update formula in InterOpt.
Compared with conventional methods that optimize all adjustable
parameters equally, InterOpt focuses on optimizing important
features under specific well conditions, which results in higher
optimization efficiency in practice.

mlþ1
j ¼ml

j �wd

¼ ml
j þ

1
logjshapj

�
dModelþ10dInterOptData

� (C.2)

where w represents the dynamic weight matrix based on Shapley
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value; shap represents the matrix composed of the Shapley values

of all adjustable parameters; mlþ1
j and ml

j denote the adjustable

features (i.e., operational parameters) of the lth step and the lþ1st
step in the jth realization, respectively; and d is the corrections,
which are calculated from the model mismatch term and the data
mismatch term in Eq. (B.2) and Eq. (B.3).
Appendix D. Adaptive step size and block optimization

The adaptive step size is applied to adjusting the optimization
process automatically based on the model performance of each
iteration step. Specifically, if prediction performance improves after
Fig. D.1. Training methods of InterOpt. (a) adaptive step size; (b) block optimization.
iteration (indicating that it is in the correct optimization direction),
increasing the step size and using a more radical optimization
strategy are conducive to faster convergence. If prediction perfor-
mance declines after iteration (indicating that the optimization
route is incorrect), it is better to reject the optimization, lower the
step size, and use a more conservative optimization method to
search for the proper optimization path. The flow chart of adaptive
step size is presented in Fig. D.1a.

The block optimization in Fig. D.1b assists InterOpt to avoid
divergence in the optimization process by balancing exploration
and exploitation. The entire optimization procedure is divided into
various blocks by InterOpt. The model's performance is permitted
to deteriorate inside of each block, but at the end of each block the
performance is assessed. If the model's performance increases,
InterOpt moves on to the next block; otherwise, it rejects the up-
date of this block and enters the next block. On the one hand,
because block optimization permits model performance to degrade
inside of a block, it prioritizes exploration, which is favorable to
discovering new optimization routes and avoiding a local mini-
mum. InterOpt, on the other hand, concentrates on the exploitation
of current optimization directions at the block level, which helps to
fully leverage the potential of existing strategies because the
model's performance does not diminish between each block.
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Appendix E. Experiment on transferability and scalability to
different optimization objectives

In this appendix, the test production is optimized based on data
from 140 wells in another block to verify that InterOpt can be
applied to optimizing different objectives. The dataset covers 43
features, as shown in Table D.1. The adjustable and fixed parameters
are determined according to the requirements of well site engi-
neers, and thus some operational features are also regarded as fixed
parameters. In practice, whether the inputs features are fixed in the
optimization process can be flexibly altered to meet diverse needs
and adapt to varied conditions.
In this experiment, the operational parameters are optimized
according to the geological conditions of each well with the goal of
improving the test production. Fig. E.1 shows the 15 most impor-
tant features (i.e., main controlling factors) affecting the test pro-
duction, and Fig. E.2 shows the distribution of the test production
improvement rate of all wells (which is similar to Fig. 8). The fact
that 35% of the wells have an improvement rate of less than 5%
indicates that the existing operational parameters are close to ideal
plans for one-third of the wells. However, for the remaining wells,
there is still room for improvement, and a total of 52 wells have
tested production growth rates of more than 20%. Finally, the
average test production increase rate of the 140 wells achieves
16.9%.

This experiment verifies the scalability of InterOpt, and dem-
onstrates that it can work with a wide range of input parameters
and accomplish different optimization tasks by changing the target.
InterOpt is essentially a data-driven model, and its input and target
features can be flexibly changed according to actual problem
requirements.



Table E.1
Input features of 140 shale gas wells (20 adjustable features and 23 fixed features).

Adjustable operational parameters Fixed parameters

Fracturing stages Average stage length, m Longitude Latitude
Average sand volume per fracturing

stage, t
Average fluid volume per fracturing stage, m3 Casing pressure, MPa Average pump stop pressure, MPa

Number of perforation clusters Average sand volume per perforation cluster, t Formation fracture
pressure, MPa

Target point vertical depth difference, m

Average fluid volume per perforation
cluster, m3

Horizontal length, m Depth, m Well length in layer JC, m

Total amount of fracturing fluid, m3 Total sand volume, t TOC Gas saturation, m3/t
Well length in layer 1, m Well length in layer 2, m Porosity, % Permeability, mD
Well length in layer 3, m Well length in layer 4, m Pressure coefficient Sand-to-fluid ratio
Well length in layer 5, m Well length in layer 6 to layer 9, m Volume of acid fluid, m3 Volume of slick water, m3

70e140 mesh proppant volume, t 40e70 mesh proppant volume, t Volume of guanidine gum,
m3

Volume of pumped fluid, m3

30e50 mesh proppant volume, t Angle between trajectory and minimum in-situ
horizontal stress, �

Total fluid volume in the
well, m3

Fluid volume for handling abnormal
conditions, m3

Number of leakages Total leakage, m3

Nozzle size, mm

Fig. E.1. Feature impact analysis results. (a) bar chart of global Shapley value; (b) scatterplot of global Shapley value.
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Fig. E.2. Distribution plot of test production increase rate for InterOpt optimization results.
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Appendix F. Nomenclature table of the equations
Nomenclature Definition Nomenclature Definition

x Inputs (i.e., geological and operational parameters) Y Outputs (e.g., average cost)
s Activation function wm Weights of the mth layer
bm Bias of the mth layer valx(S) Value function
S A subset of the feature set U U Complete set of all input features
CUS Complement of S f() Mapping relationship
ECUSðf ðXÞÞ Mathematical expectation of the gain of the game when all features not

included in the subset S take different values
EXðf ðXÞÞ Mathematical expectation of the gain of the game when all

features take different values
wðU;SÞ Weight for subset S |S| Number of features in the subset S
4k Shapley value of the feature Xk dobs Observation
C Cross-covariance matrix Pr Prior estimate
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