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a b s t r a c t

A comprehensive dataset from 594 fracturing wells throughout the Duvernay Formation near Fox Creek,
Alberta, is collected to quantify the influences of geological, geomechanical, and operational features on
the distribution and magnitude of hydraulic fracturing-induced seismicity. An integrated machine
learning-based investigation is conducted to systematically evaluate multiple factors that contribute to
induced seismicity. Feature importance indicates that a distance to fault, a distance to basement, min-
imum principal stress, cumulative fluid injection, initial formation pressure, and the number of fracturing
stages are among significant model predictors. Our seismicity prediction map matches the observed
spatial seismicity, and the prediction model successfully guides the fracturing job size of a new well to
reduce seismicity risks. This study can apply to mitigating potential seismicity risks in other seismicity-
frequent regions.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The induced seismicity during the development of unconven-
tional reservoirs has notably increased in North America, West
Europe, and East Asia in the last decade (Atkinson et al., 2016; Yang
et al., 2017; Schultz et al., 2020). Within the Western Canadian
Sedimentary Basin (WCSB), the induced seismicity has been
attributed to wastewater disposal in the Brazeau River zone
(Schultz et al., 2014), hydrocarbon production in the Strachan D-3A
Field (Baranova et al., 1999), enhanced oil recovery in the Rocky
Mountain House region (Wetmiller, 1986), and hydraulic fracturing
(HF) near Fox Creek (Schultz et al., 2017). Notably, several earth-
quakes with a local magnitude (ML) > 3.0 in 2013e2019 were
spatiotemporally linked to fracturing stimulation of horizontal
of Petroleum Resources and
02249, PR China.
.

y Elsevier B.V. on behalf of KeAi Co
wells in the Duvernay Formation in the WCSB (Eaton et al., 2018).
Statistically, ~6% of wells in the Duvernay Formation are associated
with ML > 3 earthquakes (Ghofrani and Atkinson, 2020).

The Duvernay shale formation, a primary shale play in the Fox
Creek region, is estimated to be 41 m in thickness and mainly
consists of shale lithology (Fig. 1). The formation porosity and
permeability are averaged to be 0.065 and 394 nanodarcies
(3.94� 10�7mD) (Hui et al., 2021b). Multistage hydraulic fracturing
techniques have been employed to develop shale resources,
showing practical field applications. Statistics of fracturing wells
suggest that the total pumped volume of fracturing fluids and total
mass of proppant placed have a mean value of 56313 m3 and 7213 t
per well, respectively. However, accompanied by a large fracturing
job size, a notable increase in induced seismicity rates has been
reported simultaneously (Hui et al., 2021a, 2022) (Fig. 1c). Inter-
estingly, although the fracturing parameters of associated hori-
zontal wells were similar, the distribution and magnitude of
induced seismicity caused by hydraulic fracturing vary widely. This
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Fig. 1. (a) Location of the Duvernay Shale in the WCSB and the studied Fox Creek region. (b) Map view of recorded seismicity and fracturing horizontal wells near Fox Creek. The
base map shows the ratio of initial formation pressure to the distance to the Precambrian Basement under a unit of MPa/km. The grey circle denoted the recorded seismicity of
ML � 1.3 up to 2018/12/31. The cumulative fluid injection per well-pad is shown in magenta circles. The white line shows the known faults (Pawley et al., 2018). The black tadpole
represents well trajectory, and the black bar labeled HW1 marks the new fracturing well mentioned in Section 3.2. (c) Daily observation of monitored seismicity and fluids injection
per well-pad. (d) The stratigraphy and lithology developed in the studied region (Hui et al., 2021b). Pink, orange, blue, magenta, and grey represent crystalline rock, sandstone,
limestone, evaporites, and shale lithology.
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variety in the seismicity position and magnitude raises a question
regarding the triggering mechanisms of HF-induced seismicity in
seismicity-frequent regions.

The triggering mechanisms of induced seismicity mainly
include either the increase in pore pressure due to fluid injection or
the poroelastic stress perturbation due to injection stimulation
(Ellsworth, 2013; Lei et al., 2017). However, when investigated on a
local scale, the underlying mechanisms of induced seismicity
exhibit a high degree of intricacy. Increasing lines of evidence show
that HF-induced seismicity in the Duvernay Shale is susceptible to
the combining control of site-specific geological, geomechanical,
and operational factors (Pawley et al., 2018; Hui et al., 2021b,
2023a). Such factors contributing to induced seismicity have been
found to be proximity to the Precambrian Basement and Swan Hills
reef margins (Pawley et al., 2018), initial formation pressure (Shen
et al., 2019), critically stressed state of faults (Zhang et al., 2019),
regional minimum principal stress (Pawley et al., 2018), and in-
jection fluid volumes (Schultz et al., 2020). Although some factors
above could partly explain the susceptibility of HF-induced
2233
seismicity in some cases, the quantitative impacts of all related
factors on the induced seismicity magnitude remain unclear. In
addition, without considering site-specific conditions, the injection
volume-magnitude relationship may not be directly utilized to
estimate the maximummoment magnitude (Mwmax) in response to
fluid injection (McGarr, 2014; Wang et al., 2020). Therefore, a novel
approach is required to quantify the effects of all related factors on
induced seismicity and faithfully forecast the Mwmax during HF
operations.

Understanding the quantified impact of various factors on
induced seismicity requires a comprehensive analysis of large
volumes of data (Zhang et al., 2021; Luo et al., 2022). An incomplete
or biased investigation of researchers on these factors might hinder
the correct understanding of the susceptibility of HF-induced
seismicity. Machine learning has been a practical approach to
identifying the potential linkages among various parameters and
determining the controlling parameters of one event. Pawley et al.
(2018) employed the machine learning method to investigate the
geological susceptibility of induced seismicity and estimate the
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seismogenic activation potential accordingly in the Duvernay play
of Western Canada. Perol et al. (2018) applied the neural network
method for earthquake detection and prediction in Oklahoma, USA,
providing a more robust model and detecting earthquakes 17 times
more than the previous model. The machine-learning approaches
have also been documented in other prior works for susceptibility
analysis and seismicity prediction (Wozniakowska and Eaton,
2020; Asim et al., 2020). Moreover, some researchers also adop-
ted machine learning models in analyzing the fracture dynamics
during HF (Zhao et al., 2022). Although accomplishing the machine
learning-based data analysis and forecast, these studies failed to
integrate different geological, geomechanical, and operational pa-
rameters (only one or several) to establish a solid prediction model.

