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a b s t r a c t

Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty,
especially for complex geology such as high dipping structures. However, due to the consideration of
complex structure or reflection features, the existing multi-channel inversion methods have to adopt the
highly time-consuming strategy of arranging seismic data trace-by-trace, limiting its wide application in
pre-stack inversion. A fast pre-stack multi-channel inversion constrained by seismic reflection features
has been proposed to address this issue. The key to our method is to re-characterize the reflection
features to directly constrain the pre-stack inversion through a Hadamard product operator without
rearranging the seismic data. The seismic reflection features can reflect the distribution of the stratum
reflection interface, and we obtained them from the post-stack profile by searching the shortest local
Euclidean distance between adjacent seismic traces. Instead of directly constructing a large-size reflec-
tion features constraint operator advocated by the conventional methods, through decomposing the
reflection features along the vertical and horizontal direction at a particular sampling point, we have
constructed a computationally well-behaved constraint operator represented by the vertical and hori-
zontal partial derivatives. Based on the Alternating Direction Method of Multipliers (ADMM) optimiza-
tion, we have derived a fast algorithm for solving the objective function, including Hadamard product
operators. Compared with the conventional reflection features constrained inversion, the proposed
method is more efficient and accurate, proved on the Overthrust model and a field data set.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Pre-stack seismic inversion focuses on the amplitude variation
with offset or angle (AVO/AVA) and aims to quantitatively evaluate
the lithologic and fluid properties of the subsurface media from the
observed data (Smith and Gidlow, 1987; Yin et al., 2015; Zong et al.,
2013, 2015, 2017; Li et al., 2020, 2021). P-wave and S-wave are two
types of vibrations that geophysicists have been interested in
because of their different responses to the rock matrix and fluid
Method of Multipliers; SCI,
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types (Goodway et al., 1997; Gray and Andersen, 2000; Zhang et al.,
2015). The P-, S-wave information can be obtained by inverting the
pre-stack seismic data since the AVO or AVA analysis is related to P-
velocity, S-velocity, and density on both sides of a layer interface
(Aki and Richards, 1980; Wang et al., 2019; Xi et al., 2022). For this
reason, pre-stack seismic inversion has been widely studied and
applied in hydrocarbon exploration (Zhang et al., 2011; Rimstad
et al., 2012; Zong et al., 2021). However, seismic inversion is an
ill-posed problem with substantial uncertainty. Moreover, the
continuity and fidelity of the inversion model in complex geology
are essential factors that affect the quantitative interpretation of
reservoirs. Several studies have shown that the existing multi-
channel seismic inversion can effectively deal with these issues
(Zhang et al., 2013b; Yuan et al., 2015).

Different from the conventional trace-by-trace processing
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technology, multi-channel technology is a simultaneous optimi-
zation strategy for 2D/3D seismic datasets that can process multiple
or all seismic traces simultaneously and consider the relationship
between adjacent seismic traces. Due to the excellent performance
in noise suppression and continuity, especially for complex geol-
ogy, the multi-channel technology has been widely studied in the
fields of denoising (Abma and Claerbout, 1995), seismic processing
(Liu et al., 2009; Zhang and Alkhalifah, 2019), and seismic inversion
(Li et al., 2018; Cheng et al., 2020). Among them, seismic multi-
channel inversion has been paid more and more attention in
recent years. The primary multi-channel inversion does not
consider the lateral constraints, known as laterally unconstrained
inversion (1D-LUI) (Hamid and Pidlisecky, 2015). It can usually
obtain a higher quality profile by inverting the multiple seismic
gathers simultaneously, compared to the conventional single trace
inversion (Kazemi and Sacchi, 2014; Nose-Filho et al., 2015; Ma
et al., 2018). However, it may produce a discontinuous model
because it does not consider the lateral distribution of the stratum
(Zhang et al., 2013a, 2013b). To deal with this issue, Zhang et al.
(2013b) and Hamid and Pidlisecky (2015) proposed the laterally
constrained inversion (1D-LCI), assuming that the stratum is hori-
zontally distributed (Hamid and Pidlisecky, 2015). In general, the
lateral continuity can be controlled by regularizing the first or
second partial derivatives of the model parameters along the hor-
izontal direction (Sroubek and Milanfar, 2012). As we know, the
prior constraints are suboptimal when assumptions do not match
reality. The 1D-LCI method may produce ambiguous boundaries if
the stratum is not horizontally distributed, such as faults and high
dipping structures (Hamid and Pidlisecky, 2016; Bai et al., 2019). To
overcome this problem, constructing reasonable constraints more
in line with stratum structure has gradually become the focus of
multi-channel inversion research (Hamid et al., 2018; Yin et al.,
2020). At present, two mainstream strategies can construct a
reasonable structural prior. One is to describe the structure char-
acteristics by dip angles estimated from the migrated dataset,
represented by the structurally constrained inversion (SCI) (Hamid
and Pidlisecky, 2016; Hamid et al., 2018; Cheng et al., 2020). The
other describes the seismic reflection events based on correlation
analysis, represented by reflection features constrained inversion
(Yu et al., 2020). It has been widely studied in deconvolution (Du
et al., 2018) and absorption compensation (Ma et al., 2020).

