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a b s t r a c t

Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role
in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution
enhancement methods are difficult to yield satisfactory processing outcomes for reservoir character-
ization. To solve this problem, we develop a new approach for simultaneous denoising and resolution
enhancement of seismic data based on convolution dictionary learning. First, an elastic convolution
dictionary learning algorithm is presented to efficiently learn a convolution dictionary with stronger
representation capability from the noisy data to be processed. Specifically, the algorithm introduces the
elastic L1/2 norm as a sparsity constraint and employs a steepest gradient descent strategy to efficiently
solve the frequency-domain linear system with substantial computational cost in a half-quadratic
splitting framework. Then, based on the learned convolution dictionary, a weighted convolutional
sparse representation paradigm is designed to encode the noisy data to acquire an optimal sparse
approximation of the effective signal. Subsequently, a high-resolution dictionary with a broadband
spectrum is constructed by the proposed parameter scaling strategy and matched filtering technique on
the basis of atomic spectrum modeling. Finally, the optimal sparse approximation of the effective signal
and the constructed high-resolution dictionary are used for data reconstruction to obtain the seismic
signal with high resolution and high signal-to-noise ratio. Synthetic and field dataset examples are
executed to check the effectiveness and reliability of the developed method. The results indicate that this
method has a more competitive performance in seismic applications compared with the conventional
deconvolution and spectral whitening methods.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

With the deepening of exploration and development, the oil and
gas industry has shifted its exploration direction from large-scale
structural reservoirs to smaller-scale lithologic reservoirs
(Kwietniak et al., 2018). Lithologic reservoirs are usually composed of
fine-scale geological bodies, such as thin sand beds, sandstone pinch-
outs, cave-cleft bodies, and lenses, whose accurate identification
places a higher demand on the resolution of seismic data. Never-
theless, due to the band-limited property of source wavelet and the
energy absorption and spherical diffusion of seismic wave propa-
gation in viscoelastic medium, the collected seismic data have a low
resolution that is often insufficient to identify and characterize these
).
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small-scale reservoirs (Sheriff and Geldart, 1995; Ikelle and
Amundsen, 2005). In addition, side effects of some processing pro-
cedures, such as normal moveout correction stretching (Zhang and
Lan, 2020) and migration stretching (Perez and Marfurt, 2007), can
also reduce the resolution of seismic data. To enhance the certainty
of exploration and reduce the development risk of lithologic reser-
voirs, it is necessary to process these low-resolution seismic data so
as to improve their vertical resolution.

Up to now, geophysicists have developed numerous resolution
enhancement methods that can be roughly classified into three cat-
egories: spectral whitening (Lee, 1986; Rosa and Ulrych, 1991;
Manenti and Porsani, 2016; Naghadeh and Morley, 2017), deconvo-
lution (Oldenburg,1981; Treitel and Lines,1982; Jin and Eisner, 1984;
Margrave et al., 2011; Gholami, 2017; Chen and Wang, 2018; Wang
et al., 2020), and inverse Q filtering (Irving and Knight, 2003; Wang,
2006; Yuan et al., 2016; Morozov et al., 2018; Aghamiry and
Gholami, 2018; Wang et al., 2018; Shao and Wang, 2021). Spectral
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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whitening and its variants compensate for the high-frequency com-
ponents lost in seismicwavepropagationbygaining all frequencies in
the useful band scope of seismic signal, thereby improving seismic
resolution. Typical techniques include frequency-domain spectral
whitening (Lee, 1986), time-variant spectral whitening (Naghadeh
and Morley, 2017), and spectral blueing (Rosa and Ulrych, 1991;
Kazemeini et al., 2010; Kwietniak et al., 2018). This type of method is
simple in principle and computationally efficient, so it is most
commonlyused inpracticalprocessing.Unlikespectralwhiteningand
its variants, deconvolution enhances the vertical resolutionof seismic
data by squeezing the source wavelet and widening the useful fre-
quency band. Oldenburg (1981) first proposed a time-domain
deconvolution method based on the least-squares wiener filter.
Later, Treitel and Lines (1982) developed a frequency-domain
deconvolution algorithm using the linear inversion theory. Both
methodshave theassumptionof stationarity, that is,minimum-phase
wavelet andwhite reflectivity, which greatly limits the practicality of
the method. To raise the applicability of this method, several im-
provements have been presented, such as homomorphic deconvo-
lution (Jin and Eisner, 1984), Gabor deconvolution (Margrave et al.,
2011; Gholami, 2016), wavelet scaling-based deconvolution (Chen
and Wang, 2018), blind deconvolution (Kazemi and Sacchi, 2014;
Sui andMa,2020),morphologicaldeconvolution (Gholami,2017), and
adaptive deconvolution (Wang et al., 2020). Besides, inverse Q
filtering has been applied to heighten the seismic resolution. Inverse
Q filtering, also called absorption compensation, accomplishes its
objective by compensating for non-stationary attenuation. Specif-
ically, this method performs amplitude compensation and phase
correction for each frequencycomponent according to the theoretical
attenuationmodel based on a proper estimate of the undergroundQ-
values. In the detailed implementation of this method, two different
algorithms are proposed: the direct approach (Irving and Knight,
2003; Wang, 2006) and the inversion-based approach (Yuan et al.,
2016). The direct approach uses a gain limitation or stabilization
factor in the reverse operation of the forward wave propagation to
achieve stable attenuation compensation, while the inversion-based
approach employs the regularization tool to iteratively minimize
the misfit between the synthetic data and the field-collected data to
yield optimal desorption outcomes. The three types of resolution
enhancement methods mentioned above work well in the applica-
tions, but theyall share a commonpremise: thenoise contained in the
seismic data to be processed is so small that it does not interferewith
the high-resolution processing. In fact, the existence of noise is an
obstacle that must be overcome to obtain satisfactory enhancement
results. Therefore, these above methods always require a separate
denoising step prior to their processing.