This work develops an integrated machine-learning approach to
assess the susceptibility and forecast the magnitude of HF-induced
seismicity in the Duvernay Shale. An integrated dataset is collected
to obtain the geological, geomechanical, and fracturing parameters
as candidate variables, while seismicity magnitude is considered
the target variable. The data-mining process determines the pri-
mary factors controlling induced seismicity, and the prediction
model forecasts the seismicity magnitude. Accordingly, a mitiga-
tion strategy based on the prediction model is proposed to guide
the fracturing operations of horizontal wells and reduce seismicity
risks.

2. Material and methodology

2.1. Datasets description and quality control

An incomplete or biased data compilation might hinder a cor-
rect understanding of the susceptibility of HF-induced seismicity
via machine learning. Hence, the preparation of comprehensive
datasets is significant for data mining (Wozniakowska and Eaton,
2020). To obtain solid results via machine learning, it is essential
to consider all relevant data contributing to induced seismicity. We
collected the datasets from the potential geological, geomechanical,
and operational factors. For a dataset without directmeasurements,
we employ the proxies that have similar contributions to induced
seismicity. The reasons for using selected datasets and their data
source are listed below.

Distance to basement. It has been documented that the closer to
the Precambrian Basement, the higher the probability of induced
earthquakes (Hincks et al., 2018). Additionally, faults in the crystal-
line basement aremore continuous based on the ant tracking results,
increasing the likelihood of fault reactivation and nucleation of
large-magnitude induced seismicity (Kozłowska et al., 2018). Based
on stratigraphic correlations of straight wells, the distance to the
Precambrian Basement is measured from Duvernay's bottom to the
top Precambrian Basement. For wells without drilling the Precam-
brian Basement, such a distance is derived from the interpretation of
a 3D seismic survey (Pawley et al., 2018). Finally, the Sequential
Gaussian Simulation (SGS) method is used to contour its spatial
distribution (Fig. 2a) (Hui et al., 2021b; Hui and Gu, 2022).

Distance to reef margins. Statistical analysis suggests that loca-
tions of seismicity epicenters were spatially correlated to the
margins of the Swan Hills carbonate reefs (Schultz et al., 2017). This
coincidence indicates a reef nucleation preference for paleobathy-
metric highs linked to Precambrian Basement tectonics, repre-
senting a proxy for hydrologically conductive faults (Pawley et al.,
2018). The distance to the reef margin is calculated by the lateral
distance from the fracturing well to the reef margins (Schultz et al.,
2017; Pawley et al., 2018). Fig. 2b illustrates its distribution devel-
oped by the SGS method.

Distance to known faults. Generally, the reactivation of pre-
existing faults is accompanied by the occurrence of HF-induced
2234
seismicity. Therefore, locations near known faults (inferred from
geophysical or stratigraphic information) indicate potential regions
with increased seismic susceptibility (Anyim and Gan, 2020). The
distance to a known fault is computed by the shortest distance
between the fracturing well and the nearest fault (Fig. 2c). The
distribution of known faults in this area has been interpreted from
the geophysical or stratigraphic information (Pawley et al., 2018).

Initial formation pressure and minimum principal stress. A close
correlation has been found between the initial formation pressure
and induced events throughout the Duvernay shale reservoirs
(Eaton et al., 2018). The increasing pore pressure can reduce the
effective normal stress applied to the associated faults, increasing
the likelihood of fault slip (Liu et al., 2011). The state of stress is
essential for its influence on the Mohr-Coulomb failure criteria.
Thus, the minimum horizontal stress is included to investigate the
seismicity susceptibility. We adopted Shen's Matlab program for
regional stress and pore pressure calculations (Shen et al., 2019).
The available steady end pressure and the instantaneous shut-in
pressure (ISIP), derived from a pressure decline analysis of frac-
turing wells, have also been supplemented to improve pressure and
stress data quality (Fig. 2d and e).

Total fluid injection and number of stages, total proppant mass, and
horizontal length. Statistical analysis indicates that induced seis-
micity is associated with fracturing operations that use larger in-
jection volumes (~104 to ~105 m3) (Schultz et al., 2020). An increase
in the injection volume and the number of fracturing stages can
stimulate more hydraulic fractures (Chen et al., 2021), promoting
the generation of underground fracture networks and the occur-
rence of fault reactivation. The enlarging proppant mass and hori-
zontal lengths usually lead to a larger stimulated reservoir volume
(SRV). A large SRV increases the likelihood of a hydraulic connec-
tion between a stimulated well and pre-existing faults, possibly
reactivating such faults and triggering the induced seismicity.
These fracturing parameters are available in the GeoSCOUT data-
base, providing real-time information on these candidate
parameters.

Wellbore orientation. Statistical results suggest that a safe well-
fault distance (i.e., the distance to the farthest detected events
from a stage) is 879 m for NS-oriented wells and 749 m for NW-SE-
orientedwells in the Fox Creek region (Hui et al., 2021c, 2021d). The
wellbore orientation determines the hydraulic fracture orientation,
influencing a hydraulic pathway between fracturing wells and pre-
existing faults. These data are sourced from the well completions
database of GeoSCOUT.

Based on spatial distributions of candidate parameters, induced
events favor a short distance to the basement and the reef margins,
high initial formation pressure, high minimum principal stress,
NeS-oriented horizontal wells, and a large injection volume
(Fig. 2). Such observations can be used to corroborate the correct-
ness of the machine-learning-based prediction model.

For other data used in this work, the HF database is compiled of
all (~594) horizontal HF well completions in the Duvernay For-
mation up to 2020/12/31 from the GeoSCOUT database (Fig. 1)
(https://www.geologic.com/products/GeoSCOUT/, last accessed on
2022/05/01). The seismicity catalog, including 996 events for
2012e2020, is sourced from the Canadian Composite Seismicity
Catalogue (https://www.inducedseismicity.ca/catalogues/, last
accessed on 2020/09/21). The magnitude of completeness has been
documented to be ML ¼ 1.3 in the Fox Creek region (Schultz et al.,
2020). And ten events with a magnitude lower than 1.3 are elimi-
nated in the datasets.