However, due to the high computational cost, the SCI and
reflection features constrained inversion are challenging to be
widely used in practical production, especially for pre-stack
inversion. The main reason for the high inversion cost is that the
operators describing the stratum structures or seismic reflection
events are usually complex, and a dimensionality reduction strat-
egy is required to introduce them into the objective function. This
dimensionality reduction strategy arranges the seismic traces into a
column vector trace-by-trace, significantly exacerbating the matrix
size of the forward operator and constraint operators. Moreover, it
is worth noting that the matrix size would increase geometrically
with expanding the number of seismic traces, and handling the
large-scale matrices is extremely time-consuming. The Block Co-
ordinate Descent (BCD) algorithm was developed gradually to
overcome the problem that the inversion is difficult to implement
while the number of seismic traces reaches a certain level
(Bertsekas,1999;Wright, 2015; Lee et al., 2017). It approximates the
optimal global solutionwith the optimal local solution of each trace
through several iterations. This algorithm dramatically liberates the
consumption of computer memory (Wang et al., 2018) but at the
expense of computational efficiency. Furthermore, the estimated
inversion parameters are not globally optimal. In contrast, the
classical total variation (TV) regularization multi-channel inversion
is extremely efficient (Gholami and Sacchi, 2013; Gholami, 2015,
2061
2016), belonging to 1D-LCI. It does not adopt the dimensionality
reduction strategy because of the simple assumption that the
stratum is horizontally distributed. As mentioned, this method al-
ways suffers boundary ambiguity for high dip structures. For the
current techniques, adopting reasonable prior constraints would
reduce efficiency. It seems that the rationality constraints and
inversion efficiency cannot be taken into account simultaneously.

We developed a novel method to characterize seismic reflection
features by decomposing them into horizontal and vertical di-
rections. To avoid the conventional strategy of seismic trace rear-
rangement, we use a particular matrix operator, the Hadamard
operator, in constructing the regularization terms of reflection
features, which represents the product of the corresponding ele-
ments of two matrices of the same size. The key is that each matrix
element is controllable when the Hadamard product operator
operates, which can overcome the complexity of the reflection
feature operator. Although the application of this operator in
seismic exploration is rare, it plays an irreplaceable role in our
method. The difficulty is to minimize the objective function con-
taining the Hadamard product operators. Based on the ADMM
strategy, we derived a fast reflection features constrained inversion
algorithm called FRCI. This work will first introduce the pre-stack
multi-channel forward model based on the Aki-Richards equa-
tion. Next, a fast reflection feature constrained inversion is derived
according to the classical multi-channel inversion with the BCD
algorithm. Finally, the overthrust model and a field data set are
adopted to test the feasibility and effectiveness of the proposed
approach.
2. Pre-stack multi-channel forward modeling

In a pre-stack inversion, the relationship between the PP
reflectivity at the layer interfaces and the incident angles, the P-
wave velocity, S-wave velocity and density on both sides can be
characterized as follows (Aki and Richards, 1980):

RPPðqÞ¼ sec2ðqÞRP �8g2 sin2ðqÞRS þ
�
1�4g2 sin2ðqÞ

�
Rr (1)

where q is the incident angle and g is the ratio of average S- and P-
velocity at the layer interfaces. The specific forms of reflectivities of
the P- and S-wave velocities, and density (RP , RS, and Rr) can be
expressed as follows:
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where Vi
P , V

i
S, and ri are the P- and S-wave velocities, and density

between the ith and ðiþ 1Þth layer interfaces, respectively. Further,
we can rewrite Eq. (2) in a matrix-vector form:
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Rrz
1
2
D lnðrÞ ¼ 1

2
DLr (3)

where LP, LS, and Lr are the natural logarithms of the VP, VS and r.
For a seismic trace containing m sampling points, the first-order
difference matrix D has the following form:

D¼

2
664
�1 1 0 / 0
0 �1 1 / 0
« « 1 1 «
0 0 / �1 1

3
775
m�ðmþ1Þ

(4)

Based on Eq. (1), the pre-stack angle gathers (SðqÞ) can be ob-
tained by multiplying the reflectivity and the wavelet matrix
(WðqÞ).

SðqÞ¼1
2
c1ðqÞWðqÞDLP þ

1
2
c2ðqÞWðqÞDLS þ

1
2
c3ðqÞWðqÞDLr (5)

where SðqÞ2Rm�n is the angle-dependent seismic data; c1ðqÞ ¼
1
2sec

2ðqÞ, c2ðqÞ ¼ � 4g2 sin2ðqÞ, c3ðqÞ ¼ 1
2 ð1 � 4g2 sin2ðqÞÞ. WðqÞ2

Rm�m is obtained by time-shifting the seismic wavelet as follows:

WðqÞ¼
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(6)

where l is the length of the seismic wavelet. According to Eq. (5),
the matrix form of seismic gathers varying with q can be expressed
as follows:
2
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(7)
where S2RðmhÞ�n is the angle seismic gathers, including h angles;
G2RðmhÞ�ð3mþ3Þ is the multi-channel forward operator; m2
Rð3mþ3Þ�1 is the 2D model parameter composed of the natural
logarithm of P- and S-wave velocities, and density; D2 Rm�ðmþ1Þ is
the first-order difference matrix shown in Eq. (4). Eq. (7) is the
multi-channel forward model without rearranging the seismic
traces, which can be simply expressed as:

S¼Gm (8)

Since m is a 2D matrix, it is difficult to directly implement
complex constraints onm. Rearranging the seismic traces to obtain
a 1D m vector can deal with this issue. In the n-trace case, the
rearranged seismic data (S2RðmnhÞ�1) can be expressed as:

S¼ �
S
Τ
1; S

Τ
2;…; S

Τ
h
�Τ
; Si ¼ ½ðS1ðqiÞÞΤ; ðS2ðqiÞÞΤ;…; ðSnðqiÞÞΤ�Τ (9)

where Si2RðmnÞ�1ði¼ 1;2;…;hÞ is the rearranged angle gathers
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with the angle of qi and SjðqiÞði ¼ 1; 2; …; h; j ¼ 1; 2; …; nÞ is the
jth trace of the angle gathers (SðqiÞ). The rearranged 1D model pa-
rameters vector (m2Rð3ðmþ1ÞnÞ�1) is:

m¼ �
LΤP1; L

Τ
P2;…; LΤPn; L

Τ
S1; L

Τ
S2;…; LΤSn; L

Τ
r1; L

Τ
r2;…; LΤrn

�Τ
(10)

where LΤPj, L
Τ
Sj, and LΤrjðj¼ 1;2;…;nÞ are the vectors representing the

nature logarithm of P-, S-velocity, and density at the jth trace. The
forward operator is:

G¼

2
6666664

C11W1D C21W1D C31W1D

C12W2D C22W2D C32W2D
« « «

C1
hWhD C2hWhD C3hWhD

3
7777775

(11)

where Wi2RðmnÞ�ðmnÞ ¼ kronðIn; WðqiÞÞ, D2RðmnÞ�ðmnþnÞ ¼
kronðIn; DÞ, the operator kron represents the Kronecker product,
which can operate on two matrices of arbitrary size resulting in a
block matrix and is a special form of tensor product (Loan, 2000; Yu
et al., 2020). In is an n-order identity matrix. The coefficient

matrices C1
i , C

2
i , and C3

i ði¼ 1;2;…;hÞ are:

C1i ¼

2
664
c1ðqiÞ 0 / 0
0 c1ðqiÞ / 0
« « 1 «
0 0 / c1ðqiÞ

3
775
mn�mn
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2
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3
775
mn�mn
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2
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c3ðqiÞ 0 / 0
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3
775
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Combine Eqs. (10)e(12), the rearranged multi-channel forward
model can be simplified as follows (Yuan et al., 2015; Ma et al.,
2018; Zhang et al., 2019):

S¼Gm (13)

It is worth noting that the forward operator G2RðmnhÞ�ð3mnþ3nÞ

is a large-scale matrix, which will consume a lot of computer
memory in pre-stack inversion. Moreover, several matrices of the
same size as G are required to achieve the conventional multi-
channel inversion. The inversion efficiency is brutal to guarantee
even if some optimization algorithms are adopted.
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3. Reflection features constrained inversion

Seismic reflection features have been widely studied in the
fields of multi-channel deconvolution, multi-channel seismic
attenuation compensation, and multi-channel inversion, especially
in complex geology. The application of refection features is mainly
divided into two steps. One is to obtain seismic reflection features
from the post-stack seismic profiles. The other is to construct a
linear equation that can describe the relationship of model pa-
rameters between different seismic traces. This section introduces
the conventional reflection features constrained inversion process,
whichmainly includes extracting reflection features, constructing a
data-driven reflective features constraint term, and solving the
objective functional by the BCD algorithm.

We obtain the reflection features by searching for the local
shortest Euclidean distance between adjacent (Wang et al., 2021)
(Fig.1a). Euclidean distance can reflect the similarity of two random
variables, and a short Euclidean distance indicates a high similarity
of variables. We represent the reflection features with a matrix K
that records the deviation k. A negative k indicates the structural
trends upward, and a positive k indicates the structural trends
downward. Estimating thematrix K from themigrated seismic data
can be expressed as follows:

Kði; jÞzmin
k

Xu
t¼�u

kSði� t; jÞ � Sði� tþ k; j0Þk2 (14)

where Sði; jÞ represents the migrated seismic data located in the ith

sampling point at the jth trace. j0 is the adjacent trace of j. t is the
index for calculating the local Euclidean distance within the time
window 2uþ 1. Since the structure usually bends gently locally, we
search for the shortest Euclidean distance within k2 ½ � 2 2�. Based
on the matrix K, the relationship of the reflectivity between adja-
cent traces can be expressed:

rði; jÞ� rðiþKði; jÞ; j0Þ ¼ ε (15)

where rði; jÞ is the reflectivity of the ith sampling point at the jth

trace, ε is the minor error between the two reflectivities. We
Fig. 1. An example of (a) estimating and (b) characterizing the seismic reflection features. Th
time windows, and the black brackets denote the neighborhood where the shortest local Eu
and Kð3;2Þ ¼ 2. In the proposed characterization of reflection features, the trend of reflectio
arrows.
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directly use the reflection features to express the relationship of the
model parameters (LP;LS;Lr2Rðmþ1Þ�n) between adjacent traces as
follows:

LPði; jÞ� LPðiþKði; jÞ; j0Þ ¼ εP

LSði; jÞ� LSðiþKði; jÞ; j0Þ ¼ εS

Lrði; jÞ� LrðiþKði; jÞ; j0Þ ¼ εr (16)

We construct an operator to linearly represent the above
relationship:

HLP¼ εP;HLS ¼ εS;HLr ¼ εr (17)

where LP ¼ ½LΤP1; LΤP2;…; LΤPn�
Τ
, LS ¼ ½LΤS1; LΤS2;…; LΤSn�

Τ
,

Lr ¼ ½LΤr1; LΤr2;…; LΤrn�
Τ
are the vectors that represent the rearranged

parameters, and LΤPj, L
Τ
Sj, and LΤrj (j ¼ 1, …, n) are the jth trace of 2D

model parameters. The matrix H2RðmnÞ�ðmnþnÞ can be expressed
as:

�
Hðm� ðj� 1Þ þ i;m� ðj� 1Þ þ iÞ ¼ �1
Hðm� ðj� 1Þ þ i;m� jþ iþ Kði; jÞÞ ¼ 1 (18)