Different from existing methods, the goal of this paper is to
combine the resolution enhancement process with the seismic
denoising process and investigate a novel method that can simul-
taneously attenuate noise and enhance seismic resolution. Convo-
lution dictionary learning (Chun and Fessler, 2018; Song et al.,
2020) is a machine learning technology developed in recent
years, which can represent seismic signals as a convolution sum of a
series of convolution dictionary atoms and their corresponding
mapping coefficients. These dictionary atoms adaptively learn the
inherent features and can mine detailed information hidden in the
seismic signal, providing a promising tool for the implementation
of this method. Current convolution dictionary learning is generally
defined as an extension of convolutional basis pursuit denoising
(Chen et al., 1998), which is essentially a sparse optimization
problemwith L1 norm constraints. However, previous work reveals
that the L1 norm can cause a biased issue (Zhang, 2010), leading to
unsatisfactory representation results for the learned convolution
dictionary (Peng, 2019). Lately, the nonconvex elastic L1/2 norm (Lan
et al., 2021) has demonstrated significant potential in tackling the
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biased issue arising from the L1 norm in numerous inversionworks.
As an improvement, we introduce the nonconvex elastic L1/2 norm
into convolution dictionary learning and develop an elastic
convolution dictionary learning (ECDL) algorithm to enhance the
representation capability of the learned dictionary. Meanwhile, to
improve the learning efficiency, we employ a steepest gradient
descent strategy to efficiently handle the frequency-domain linear
system with a huge computational cost in the half-quadratic
splitting framework. Subsequently, based on the developed
elastic convolution dictionary algorithm, we propose a novel pro-
cessing method for simultaneous denoising and resolution
enhancement. A series of experiments are performed on synthetic
and real datasets to evaluate the performance of this method.
Experimental results show the proposed algorithm can effectively
broaden the frequency bandwidth and enhance the seismic reso-
lution while greatly attenuating the noise and improving the
signal-to-noise ratio (S/N) of the data, which is superior to the
conventional deconvolution and spectral whitening approaches.
2. Methodology

2.1. Elastic convolution dictionary learning

Dictionary learning is a flexible framework that can adaptively
construct a basis function (dictionary) to achieve the sparse rep-
resentation of a signal based on the characteristics of the signal
itself. Convolution dictionary learning (Chun and Fessler, 2018;
Peng, 2019; Song et al., 2020), an important branch of dictionary
learning methods, can model the entire signal as the sum of the
convolutions between the dictionary atoms and their mapping
coefficients. For seismic signals, the introduction of the convolu-
tional form allows the dictionary to preferably capture the struc-
tural features of the seismic signal and thus obtain a better
representation. Generally, the problem of convolution dictionary
learning can be formulated as follows:

argmin
fdmg;fxm;kg

1
2

XK
k¼1

�����yk � XM
m¼1

dm* xm;k

�����
2

2

þg
XK
k¼1

XM
m¼1

R
�
xm;k

�
s:t: kdmk2 ¼1;cm2f1;…;Mg

(1)

where yk denotes the k-th training sample, dm denotes the m-th
dictionary atom, * denotes the convolution operator, xm;k denotes
the mapping coefficients of the training samples yk on the dictio-
nary atoms dm, g is the regularization parameter, Rð $Þ represents
the prior constraint on the mapping coefficients, notation k$k2
denotes the Euclidean norm that aims to avoid scaling ambiguities
of dictionary atoms, K and M are the number of dictionary atoms
and training samples, respectively. Equation (1) is a typical
biconvex optimization problem that is hard to be minimized
directly. Fortunately, an indirect means is to minimize it effectively
by using iterative strategy and alternating optimization technology.
Concretely, each iteration of this algorithm consists of two alter-
nating steps: an encoding step and a dictionary update step.
Formulaically, the encoding step and the dictionary update step can
be described respectively as

argmin
fxm;kg

1
2

XK
k¼1

�����yk � XM
m¼1

dm* xm;k

�����
2

2

þ g
XK
k¼1

XM
m¼1

R
�
xm;k

�
(2)
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argmin
fdmg

1
2

XK
k¼1

�����yk � XM
m¼1

dm* xm;k

�����
2

2

s:t: kdmk2 ¼1 (3)