A quality-control process is conducted through a spatiotemporal
association filter (SAF). An HF well is labeled a seismogenic well if
events occur within a 5-km distance away from the nearest frac-
turing stage and within a time window of three months after

https://www.geologic.com/products/GeoSCOUT/
https://www.inducedseismicity.ca/catalogues/


Fig. 2. Distribution of candidate parameters (base map) and target variable Mwmax (magnitude-scaled circles). (a) Distance to basement (km). (b) Distance to reef margins (km). (c)
Distance to known faults (km). (d) Minimum principal stress (MPa). (e) Initial formation pressure (MPa).
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stimulations (Atkinson et al., 2016). Furthermore, due to the nearly
simultaneous fracturing stimulation for different wells within the
same well-pad and their cumulative effects on HF-induced seis-
micity, the related data used in this work are obtained based on a
well-pad instead of a single well.

And we consider the maximum magnitudes (Mmax) of related
seismicity clusters as the target parameter. The SAF progress results
in a total of 299 well-pads with 299 Mmax. For computing practi-
cability, aseismic wells (i.e., wells without seismicity) are assigned
to zero in the seismicity magnitude. Statistics of these variables are
shown in Table 1. It is shown that Table 1 has the information of 299
single data points, and each of them corresponds to a related well
2235
pad. Specifically, the input geological, geomechanical and opera-
tional parameters of a well pad are derived from Fig. 2aee. The
maximum seismicity magnitude of induced seismicity surrounding
a well-pad is regarded as the output variable. It is also noted that
109 out of 299 data points with Mwmax ¼ 0 (i.e., aseismic HF wells)
are incorporated into the datasets.
2.2. Machine learning approach

The machine learning approach identifies the potential linkages
among various parameters and determines the controlling pa-
rameters contributing to one event. The extra trees (ET) algorithm,



Table 1
Statistics and data source of input and output variables used for the machine learning analysis.

Type Parameters Units Min Max Mean Standard deviation Source

Geological Distance to fault km 0.07 19.5 7.2 4.5 Well completion from GeoSCOUT, Pawley et al., 2018
Distance to basement km 0.15 0.55 0.38 0.96
Distance to reef km 5.7 10.9 6.4 1.1

Geomec-hanical Initial formation pressure MPa 36.7 67.1 57.0 5.6 Treatment data and Shen et al. (2019)
Shmin MPa 55.7 80.8 74.2 5.8

Operational Total fluid pumped m3 4194 470118 56811 65497 Well completion and Treatment data from GeoLOGIC
Total proppant placed t 249 53366 7148 9382
Horizontal length km 0.368 16.724 2.931 2.91
Number of stages 2 330 41 53
Well orientation Degree 0 135 106 54

Output Maximum seismicity magnitude 0 4.1 2.68 1.27 Seismicity catalog from CASC
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also called extremely randomized trees, is employed in our study to
build a computing model of predicted seismicity magnitude in the
studied region. The functional diagram of the ETalgorithm is shown
in Fig. 3. This algorithm generates a large number of base learners in
a parallel or serial manner and then uses a voting or averaging
strategy to combine these learners, significantly improving the
generalization performance and stability of the prediction model
(Breiman, 2001). Specifically, ET is an ensemble machine-learning
algorithm that combines the predictions from many decision
trees (Geurts et al., 2006). It is an ensemble of decision trees related
to other ensembles of decision tree algorithms, such as bootstrap
aggregation and random forest. The ET approach works by creating
numerous unpruned decision trees based on a selected training
dataset. Predictions are determined by averaging the predictions of
decision trees in a regression case or using majority voting in
classification cases. Compared to other algorithms, ET is faster in
execution time because it randomly chooses a split point. In addi-
tion, ET uses all training samples when constructing a decision tree,
and adopts a randomization strategy for the division, showing
strong applicability in field cases (Hui et al., 2021a, 2023b).
Therefore, ET has a relatively better performance in the data-
mining process.

For the data-mining process, the input data are first randomly
divided into a training group (60%), a validation group (20%), and a
testing group (20%). The ET algorithm is then utilized to run the
machine learning models using three data groups. Finally, model
prediction performance is assessed by the magnitude of a squared
error (MSE) and the determination coefficient (R2), which are given
by:

MSE¼

Pn
i¼1

ðyi � byiÞ2

n
(1)
Fig. 3. The functional diagram of the ET algorithm.
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R2 ¼1�

Pn
i¼1

ðyi � byiÞ2

Pn
i¼1

ðyi � yiÞ2
(2)

where yi is the ith parameter after normalization; byi is the pre-
dicted ith parameter; yi is the mean value of predicted parameters;
n is the number of parameters.

During the ET computing process, the random grid search
method is employed to optimize the hyperparameters of learning
algorithms, and the Adam algorithm is used to minimize a loss (Hui
et al., 2021a). Specifically, 1000 independent models are run for
each underlying hyperparameter to find the optimal configuration.
The details of the computing process using the ET alogrithm are
shown in Table 2. Results show that the number of estimators is 75,
and the maximum depth is 5. As for the criteria, the mean squared
error (MSE), rather than the mean absolute error (MAE), is selected
as the indicator to guarantee convergence. The auto, instead of sqrt
and log2, is selected in terms of the maximum features. As
mentioned before, each model used 60% of the collected data,
validated by 20% of the data, and tested 20% randomly. The feature
selection process is conducted using data-mining models to
determine the controlling factors (Wang et al., 2021, 2023).

3. Results

3.1. Machine learning results

The Pearson correlation results of variables are shown in Fig. 4,
illustrating a quantitative relationship between two random pa-
rameters. It is noted that the calculated correlation coefficient is
based on the entire data, including the training, validating, and
testing data. It is also worth noting that the target variable (Mwmax)
increases with the enlargement of initial formation pressure,
minimum principal stress, distance to fault, injection volume,
proppant mass, horizontal length, and a number of stages.
Furthermore, the target Mwmax has a negative correlation with the
distance to the basement. It is also shown that the distance to a reef
edge and awellbore orientation are not closely related to the target
variable compared with other inputs. It is also worth noting that all
Table 2
The details of the computing process using the ET algorithm.