Next, we briefly explain the operator H to make it easier to
understand. If H is used to constrain LP, meaning that ½HLP�c ¼
½LP�cþmþKði;jÞ � ½LP�c, where ½�c represents the cth element of the

vector and c ¼ m� ðj � 1Þþ i. Therefore, the reflective features
constraint term for three parameters inversion can be expressed as
follows:

minmkHmk22 (19)

where H2Rð3mnÞ�ð3mnþ3nÞ ¼ kronðI3; HÞ, I3 is a 3-order identity
matrix. Based on the multi-channel forward model (Eq. (13)), The
objective function of conventional reflection features constrained
inversion can be given as follows:
e red line represents the seismic reflection event. For the former, the ellipse denotes the
clidean distance is searched. According to the reflection event, there are Kð4;1Þ ¼ � 1
n events is decomposed into lateral and vertical differences, as indicated by the green
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f ðmÞ¼ minmkS� Gmk22 þ nkHmk22 (20)

where n>0 is the regularization parameter that controls the weight
of the reflection features constraint. Noting that matrices G and H
are large-scale matrices that are difficult to inverse and have high
computational costs. We adopt the BCD algorithm to deal with this
issue. This algorithm is required tominimize Eq. (20) trace-by-trace
in each iteration. In the kth iteration, a particular trace is minimized
by:

mkþ1
j ¼ argminf

�
mk

1;/;mk
j�1;m

k
j ;m

k�1
jþ1 ;/;mk�1

n

�
(21)

where mk
j ðj¼ 1;…;nÞ represents the jth trace of the model pa-

rameters; f is the objective function of reflection features con-
strained inversion. The detailed process can refer to Algorithm 1.

Algorithm 1. Reflection features constrained inversion with BCD
algorithm
1) Initialize: set m ¼ mlow. mlow is the rearranged low-wavenumber model
obtained by interpolation extrapolation and smoothing along the horizon
with the log curves, including P-, S-velocity, and density.

2) Obtain the reflection features using Eq. (14). Then, construct the operator
H.

3) While
��mkþ1 �mk��2 > ε do

4) for i ¼ 1, …, n.

5) mkþ1
j ¼ argmin f ðmk

1;/;mk
j�1;m

k
j ;m

k�1
jþ1 ;/;mk�1

n Þ
6) end
7) end

8)
�
Vp VS r

�Τ ¼ expðmÞ
4. Fast reflection features constrained inversion (FRCI)

The BCD algorithm makes it possible for conventional reflection
features constrained inversion to invert more seismic traces
simultaneously, but at the expense of efficiency due to multiple
iterations and traversals. To address this issue, we proposed a fast
reflection features constrained inversion. By re-characterizing the
seismic reflection features, a new way was developed to introduce
the reflection features constraints without rearranging seismic
traces. Different from the conventional seismic trace rearrange-
ment, we adopt the Hadamard product operator to introduce
seismic reflection features, avoiding the generation of large-scale
operators such as G and H. This section constructs the new reflec-
tion features regularization terms and derives a fast optimization
algorithm for reflection features constrained multi-channel
inversion.
4.1. Constructing the reflection features regularization terms

Unlike the conventional reflection features regularization terms
consisting of large-scale operators, we construct the computa-
tionally well-behaved regularization terms without seismic trace
rearrangement. We have characterized complex reflection features
with matrices and constructed the constraint operators. As shown
in Fig. 1b, the direction of the reflective features, represented by the
blue arrow line, can be decomposed into lateral and vertical dif-
ferences. Since k is limited to ½ � 2 2�, we can use the lateral and
2064
vertical first- and second-order partial derivatives to represent the
trend of reflectivity at any point.

Based on the 2D multi-channel forward model (Eq. (8)), we
directly give the reflection features regularization term along with
the seismic reflection events:

f ðmÞ¼min
m

��mRx þH1+ðRzmÞ þH2+
	
R0
zm


��2
F (22)

where kkF is the Frobenius norm specifically for the matrix, rep-
resenting the square root of the sum of squares of all elements
(Gholami, 2016; Yang et al., 2022), and it can be defined as kAkF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i
Pn

j a
2
ij

q
, where A ¼ ½aij�m�n. + is the Hadamard product

operator, representing the product of corresponding elements of
two matrices of the same size. Rx ¼ DΤ and Rz ¼ D are the first-
order lateral and vertical differences, respectively. R0

z is a special
vertical difference and can be expressed as:

R0
z ¼

2
664
�1 0 1 0 / 0
0 �1 0 1 / 0
« « 1 1 1 «
0 0 / �1 0 1

3
775 (23)

The matrices H1 ¼ ½KΤ
1 ;K

Τ
1 ;K

Τ
1 �

Τ
and H2 ¼ ½KΤ

2;K
Τ
2 ;K

Τ
2 �

Τ
, where

K1ði; jÞ¼
�

0 absðKði; jÞÞs1
signðKði; jÞÞ absðKði; jÞÞ ¼ 1

K2ði; jÞ¼
�

0 absðKði; jÞÞs2
signðKði; jÞÞ absðKði; jÞÞ ¼ 2

(24)

and the operator signðxÞ ¼
8<
:

�1 x<0

0 x ¼ 0

1 x>0

.

To ensure the stability and convergence of the multi-channel
inversion, we further considered the constraints in the direction
perpendicular to the reflection events, and the reflection features
regularization terms can be expressed as follows:

f ðmÞ¼min
m

��mRx þH1+ðRzmÞ þH2+
	
R0
zm


��2
F

þ ��Rzm�H1+ðmRxÞ �H2+
	
mR0

x

��2

F (25)

where

R0
x ¼

2
6666664

�1 0 / 0
0 �1 / 0
1 0 1 «
0 1 1 �1
« « 1 0
0 0 / 1

3
7777775

(26)

and
��Rzm�H1+ðmRxÞ �H2+ðmR0

xÞ
��2
F is the regularization term

perpendicular to the reflection events. It is worth noting that the
reflection features regularization (Eq. (24)) can degenerate into TV
regularization when the stratum is horizontally distributed.
Therefore, the proposed method also inherits the high-efficiency
property of TV regularization multi-channel inversion.