Hyperparameters Search space Optimal configuration

Number of estimators 10, 25, 50, 75, 100 75
Maximum depth 3, 4, 5, 6, 7, 8 5
Criterion of split MSE, MAE MAE
Maximum features Sqrt, auto, log2 Auto



Fig. 4. Pearson correlation matrix of predictive and target variables. The number inside each unit denotes the correlation value of two features. The color label is given to the left of
the plot.
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four operational parameters positively influence the target variable,
demonstrating the role of fracturing parameters on seismicity
magnitude (McGarr, 2014).

Moreover, among all geological and geomechanical parameters,
the distance to the basement has the largest absolute magnitude in
the Pearson coefficient, indicating that this parameter has a more
paramount influence on Mwmax than other parameters. This result
can be explained by a possible hydraulic connection between
basement faults and the stimulated well. Once proximity to the
basement, the fracturing fluids tend to migrate vertically through
permeable fracture or fault networks to the basement faults,
increasing the pore pressure within the basement faults to cause a
fault to slip (Galloway et al., 2018; Tang et al., 2021).

The results of normalized frequencies for the studied parame-
ters are shown in Fig. 5a, indicating the feature importance in an
ET-based computing model. Such parameters are displayed in
decreasing order of importance by the distance to a fault, the dis-
tance to the basement, minimum principal stress, cumulative in-
jection volume, initial formation pressure, the number of fracturing
stages, horizontal length, cumulative proppants placed, wellbore
orientation, and the distance to a reef. This result matches the re-
sults from Pearson correlations (Fig. 4). However, the total prop-
pants placed are an exception, which ranks the third lowest in
feature importance but has a higher rank in Pearson's correlations.
This can be explained by the fact that a cumulative injection volume
owns a close linear correlation with total proppant mass
(R2 ¼ 0.95), hence masking the latter's role in feature importance.
Fig. 5b illustrates the ET-based performance of the tested dataset as
a function of the number of features. It is noted that the tested
dataset with six selected parameters has the largest coefficient of
determination (R2 ¼ 0.87) and the lowest mean-squared error
2237
(MSE ¼ 0.13), achieving high prediction performance with fewer
chosen parameters. Therefore, such top six parameters are used to
build the subsequent seismicity prediction model.

Pawley et al. (2018) used the machine learning method to study
the HF-induced seismicity throughout the Duvernay Formation
(Fig. 1a). He concluded that HF-induced seismicity in the Duvernay
Formation was primarily susceptible to a distance to the basement,
initial formation pressure, minimum horizontal stress, and prox-
imity to a reef edge, while a distance to known faults is less
important. In comparison with our results, both types of research
emphasize the role of a distance to the basement, initial formation
pressure, and minimum horizontal stress but have the opposite
outcomes regarding the proximity to a reef edge and the distance to
known faults. One reason for this mismatch is that we incorporate
the operational parameters into the candidate datasets, which af-
fects the final feature importance in the prediction model. Another
one is attributed to the site-specific features. In other words, the
selected well-pads near Fox Creek have a certain distance from
these faults and have no relation with the reef edge. Moreover, a
wellbore orientation has a low rank in the model. Such poor per-
formance may be explained by the fact that 83% of the selected
well-pad have the wellbore orientation of NW-SE. Therefore, the
difference of this parameter in this work has relatively less influ-
ence on the prediction results. It is also noted that we did not
consider some factors in this study, including lithium concentra-
tion, dolomite occurrence, and natural seismicity rates. The reasons
for neglecting these features are the unavailability of a database
related to them and their relatively low importance in prior works
(Pawley et al., 2018). Additionally, the faults used in this work are
the known large faults, as shown in Fig. 1. It is shown that the west
section, away from the known large faults, is the seismicity-



Fig. 5. (a) The normalized feature importance for candidate parameters. (b) The R2 of tested datasets with a different number of candidate features.
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frequent region. Therefore, the positive correlation betweenMwmax
and the distance to fault follows this observation. However, if we
obtain the available 3D seismic data in the examined region, small-
scale pre-existing faults could be identified. The closer the forma-
tion is to these small-scale faults, the more brittle it may be and the
higher the probability of seismicity with higherMwmax. Overall, this
work provides insights into how multiple factors influenced seis-
micity magnitude and successful field application in mitigating
potential seismicity risks via machine learning.
3.2. Seismicity prediction model and application

A significant application of the ET-based models is to establish a
seismicity prediction model that can optimize the operational pa-
rameters and mitigate potential seismicity risks. The establishment
of the seismicity predictionmodel is as follows. First, we investigate
a relationship between fluid injection and placed proppants of
fracturing wells within the studied region. The upper and lower
bounds of cumulative fluids and proppants pumped are obtained to
guide future stimulation operations (Fig. 6a). Next, we run the ET-
based seismicity prediction models under different operational
parameters as well as site-specific geological and geomechanical
parameters. Finally, this prediction model determines the recom-
mended cumulative injection volume and proppant mass with a
moderate seismicity magnitude. Given that the magnitude of 2.5
has been demonstrated to be the long-term detection threshold for
induced earthquakes in Western Canada (Schultz et al., 2017), here
we consider the moderate magnitude as M 2.5. We investigate the
fluid and proppants amount to reduce the potential seismic risks. In
addition, as the number of stages and horizontal length have pos-
itive relations with cumulative fluid injection (Fig. 4), these two
factors are assigned to values proportional to cumulative fluid in-
jection in the prediction model.

Fig. 6b and c illustrates the initial and recommended fracturing
parameters in the 3.05 and 3.6 cases (Fig. 1b). Table 3 compares the
initial and recommended fluid injection and proppants placed in
both cases. Based on the ET-based models, both 3.05 and 3.6
earthquakes were triggered due to the larger fracturing job sizes
than the recommended ones. To reduce the potential seismicity
magnitude, the recommended fluid volume and proppant mass in
3.05 and 3.6 cases would have been designed to be less than
2238
approximately 70,000 m3 and 10,000 t, and 80,000 m3, and
10,000 t, respectively. In other words, if the total injection volume
in both cases is reduced by 58.8% and 55.6%, respectively, the risks
ofM > 3 induced seismicity can be mitigated with a magnitude less
than 2.5 instead.

We also studied a new case to demonstrate the application of
the ET-based prediction model (Fig. 7). A new horizontal well was
drilled in February 2021 near the M 3.6 event (Fig. 1b). Following
the procedures of prediction model establishment, the recom-
mended cumulative fluid injection and proppant mass cover a
range of 80,000e90,000 m3 and 10,000e12,500 t (large rectangle
in Fig. 7b). The 83,411 m3 and a total proppant mass of 12,792 t are
adopted in the fracturing operations towards this well in March
2021 (small rectangle in Fig. 7b). Interestingly, based on the pre-
diction model, the predicted Mmax of induced events under such
fracturing job size is 2.9, quite similar to that of actual induced
events (i.e., 3.05), indicating the robustness of the prediction model
in this work.

Based on the seismicity prediction model in the three cases
(Figs. 6 and 7), the cumulative fluid injection and proppants placed
are recommended at 70,000e90,000 m3 and 9500e12,500 t,
respectively, to avoid larger-magnitude induced events. To create a
map of predicted seismicity magnitudes, we employ the mean
value (i.e., 80,000 m3 and 11,500 t) to forecast a seismicity magni-
tude under site-specific features. The SGS method is used to
generate the magnitude map (Fig. 8). It is worth noting that the
prediction map matches the observed spatial seismicity. Moreover,
84.6% of the fracturing wells will be seismic wells with a seismicity
magnitude lower than the actual one if the fracturing job size is
reduced, demonstrating the necessity of this work prior to hy-
draulic fracturing. This machine learning workflow can also be used
to investigate seismicity susceptibility and propose mitigation
strategies accordingly in other seismicity-frequent regions. It is
extremely practical to guide the operators to implement safe op-
erations in developing unconventional resources.
4. Discussion

This study uses various public data sources to estimate the
candidate parameters. The data quality of these parameters de-
pends on the robustness of such public datasets. For example, the



Fig. 6. (a) The linkage between the total pumped volume of fracturing fluids and the mass of proppant placed. (b, c) The initial and recommended fracturing parameters in two
cases. The color scale bar represents the expected seismicity magnitude. The pink circles denote the initial operational parameters that triggered the corresponding event. The black
rectangular shows the recommended fracturing parameters range that could mitigate the risks of large magnitude seismicity.

Table 3
Comparison of the original and recommended fracturing design in both 3.05 and 3.6 cases.

Original Recommended Comparison

Mwmax Cumulative fluid
injection, m3

Cumulative proppant
mass, t

Mwmax Cumulative fluid
injection, m3

Cumulative proppant
mass, t

Reduction percentage of
injection, %

Reduction percentage of
proppant, %

3.05 169788 16170 2.5 70000 10000 58.8 38.2
3.6 180206 19806 2.5 80000 10000 55.6 49.5
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distances to known faults and Swan Hills are primarily derived
from previous work (Pawley et al., 2018). Additionally, the distance
to the basement, in-situ stress, and initial formation pressure
derived from prior works are further calibrated using this region's
available logging and treatment data, improving the data quality of
the candidate parameters (Fig. 9a) (Pawley et al., 2018; Shen et al.,
2019; Jing et al., 2021, 2022). The target variable Mwmax has been
derived from the focal mechanisms of monitored seismicity.
However, because of the monitoring resolution of seismology
networks and different methods of focal solutions, the derived
seismicity magnitude has underlying uncertainty (Zhu et al., 2017).
Additionally, we used a Mmax of zero for the cases that were
aseismic, which is different from the regional detection threshold.
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However, this setting is used for computing applicability. As shown
in Fig. 8, the blue region represents a possible distribution of
aseismic fracturingwells to guide future stimulations. Furthermore,
we selected 60% of the data for training, 20% for validation, and 20%
for testing. This 6:2:2 can solve the hyperparameter problem and
obtain a relatively robust result. Regarding the limited 299 data
points, we conducted the uncertainty analysis of the ET model via
bootstrapping a training set, and the result is shown in Fig. 9b. It is
noted that the calculation errors in regions used by the prediction
model (blue areas in Fig. 9b) are less than 0.07, indicating the
robustness of this prediction model developed by the ET algorithm.

We also compare the machine learning results via ET, gradient
boosting decision tree (GBDT), artificial neural network (ANN), and



Fig. 7. (a) The distribution of new fracturing well and associated induced seismicity. The location of this horizontal well is shown in Fig. 1b. The induced events are scaled by the
magnitude and colored by the induced moment. The largest event is theMw 3.05 event that occurred on 2021/04/23. (b) Comparison between the recommended (large rectangular)
and actual (small rectangular) parameters. (c) Temporal view of induced seismicity and fracturing stages of the new well.

Fig. 8. Predicted seismicity magnitude distribution under site-specific features using
recommended fracturing parameters via ET-based prediction model. The triangle
marks the wells with an estimated magnitude (red number) lower than the actual one,
while the diagonal cross labels the wells with a magnitude (red number) larger than
the actual one.
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random forest (RF). The prediction performance of the tested
dataset using four algorithms as a function of the number of
selected parameters is shown in Figs. 5b and 9cee. It is shown that,
for one thing, the tested dataset with six selected parameters has a
large coefficient of determination (R2) in all algorithms, which
achieves the goal of high prediction performance with fewer
selected parameters. For another, the average R2 of the tested
dataset using six selected parameters gives the value of 0.791 for
ANN, 0.799 for RF, 0.870 for ET, and 0.811 for GBDT. Furthermore,
the average mean-squared-errors (MSE) are computed to be 0.249
for ANN, 0.189 for RF, 0.130 for ET, and 0.187 for GBDT. Therefore, ET
is the best algorithm in this study, with the highest prediction
performance and the least calculation errors.

To investigate the role of well-pad data for the responding
Mwmax variable, we also built an ET-based prediction model using
the dataset of a single horizontal well, compared to that of the
whole HF pad. It is shown that the determination coefficient of the
prediction model with a single well is only 0.53, less than 0.87 with
the well-pad. The lower prediction performance using a single well
leads to nearly identical parameters for single wells within the
same HF-pad, reducing the prediction effectiveness in the model



Fig. 9. (a) The treatment plot for initial formation pressure and stress estimation. (b)The calculation error of the ET-based prediction model. (cee) The R2 of tested datasets with a
different number of candidate features using ANN, GBDT and RF, respectively.
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(parameter redundancy). Therefore, the well-pad-based data have
a better performance in the prediction model via the machine
learning method. Moreover, some researchers adopted novel onset
time methods to extract the temporal features from 4D seismic
surveys (Liu et al., 2020). This “onset time” method could be a tool
used for investigating the temporal relation between seismic
events.