Fig. 2. The true models of (a) P-velocity, (b) S-velocity, and (c) density obtained from
the 3D overthrust model. They include 801 traces and each trace with 187 sampling
points.

Y.-M. Yang, X.-Y. Yin, K. Li et al. Petroleum Science 20 (2023) 2060e2074
4.2. Pre-stack multi-channel inversion with the fast optimization
scheme

Eq. (24) gives the regularization terms parallel and perpendic-
ular to the reflection events via the particular symbol Hadamard
product operator. Different from the conventional reflection fea-
tures regularization term with the large-scale operator, the new
terms can be represented with a few small-size matrices. Combine
the penalty term, the objective function of the fast reflection fea-
tures constrained inversion can be expressed as follows:

f ðmÞ¼min
m

kS� Gmk2F þ l
��mRx þH1+ðRzmÞ þH2+

	
R0
zm


��2
F

þa
��Rzm�H1+ðmRxÞ �H2+

	
mR0

x

��2

F

(27)

where l>0 and a>0 are the weights of the regularization terms
parallel and perpendicular to the seismic reflection events.

kS� Gmk2F is a penalty term to control the data misfit. Due to the
Frobenius norm and Hardmard product operator, the minimization
problem is difficult to solve directly. We have derived a fast opti-
mization scheme to deal with it based on the convex optimization
method. First, Eq. (25) can be written as an unconstrained mini-
mization problem:

minkS�Gmk2Fþl
��X1þH1+X2þH2+X

0
2
��2
Fþa

��X2�H1+X1�H2+X
0
1
��2
F

s:t:mRx¼X1;mR0
x¼X0

1;Rzm¼X2;R
0
zm¼X0

2

(28)

where X1, X
0
1, X2, and X0

2 are variables, representing the first- and
second-order difference along with the horizontal and vertical di-
rections, respectively. Based on the ADMM optimization that can
inherit the advantage of dual decomposition and the convergence
efficiency of the multiplier method (Boyd et al., 2010), the
augmented Lagrangian form of Eq. (26) can be given as follows:
Lz ¼min
n
kS�Gmk2F þl

��X1þH1+X2þH2+X
0
2
��2
F þa

��X2�H1+X1�H2+X
0
1
��2
F þðz=2Þ

�
kmRx�X1þZ1=zk2F þ

��mR0
x�X0

1þZ01
�
z
��2
F

�
þðz=2Þ

�
kRzm�X2þZ2=zk2F þ

��R0
zm�X0

2þZ02
�
z
��2
F

�o
(29)
where Z1, Z
0
1, Z2, and Z0

2 are the Lagrange multipliers or dual vari-
ables. z>0 is an augmented Lagrangian parameter indicating the
iteration step size. The optimization of Eq. (27) requires 9 steps in
each iteration, including m-, X1-, X

0
1-, X2-, X

0
2-, Z1-, Z

0
1-, Z2-, and

Z0
2-minimization. It is worth noting that the update of m is to solve
1) Inputs: setm ¼mlow, wheremlow is the initial model. Then, set X1 ¼mRx , X0
1 ¼mR

step size z, and the convergence threshold ε.
2) Obtain the reflection features using Eq. (14). Then, construct the operator H1 and

3) If the termination condition
��mkþ1 �mk

��2 < ε is not satisfied, execute the loop:

4) step1: update the model parameter mkþ1 using the Sylvester equation (Eq. (A-4
5) step2: update the variables X1, X2, X

0
1, and X0

2 by minimizing the 2nd to 5th sub
6) step3: update the dual variables Z1, Z2, Z

0
1, and Z02 using the Eq. (A-14).

7) end
8) Outputs: obtain the model parameters by ½VP VS r �Τ ¼ expðmÞ
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a well-known Sylvester equation with the form Amþ mB ¼ C,
which can be solved by the eigen decomposition strategy (Gholami,
2016). Algorithm 2 is the pseudocode of the fast reflection features
constrained inversion, and the details for the derivation can be
found in Appendix A.

Algorithm 2. Fast reflection features constrained inversion
0
x , X2 ¼ Rzm, X0

2 ¼ R0
zm, Z1 ¼ 0, Z01 ¼ 0, Z2 ¼ 0, and, Z0

2 ¼ 0. Set l, a, the iterative

H2 through Eq. (24).

)), which can be solved though eigenvalue decomposition.
-equations in Eq. (A-1). See Eqs. (A-12) and (A-13) for the solution.



Fig. 3. The noisy seismic gathers with angles of (a) 10� , (b) 20� , (c) 30� , which obtained
by the true models and a 30Hz Ricker wavelet based on the Aki-Richard equation. The
synthetic gathers have been disturbed by 10% Gaussian noise, and 30% seismic traces
are randomly selected to add Gaussian noise with an SNR ¼ 1.

Fig. 4. (a) The synthesized post-stack seismic data. (b) The reflection features esti-
mated from the post-stack profile.

Fig. 5. The low-wavenumber model of (a) P-velocity, (b) S-velocity, and (c) density
obtained by low-pass filtering at 5Hz on the true models.

Fig. 6. The estimated (a) P-velocity, (b) S-velocity, and (c) density by the conventional
reflection features constrained inversion.
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Fig. 7. The estimated (a) P-velocity, (b) S-velocity, and (c) density by the proposed
FRCI. Compared with conventional inversion, the inversion results are of higher quality
and closer to the true model.

Fig. 8. The estimated P-velocity when the weight of regularization term parallel to the
reflection features l is (a) 0.0001, (b) 0.001, (c) 0.01, (d) 0.1, (e) 1. The model is
discontinuous when l is 0.0001 and 0.001, especially l ¼ 0:0001. Conversely, iterations
with large weight l ¼ 1 produce a too smooth model. The most satisfactory model can
be obtained when l ¼ 0:1.
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5. Simulation experiment

The feasibility and effectiveness of the proposed FRCI algorithm
have been tested on the Overthrust model. Fig. 2 shows the true P-
velocity, S-velocity, and density model, which include 801 traces
and 187 sampling points per trace. The angle gathers with angles of
10�, 20�, and 30� (Fig. 3) are synthesized by Eq. (7) using the 30Hz
Ricker wavelet. 10% Gaussian noise was added to the synthetic
gathers to evaluate the uncertainty of the inversion results. To
further examine the noise resistance of the proposed algorithm,
randomly select 30% of seismic traces to add noise of SNR ¼ 1.

Estimating seismic reflection features is a critical step in
reflection features constrained inversion. Therefore, we adopted
Yu's strategy (Yu et al., 2020) to obtain the reflection features from
the post-stack seismic data through Eq. (14), as shown in Fig. 4.
Fig. 5 shows the initial P-velocity, S-velocity, and density obtained
by 5Hz low-pass filtering on the true models.

The efficiency and reliability of the FRCI algorithm were
compared with the conventional reflection features constrained
inversion method. In this work, we treat the direct estimation of
model parameters by Algorithm 1 from seismic data as a conven-
tional inversion method. Fig. 6 shows the estimated P-velocity, S-
2067



Fig. 9. Comparison of inversion results with the true model at 220th trace. The light
blue dashed line is the low-wavenumber model, and the black line represents the true
model. The blue and red lines are estimated results by conventional reflection features
constrained inversion and FRCI algorithm, respectively. The red lines are closer to the
reference model.
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velocity, and density by the conventional method. In general, the
inversion results follow the true model indicating that our inver-
sion work is reliable. However, the continuity still needs improve-
ment, and some areas seem challenging to converge, especially a
high-speed layer at the bottom. Fig. 7 shows the estimated P-ve-
locity, S-velocity, and density by the proposed FRCI algorithm.
Compared with the conventional method, the inversion results of
our approach are closer to the true model and perform better in
Fig. 10. (a) The relative errors between the true models and estimated P-, S-velocity, density
kmk2F , wherem is the inversion results;m is the true models. The inversion results of P- and
l ¼ 0:1. (b) The comparison of convergence time and error between conventional reflectio
better in efficiency and accuracy, especially the inversion efficiency.
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continuity.
The weight of the regularization term parallel to the reflection

features l is an important factor affecting the continuity of the
inversion results. We compared the inversion results with different
l to evaluate the uncertainty of the inversion. Fig. 8aee shows the
estimated P-velocities when l is 0.0001, 0.001, 0.01, 0.1, and 1. The
larger l is chosen, the more continuous the inversion results are.
However, a too large l will produce a too smooth model. We can
obtain a relatively satisfactory result for this seismic data set when
l is 0.1. Actually, the value of l is related to the noise level of seismic
data. In addition, l can be appropriately increased to suppress the
noise when the SNR of seismic data is low.

The accuracy of the inversion results was checked at trace
number ¼ 220 by the single trace comparison, as shown in Fig. 9.
The black lines and light blue dashed lines represent the true and
initial models, respectively. The blue and red lines represent the
inversion results of the conventional method and the proposed
FRCI algorithm. It can be seen that the blue and red lines are in good
agreement with the black lines, which ensures the credibility of the
inversion. However, the red line is closer to the black line, especially
where the black arrows point, which may be caused by noise,
making it difficult for conventional methods to converge. Fig. 10a
shows the relative errors of the estimated P-velocity, S-velocity, and
density with different l by the proposed FRCI algorithm. P-velocity
has the highest accuracy, and its error is smaller than the S-velocity
and density. It is worth noting that the P-velocity, S-velocity, and
density with minor errors can be simultaneously obtained when l

is 0.1. Furthermore, the convergence time and errors statistics show
that our method performs better in efficiency and reliability than
the conventional method, as shown in Fig. 10b. Compared with the
conventional method, the proposed method dramatically improves
the inversion efficiency while ensuring accuracy.

6. Field data example

Another dataset from an oilfield was selected to test the effec-
tiveness of the proposed approach. This area is located in a slope
zone, and the development of faults and coal seams exacerbates the
uncertainty of pre-stack seismic inversion. Similarly, we compared
when l is 0.0001, 0.001, 0.01, 0.1, and 1. The relative errors are calculated by km�mk2F=
S-velocity, and density closest to the true models can be obtained simultaneously when
n features constrained inversion and the proposed FRCI. The proposed FRCI performs



Fig. 11. The field seismic gathers with angles of (a) 6� , (b) 18� , (c) 30� . The black line
indicates the location of Well1.

Fig. 12. The estimated reflection features when neighborhood range k is (a) [-2 2] and
(b) [-3 3]. This work explores whether it is necessary to widen the neighborhood since
the complexity of the objective function will be exaggerated when k is extended.
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the conventional reflection features constrained inversion and
proposed the FRCI algorithm. Fig. 11 shows the field seismic profile
with angles of 6�, 18�, and 30� obtained from the CRP gathers by
some necessary processing such as filtering, multiple correction,
static correction, transform to angle gathers, and partial angle
stacking. The black line indicates the location of Well1, which is
used as a reference model. The seismic frequency mainly varies
from 9 Hz to 60 Hz, and the sampling interval is 2 ms.