Furthermore, although 0 seismicity is the target goal in the shale
development area, the M > 0 induced events are commonly
accompanied by hydraulic fracturing in the Fox Creek region
(Fig. 1c), especially in the western part of the studied region (Hui
et al., 2021e, f). Because the long-term detection threshold for
produced earthquakes inWestern Canada has been shown to be 2.5
(Schultz et al., 2017), here we refer to the intermediate magnitude
as M 2.5 in the examined region (Fig. 6c). For some seismicity-
quiescent regions, the magnitude of 0 may be regarded as the
target magnitude used for the seismicity prediction model.
5. Conclusions

In this work, an integrated machine-learning approach is
developed to assess the susceptibility and forecast the magnitude
of HF-induced seismicity in the Duvernay Shale. The dataset is
obtained from the field to derive associated candidate and target
variables. The machine learning approach determines the factors
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controlling induced seismicity and forecasts the seismicity
magnitude. The mitigation strategy based on a machine learning
model is proposed to guide the fracturing operations of horizontal
wells and reduce the earthquake risks in the studied region. The
primary conclusions of this paper are drawn as follows.

(1) A comprehensive dataset from 594 fracturing wells
throughout the Duvernay Formation near Fox Creek, Alberta,
is collected. The spatiotemporal association filter results in a
total of 299 well-pads with a related maximum magnitude.

(2) Feature importance indicates that a distance to a fault, a
distance to the basement, minimum principal stress, cumu-
lative fluid injection, initial formation pressure, and the
number of fracturing stages are among significant model
predictors.

(3) M > 3 induced seismicity can be potentially mitigated if
reducing a fluid injection volume and proppant mass per
well-pad based on the ET-based model.

(4) ET-based prediction map of seismicity magnitude matches
the observed spatial seismicity. 84.6% of the fracturing wells
will be triggered with a seismicity magnitude lower than the
actual one if reducing the fracturing job size.

(5) This machine learning workflow can be applied to other
seismicity-frequent regions to mitigate potential seismicity
risks.



G. Hui, Z.-X. Chen, H. Wang et al. Petroleum Science 20 (2023) 2232e2243
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This research has been made possible by contributions from the
Natural Sciences and Engineering Research Council (NSERC)/Energi
Simulation Industrial Research Chair in Reservoir Simulation and
the Alberta Innovates (iCore) Chair in Reservoir Modeling. This
research was supported by the Science Foundation of China Uni-
versity of Petroleum, Beijing (No. 2462023BJRC001) and the Na-
tional Natural Science Foundation of China Joint Fund Key Support
Project (No. U19B6003).

References

Anyim, K., Gan, Q., 2020. Fault zone exploitation in geothermal reservoirs: pro-
duction optimization, permeability evolution and induced seismicity. Advances
in Geo-Energy Research 4 (1), 1e12. https://doi.org/10.26804/ager.2020.01.01.

Asim, K.M., Moustafa, S.S., Niaz, I.A., et al., 2020. Seismicity analysis and machine
learning models for short-term low magnitude seismic activity predictions in
Cyprus. Soil Dynam. Earthq. Eng.130,105932. https://doi.org/10.3390/rs12020301.

Atkinson, G.M., Eaton, D.W., Ghofrani, H., et al., 2016. Hydraulic fracturing and
seismicity in the Western Canada sedimentary basin. Seismol Res. Lett. 87 (3),
631e647. https://doi.org/10.1785/0220150263.

Baranova, V., Mustaqeem, A., Bell, S., 1999. A model for induced seismicity caused by
hydrocarbon production in the Western Canada Sedimentary Basin. Can. J. Earth
Sci. 36 (1), 47e64. https://doi.org/10.1139/e98-080.

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5e32. https://doi.org/
10.1023/A:1010933404324.

Chen, J., Wang, L., Wang, C., et al., 2021. Automatic fracture optimization for shale
gas reservoirs based on gradient descent method and reservoir simulation.
Advances in Geo-Energy Research 5 (2), 191e201. https://doi.org/10.46690/
ager.2021.02.08.

Eaton, D.W., Igonin, N., Poulin, A., et al., 2018. Induced seismicity characterization
during hydraulic fracture monitoring with a shallow-wellbore geophone array
and broadband sensors. Seismol Res. Lett. 89 (5), 1641e1651. https://doi.org/
10.1785/0220180055.

Ellsworth, W.L., 2013. Injection-induced earthquakes. Science 341, 1225942. https://
doi.org/10.1126/science.1225942.

Galloway, E., Hauck, T., Corlett, H., et al., 2018. Faults and associated karst collapse
suggest conduits for fluid flow that influence hydraulic fracturing-induced
seismicity. Proc. Natl. Acad. Sci. USA 115 (53), E10003eE10012. https://
doi.org/10.1073/pnas.1807549115.

Geurts, P., Damien, E., Louis, W., 2006. Extremely randomized trees. Mach. Learn. 63,
3e42. https://doi.org/10.1007/s10994-006-6226-1.

Ghofrani, H., Atkinson, G.M., 2020. Activation rate of seismicity for hydraulic frac-
ture wells in the western Canada sedimentary basin. Bull. Seismol. Soc. Am. 110
(5), 2252e2271. https://doi.org/10.1785/0120200002.

Hincks, T., Aspinall, W., Cooke, R., et al., 2018. Oklahoma's induced seismicity
strongly linked to wastewater injection depth. Science 359 (6381), 1251e1255.
https://doi.org/10.1126/science.aap7911.

Hui, G., Gu, F., 2022. An integrated method to mitigate hazards from hydraulic
fracturingeinduced earthquakes in the Duvernay Shale Play. SPE Reservoir Eval.
Eng. https://doi.org/10.2118/210287-PA.

Hui, G., Chen, S., He, Y., et al., 2021a. Production forecast for shale gas in uncon-
ventional reservoirs via machine learning approach: case study in Fox Creek,
Alberta. J. Nat. Gas Sci. Eng. 94, 104045. https://doi.org/10.1016/
j.jngse.2021.104045.

Hui, G., Chen, S., Chen, Z., et al., 2021b. Comprehensive characterization and miti-
gation of hydraulic fracturing-induced seismicity in Fox Creek, Alberta. SPE J. 26
(5), 2736e2747. https://doi.org/10.2118/206713-PA.