Expanding the neighborhood range k when estimating the
reflection features will complicate the objective function. In this
work, we compared the inversion results with different k. Fig. 12
shows the estimated reflection features when neighborhood
range k is [�2 2] and [�3 3], respectively. The two profiles differ
little, even though different color bars are adopted. The phenom-
enon is reasonable because the stratum hardly bends sharply
locally.
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The conventional reflection features constrained inversion
based on the BCD algorithm are also used as a reference to test the
performance of the FRCI algorithm. Fig. 13 shows the estimated P-
velocity, S-velocity, and density by the conventional method when
the parameter k is set to [�2 2]. The black lines at Well1 represent
the corresponding curves, respectively. They are obtained by high-
cut filtering the logging curves to the seismic frequency band. The
inversion results of the proposed FRCI algorithm are generally close
to the estimated results by the conventional method (Fig. 14), but
perform better in some local areas, especially within the black el-
lipse. Compared with the conventional method, the estimated P-
velocity by the proposed FRCI has better layering and continuity
within the ellipse. Fig. 15 shows the inversion results estimated by
the FRCI when the parameter k is [�3 3]. It can be seen that when k
is [�2 2] and [�3 3], the difference in the inversion results is slight.
Even the performance of the FRCI drops in some areas after
expanding the neighborhood range k, which may be caused by the
complex objective function reducing the accuracy of the solution.
Therefore, expanding k will complicate the objective function and
usually has no apparent benefit to the accuracy of inversion results,
consistent with Yu's conclusion (Yu et al., 2020).

We compared the inversion results estimated by the conven-
tional method and FRCI algorithm with the reference model at
Well1, as shown in Fig. 16. The brown and green lines represent the
reference and initial models, respectively. The reference model is
obtained by filtering the logging curves to the seismic frequency
band. The initial model is obtained by extrapolation and smoothing
the curves ofWell1 along with the layers. The blue and red lines are
inversion results estimated by the conventional and proposed FRCI



Fig. 13. The estimated (a) P-velocity, (b) S-velocity, and (c) density by conventional
reflection features constrained inversion when k2½ � 2 2�.

Fig. 14. The estimated (a) P-velocity, (b) S-velocity, and (c) density by the proposed
FRCI method when k2½ � 2 2�. Compared with the inversion results obtained by
conventional method, the FSCI performs better in continuity, especially in the ellipse
area.
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methods. The inversion relative errors and convergence efficiency
is shown in Fig. 17, as in the simulation experiments. The proposed
algorithm has smaller errors in Well1 and are extremely efficient,
which proves the effectiveness of FRCI algorithm.
7. Discussion

The stability and continuity of the seismic pre-stack inversion
are issues that deserve attention. The reflection features con-
strained inversion can efficiently deal with them. Such conven-
tional methods have to handle the large-scale matrices due to the
rearrangement of seismic traces, limiting their wide application in
the pre-stack seismic inversion. We propose an FRCI algorithm to
improve the inversion efficiency while ensuring accuracy. We test
the feasibility and effectiveness of the proposed algorithm on two
data sets, the Overthrust model (Fig. 3) and a field work area with
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fault development (Fig. 11). We estimate the seismic reflection
features from the Overthrust model and field seismic data with
different neighborhood ranges k. The inversion results (Figs. 6e7
and Figs. 13 and 14) and relative errors (Figs. 10 and 17a) show
that our algorithm performs better in continuity and accuracy than
the conventional reflection features constrained inversion. The
comparisons of convergence efficiency indicate that the FRCI al-
gorithm performs extremely well in computation.

When estimating the seismic reflection features using the
shortest Euclidean distance, two important parameters need to be
concerned, the time windows w and neighborhood ranges k. A
smaller time window can obtain more accurate seismic reflection
features when the SNR of seismic data is high, but the noise
resistance capability is worse. Different from the studies in which



Fig. 15. The estimated (a) P-velocity, (b) S-velocity, and (c) density by the proposed
FRCI method when k2½ � 3 3�. They are similar to the inversion results when k2 ½ �
2 2�.

Fig. 16. The comparison between inversion results and logging curves at Well1. The
blue and red lines are inversion results estimated by the conventional and proposed
FRCI methods. The brown and green lines represent the reference and initial models,
respectively. The reference model is obtained by filtering the logging curves to the
seismic frequency band.
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Yu (Yu et al., 2020) and Du (Du et al., 2018) setw ¼ 1, we setw ¼ 2
to suppress the noise of the synthetic and field seismic data. The
selection of the neighborhood ranges is related to the stratum
structure. A complex structure or high dip angles may require a
larger neighborhood range. We test the effect of k on the inversion
in the field data example. An ambiguous neighborhood range has
little effect on the inversion results, which is consistent with Yu's
study (Yu et al., 2020). In general, it is feasible to set k2 ½�2 2� or
k2½�3 3� for the proposed approach. It is worth noting that the
migration noise or residual moveout over- and under-correction
can be detrimental to searching the shortest Euclidean distance.
So some necessary processing is required before estimating the
reflection features, or consider using the waveform features such as
cross-correlation to reduce the uncertainty.

The regularization parameters l;a>0 and the step size of iter-
ation z need to be paid attention to when implementing the FRCI
algorithm. We test the weight of the regularization term parallel to
the reflection features l on the inversion results (Fig. 8). It is related
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to the lateral continuity, and a larger l can result in a more
continuous model. However, a too large l may cause the model to
be too smooth. Theweight of the regularization term perpendicular
to the reflection features a is related to the resolution. A small a
may lead to spurious layers in the inversion results, or even non-
convergence. z controls the convergence efficiency and accuracy
of the FRCI algorithm. The larger z is, the faster the algorithm im-
plements, and the larger the errorsmay be. If z is too small, the FRCI
may not converge. Therefore, we'd better set a relatively large z first
when debugging the parameters. Then, debug l and a according to
their effect on the inversion results. Finally, an appropriately
smaller z can be set to improve the accuracy of the inversion.

8. Conclusion

We propose an FRCI algorithm to achieve fast pre-stack seismic
multi-channel inversion with reflection features constraints. The
FRCI algorithm decomposes the estimated reflection features and
re-characterizes them. Then, the introduction of reflection features
adopts a new way, the Hadamard product operators, instead of the
traditional seismic trace rearrangement strategy, which is disad-
vantageous for computation. This way liberates the memory and
calculation of the computer and dramatically improves the effi-
ciency of the inversion. Moreover, we derive a fast process for
solving the objective function based on ADMM optimization. The
Overthrust model and field data sets demonstrate the effectiveness
of the proposed FRCI algorithm. This efficient algorithm may
advance the broad application of multi-channel inversion in 3D
seismic data.
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Fig. 17. (a) The comparison of relative errors between the logging curves and inversion results estimated by the conventional reflection features constrained inversion and FRCI at
well1. (b) Comparison of the time taken to complete the inversion constrained by reflection features.
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Appendix A

The objective function of FRCI (Eq. (27)) has been transformed
into an augmented Lagrangian form (Eq. (29)) through the ADMM
optimization. Alternately updating the variables can gradually
approach the optimal solution through several iterations, and the
update rules are as follows:

mkþ1 :¼ argmin
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(A-1)

where m-minimization is a convex optimization with Frobenius
norm regularization, the most common approach is to consider its
partial derivative to be 1, and the partial derivative can be
expressed as:

vf ðmÞ
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(A-2)

Let vf ðmÞ
vm ¼ 1, Equation (A-2) can be simplified as follows:
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(A-3)

Equation (A-3) can be solved by eigenvalue decomposition
because it is a standard Sylvester equation Amþ mB ¼ C, where
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The X1-, X
0
1-, X

0
2-, and X0

2-minimization is tricky because the
Hadamard product operator exacerbates the complexity of the
equation derivation. First, we derive the partial derivatives of a
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simple formula kA+Xþ Bk2F . According to the definition of Frobe-
nius norm, we have:

kA+Xþ Bk2F ¼ TrððA+Xþ BÞΤðA+XþBÞÞ
¼ TrððA+XÞΤðA+XÞþ ðA+XÞΤBþBΤðA+XÞþBΤBÞ (A-5)

where Tr is the sum of the diagonal elements of a matrix. ðA+XÞΤB
at a certain point is ½ðA+XÞΤB�i;j ¼

Pm
p¼1ðApiXpiÞBpj. Let i ¼ j ¼ s,

the term of TrððA+XÞΤBÞ can be expressed as follows:

TrððA+XÞΤBÞ¼
Xn
s¼1

Xm
p¼1

ApsXpsBps (A-6)

Let p ¼ i and s ¼ j, the partial derivative of TrððA+XÞΤBÞ with
respect to X can be expressed as:

½vTrððA+XÞΤBÞ=vX�ij ¼
v
	
AijXijBij



vXij

¼ ½A+B�ij (A-7)

Similarly,

vTrðBΤðA+XÞÞ=vX ¼ A+B
vTrððA+XÞΤðA+XÞÞ=vX ¼ 2A+A+B

(A-8)

Therefore,

vkA+Xþ Bk2F
.
vX¼2ðA+A+XþA+BÞ (A-9)

For the X1-minimization, the partial derivative of the formula
with respect to X1 can be expressed as follows:

vf ðX1Þ
vX1

¼2l
	
X1þH1+X2þH2+X

0
2

þ2aH1+	

H1+X1þH2+X
0
1�X2


þðzX1�zmRx�Z1Þ
(A-10)

let vf ðX1Þ
vX1

¼ 0, we can obtain the following equation:

ð2aH1H1 þ zþ2lÞX1 ¼2aH1
	
X2 �H2 +X0

1

þ zmRx þZ1

� 2l
	
H1 +X2 þH2 +X0

2



(A-11)

Based on the definition of Hadamard product operator, the so-
lution of X1 can be obtained as follows:

X1 ¼
	
2aH1 +

	
X2 �H2 +X0

1

þ zmRx þZ1

�2l
	
H1 +X2 þH2 +X0

2




= ð2aH1 +H1 þ zþ2lÞ (A-12)

Similarly, we derive the minimization of X1, X1, and X1 as
follows:

8>>>>><
>>>>>:

X0
1¼

	
zmR0

xþZ01þ2aH2+ðX2�H1+X1Þ


:
�ð2aH2+H2þzÞ

X2¼
	
zRzmþZ2�2lH1+

	
X1þH2+X

0
2

þ2a

	
H1+X1þH2+X

0
1




:=ð2lH1+H1þ2aþzÞ
X0
2¼

	
zR0

zmþZ02�2lH2+ðX1þH1+X2Þ


:
�ð2lH2+H2þzÞ

(A-13)

where := is the right array division operation, denoting the
element-by-element division of two matrices with the same size.
The update of the dual variables Z1, Z2, Z

0
1, and Z02 can be expressed

as:
2073
8>>>>><
>>>>>:

Z1 ¼ Z1 þ zðmRx � X1Þ
Z01 ¼ Z01 þ z

	
mR0

x � X0
1



Z2 ¼ Z2 þ zðRzm� X2Þ
Z02 ¼ Z02 þ z

	
R0
zm� X0

2



(A-14)
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