Hui, G., Chen, S., Chen, Z., et al., 2021c. Influence of hydrological communication
between basement-rooted faults and hydraulic fractures on induced seismicity:
a case study. J. Petrol. Sci. Eng. 206, 109040. https://doi.org/10.1016/
j.petrol.2021.109040.

Hui, G., Chen, S., Chen, Z., et al., 2021d. Investigation on two Mw 3.6 and Mw 4.1
earthquakes triggered by poroelastic effects of hydraulic fracturing operations
near Crooked Lake, Alberta. J. Geophys. Res. Solid Earth 126, e2020JB020308.
https://doi.org/10.1029/2020JB020308.

Hui, G., Chen, S., Chen, Z., et al., 2021e. Role of fluid diffusivity in the spatiotemporal
migration of induced earthquakes during hydraulic fracturing in unconven-
tional reservoirs. Energy Fuel. 35 (21), 17685e17697. https://doi.org/10.1021/
acs.energyfuels.1c02950.

Hui, G., Chen, S., Chen, Z., et al., 2021f. An integrated approach to characterize
hydraulic fracturing-induced seismicity in shale reservoirs. J. Petrol. Sci. Eng.
2242
196, 107624. https://doi.org/10.1016/j.petrol.2020.107624.
Hui, G., Chen, Z., Wang, P., et al., 2022. Mitigating risks from hydraulic fracturing-

induced seismicity in unconventional reservoirs: case study. Sci. Rep. 12,
12537. https://doi.org/10.1038/s41598-022-16693-3.

Hui, G., Chen, Z., Lei, Z., et al., 2023a. A synthetical geoengineering approach to
evaluate the largest hydraulic fracturing-induced earthquake in the East Shale
Basin. Alberta. Pet. Sci. https://doi.org/10.1016/j.petsci.2023.01.006.

Hui, G., Chen, Z., Wang, Y., et al., 2023b. An integrated machine learning-based
approach to identifying controlling factors of unconventional shale productiv-
ity. Energy 266, 126512. https://doi.org/10.1016/j.energy.2022.126512.

Jing, G., Chen, Z., Hui, G., 2021. A novel model to determine gas content in naturally
fractured shale. Fuel 306, 121714. https://doi.org/10.1016/j.fuel.2021.121714.

Jing, G., Chen, Z., Hu, X., Hui, G., et al., 2022. Influence of different shut-in periods
after fracturing on productivity of MFHW in Duvernay shale gas formation with
high montmorillonite content. Fuel 314, 122719. https://doi.org/10.1016/
j.fuel.2021.122719.

Kozłowska, M., Brudzinski, M.R., Friberg, P., et al., 2018. Maturity of nearby faults
influences seismic hazard from hydraulic fracturing. Proc. Natl. Acad. Sci. USA
115 (8), E1720eE1729. https://doi.org/10.1073/pnas.1715284115.

Lei, X., Huang, D., Su, J., et al., 2017. Fault reactivation and earthquakes with mag-
nitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan
Basin, China. Sci. Rep. 7, 7971. https://doi.org/10.1038/s41598-017-08557-y.

Liu, T., Chen, H., Hetz, G., et al., 2020. Integration of time-lapse seismic data using
the onset time approach: the impact of seismic survey frequency. J. Petrol. Sci.
Eng. 189, 106989. https://doi.org/10.1016/j.petrol.2020.106989.

Liu, Y., Xu, L., Yang, D., 2011. Pore pressure diffusion characteristics of Longtan
reservoir-induced-earthquake. Chin. J. Geophys. 54 (4), 1028e1037. https://
doi.org/10.3969/j.issn.0001-5733.2011.04.017 (in Chinese).

Luo, S., Xiao, L., Jin, Y., et al., 2022. A machine learning framework for low-field NMR
data processing. Petrol. Sci. 19, 581e593. https://doi.org/10.1016/
j.petsci.2022.02.001.

McGarr, A., 2014. Maximum magnitude earthquakes induced by fluid injection.
J. Geophys. Res. Solid Earth 119 (2), 1008e1019. https://doi.org/10.1002/
2013JB010597.

Pawley, S., Schultz, R., Playter, T., et al., 2018. The geological susceptibility of induced
earthquakes in the Duvernay play. Geophys. Res. Lett. 45 (4), 1786e1793.
https://doi.org/10.1002/2017GL076100.

Perol, T., Gharbi, M., Denolle, M., 2018. Convolutional neural network for earthquake
detection and location. Sci. Adv. 4, e1700578. https://doi.org/10.1126/
sciadv.1700578.

Schultz, R., Stern, V., Gu, Y.J., 2014. An investigation of seismicity clustered near the
Cordel Field, west central Alberta, and its relation to a nearby disposal well.
J. Geophys. Res. Solid Earth 119, 3410e3423. https://doi.org/10.1002/
2013JB010836.

Schultz, R., Wang, R., Gu, Y.J., et al., 2017. A seismological overview of the induced
earthquakes in the Duvernay play near Fox Creek, Alberta. J. Geophys. Res. Solid
Earth 122 (1), 492e505. https://doi.org/10.1002/2016JB013570.

Schultz, R., Skoumal, R.J., Brudzinski, M.R., et al., 2020. Hydraulic fracturing-induced
seismicity. Rev. Geophys. 58, e2019RG000695. https://doi.org/10.1029/
2019RG000695.

Shen, L., Schmitt, D.R., Haug, K., 2019. Quantitative constraints to the complete state
of stress from the combined borehole and focal mechanism inversions: Fox
Creek, Alberta. Tectonophysics 764, 110e123. https://doi.org/10.1016/
j.tecto.2019.04.023.

Tang, Y., Weng, A., Yang, Y., et al., 2021. Connection between earthquakes and deep
fluids revealed by magnetotelluric imaging in Songyuan, China. Sci. China Earth
Sci. 64, 161e176. https://doi.org/10.1007/s11430-019-9633-y.

Wang, B., Harrington, R., Liu, Y., et al., 2020. A study on the largest hydraulic-
fracturing-induced earthquake in Canada: observations and static stress-drop
estimation. Bull. Seismol. Soc. Am. https://doi.org/10.1785/0120190261.

Wang, H., Chen, Z., Chen, S., et al., 2021. Production forecast and optimization for
parent-child well pattern in unconventional reservoirs. J. Petrol. Sci. Eng. 203,
108899. https://doi.org/10.1016/j.petrol.2021.108899.

Wang, H., Wang, S., Chen, S., Hui, G., 2023. Predicting long-term production dy-
namics in tight/shale gas reservoirs with dual-stage attention-based TEN-
Seq2Seq model: a case study in Duvernay formation. Geoenergy Science and
Engineering 223, 211495. https://doi.org/10.1016/j.geoen.2023.211495.

Wetmiller, R.J., 1986. Earthquakes near Rocky Mountain House, Alberta, and their
relationship to gas production facilities. Can. J. Earth Sci. 23 (2), 172e181.
https://doi.org/10.1139/e86-020.

Wozniakowska, P., Eaton, D.W., 2020. Machine learning-based analysis of geological
susceptibility to induced seismicity in the Montney Formation. Canada. Geo-
phys. Res. Lett. 47, e2020GL089651. https://doi.org/10.1029/2020GL089651.

Yang, H., Liu, Y., Wei, M., et al., 2017. Induced earthquakes in the development of
unconventional energy resources. Sci. China Earth Sci. 60, 1632e1644. https://
doi.org/10.1007/s11430-017-9063-0.

Zhang, H.L., David, W.E., German, R., Suzie, Q.J., 2019. Source-mechanism analysis
and stress inversion for hydraulic-fracturing-induced event sequences near Fox
Creek, Alberta. Bull. Seismol. Soc. Am. 109 (2), 636e651. https://doi.org/10.1785/
0120180275.

Zhang, Y., Xi, K., Cao, Y., et al., 2021. The application of machine learning under
supervision in identification of shale lamina combination types da case study
of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Forma-
tion, Ordos Basin, NW China. Petrol. Sci. 18, 1619e1629. https://doi.org/10.1016/
j.petsci.2021.09.033.

https://doi.org/10.26804/ager.2020.01.01
https://doi.org/10.3390/rs12020301
https://doi.org/10.1785/0220150263
https://doi.org/10.1139/e98-080
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.46690/ager.2021.02.08
https://doi.org/10.46690/ager.2021.02.08
https://doi.org/10.1785/0220180055
https://doi.org/10.1785/0220180055
https://doi.org/10.1126/science.1225942
https://doi.org/10.1126/science.1225942
https://doi.org/10.1073/pnas.1807549115
https://doi.org/10.1073/pnas.1807549115
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1785/0120200002
https://doi.org/10.1126/science.aap7911
https://doi.org/10.2118/210287-PA
https://doi.org/10.1016/j.jngse.2021.104045
https://doi.org/10.1016/j.jngse.2021.104045
https://doi.org/10.2118/206713-PA
https://doi.org/10.1016/j.petrol.2021.109040
https://doi.org/10.1016/j.petrol.2021.109040
https://doi.org/10.1029/2020JB020308
https://doi.org/10.1021/acs.energyfuels.1c02950
https://doi.org/10.1021/acs.energyfuels.1c02950
https://doi.org/10.1016/j.petrol.2020.107624
https://doi.org/10.1038/s41598-022-16693-3
https://doi.org/10.1016/j.petsci.2023.01.006
https://doi.org/10.1016/j.energy.2022.126512
https://doi.org/10.1016/j.fuel.2021.121714
https://doi.org/10.1016/j.fuel.2021.122719
https://doi.org/10.1016/j.fuel.2021.122719
https://doi.org/10.1073/pnas.1715284115
https://doi.org/10.1038/s41598-017-08557-y
https://doi.org/10.1016/j.petrol.2020.106989
https://doi.org/10.3969/j.issn.0001-5733.2011.04.017
https://doi.org/10.3969/j.issn.0001-5733.2011.04.017
https://doi.org/10.1016/j.petsci.2022.02.001
https://doi.org/10.1016/j.petsci.2022.02.001
https://doi.org/10.1002/2013JB010597
https://doi.org/10.1002/2013JB010597
https://doi.org/10.1002/2017GL076100
https://doi.org/10.1126/sciadv.1700578
https://doi.org/10.1126/sciadv.1700578
https://doi.org/10.1002/2013JB010836
https://doi.org/10.1002/2013JB010836
https://doi.org/10.1002/2016JB013570
https://doi.org/10.1029/2019RG000695
https://doi.org/10.1029/2019RG000695
https://doi.org/10.1016/j.tecto.2019.04.023
https://doi.org/10.1016/j.tecto.2019.04.023
https://doi.org/10.1007/s11430-019-9633-y
https://doi.org/10.1785/0120190261
https://doi.org/10.1016/j.petrol.2021.108899
https://doi.org/10.1016/j.geoen.2023.211495
https://doi.org/10.1139/e86-020
https://doi.org/10.1029/2020GL089651
https://doi.org/10.1007/s11430-017-9063-0
https://doi.org/10.1007/s11430-017-9063-0
https://doi.org/10.1785/0120180275
https://doi.org/10.1785/0120180275
https://doi.org/10.1016/j.petsci.2021.09.033
https://doi.org/10.1016/j.petsci.2021.09.033


G. Hui, Z.-X. Chen, H. Wang et al. Petroleum Science 20 (2023) 2232e2243
Zhao, X., Jin, F., Liu, X., Zhang, Z., Cong, Z., Li, Z., Tang, J., 2022. Numerical study of
fracture dynamics in different shale fabric facies by integrating machine
learning and 3-D lattice method: a case from Cangdong Sag, Bohai Bay basin,
China. J. Petrol. Sci. Eng. 218, 110861. https://doi.org/10.1016/
2243
j.petrol.2022.110861.
Zhu, Y., Wang, J., Sun, F., et al., 2017. Micro-seismic monitoring and instrument for

hydraulic fracturing in the low-permeability oilfield. Chin. J. Geophys. 60 (11),
4282e4293 (in Chinese). https://10.6038/cjg20171116.

https://doi.org/10.1016/j.petrol.2022.110861
https://doi.org/10.1016/j.petrol.2022.110861
https://10.6038/cjg20171116

	A machine learning-based study of multifactor susceptibility and risk control of induced seismicity in unconventional reser ...
	1. Introduction
	2. Material and methodology
	2.1. Datasets description and quality control
	2.2. Machine learning approach

	3. Results
	3.1. Machine learning results
	3.2. Seismicity prediction model and application

	4. Discussion
	5. Conclusions
	Declaration of competing interest
	Acknowledgments
	References