For the encoding step, the conventional algorithm (Zeiler et al.,
2010) has focused on the following regularization problems with
sparse constraints

argmin
fxm;kg

1
2

XK
k¼1

�����yk � XM
m¼1

dm* xm;k

�����
2

2

þ g
XK
k¼1

XM
m¼1

��xm;k
��
1 (4)

where k$k1 is the L1 norm. In fact, Equation (4) is not the optimal
constraint form, since the L1 norm cannot yield an adequately
sparse solution (Zhang, 2010; Peng, 2019). In order to gain suffi-
ciently sparse mapping coefficients and thus achieve a lean and
compact signal representation, we introduce the most represen-
tative sparse constraint format, elastic L1/2 norm (Lan et al., 2021),
to impose the constraint on the mapping coefficients. Specifically,
the encoding step can be expressed as

argmin
fxm;kg

1
2

XK
k¼1

�����yk � XM
m¼1

dm* xm;k

�����
2

2

þ g
XK
k¼1

XM
m¼1

���xm;k
��1=2
1=2 þm

��xm;k
��2
2

� (5)

where k$k1=21=2 denotes the L1/2 norm and m2½0;1� is a scalar

parameter. To make the solution more convenient, Equation (5) can
be equivalently transformed into the following matrix-vector form

argmin
X

1
2
kY � DXk2F þ g

�
kXk1=21=2 þmkXk22

�
(6)

where k$kF is the Frobenius norm, Y ¼ ðy1 y2/yMÞ, and D ¼
ðD1 D2/DMÞ for which Dm is defined as Dmxm;k ¼ dm* xm;k, and

X¼

2664
x1;1 x1;2 / x1;K
x2;1 x2;2 / x2;K
« « « «

xM;1 xM;2 / xM;K

3775 (7)

By introducing an auxiliary variable U ¼ X in Equation (6), we
can obtain the equivalent form of this equation

argmin
X

1
2
kY � DXk2F þg

�
kUk1=21=2 þmkUk22

�
s:t: U¼X (8)

Using the half-quadratic splitting (HQS) framework (Mila and
Michael, 2005) to solve Equation (8), the following iteration
format can be given

Xðtþ1Þ ¼ argmin
X

1
2
kY � DXk2F þ

l

2

���X� UðtÞ
���2
F

(9a)
H h;x

�h
Xðtþ1Þ

i
i;l

�
¼

8><>: fh;x
�h

Xðtþ1Þ
i
i;l

�
;
���hXðtþ1Þ

i
i;l

���>3
ffiffiffi
23

p

4
h2=3ð1þ xÞ1=

0; otherwise
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Uðtþ1Þ ¼ argmin
U

g
�
kUk1=21=2 þmkUk22

�
þ l

2

���Xðtþ1Þ � U
���2
F

(9b)

where t is the number of iterations, l is the penalty parameter used
to control the convergence rate of the algorithm. Equation (9a) is a
quadratic optimization problem that has a closed solution�
DTDþ lI

�
Xðtþ1Þ ¼DTY þ lUðtÞ (10)

where DT denotes the transpose of the dictionary matrix D, and I is
the identity matrix. In practical applications, it is not practical to
solve the linear system shown in Equation (10) directly because it
involves the inverse of large matrices. Former research work
(Wohlberg, 2014) shows that the efficiency of solving Equation (9a)
can be effectively improved with the assistance of the convolution
theorem. Transforming Equation (9a) to the frequency domain via
the fast Fourier transform (FFT) yields

bXðtþ1Þ ¼ argmin
X

1
2
kbY � bD bXk2F þ l

2

���bX � bUðtÞ���2
F

(11)

where bD ¼ F ðDÞ , bXðtþ1Þ ¼ F ðXðtÞÞ , bY ¼ F ðYÞ , bUðtÞ ¼ F ðUðtÞÞ,
and F ð $Þ denotes Fourier operator. The solution of the above
equation can be given by the following linear system

bXðtþ1Þ ¼
�bDH bD þ lI

��1�bDH bY þ lbUðtÞ�
(12)

where the superscript H denotes the conjugate operator of the

matrix. Since bDH bD has a block diagonal structure, the frequency-
domain linear system shown in Equation (12) can be decomposed
into N (i.e., the length of the signal) independent linear systems.
Conventionally, each linear system is solved by the Sherman-
Morrison method (Egidi and Maponi, 2006). However, this pro-
cedure still has a high computational cost because each linear
system needs to perform many iterations during the solving pro-
cess. To reduce iterations and improve the computational effi-
ciency, we employ a steepest gradient descent strategy to update

the coefficient matrix bXðtþ1Þ
, as

bXðtþ1;jþ1Þ ¼ bXðtþ1;jÞ � d
�bDH�bD bXðtþ1;jÞ � Y

_�þ l
�bXðtþ1;jÞ � bUðtÞ��

¼ BbXðtþ1;jÞ þ dbDH bY þ dbUðtÞ

(13)

where B ¼ ð1 � dlÞI� dbDH bD, j is the inner iteration index, and d is a
nonnegative step parameter. Equation (9b) belongs to a typical
elastic L1/2 norm optimization problem, and it can be easily solved
by the elastic half thresholding operation as follows

Uðtþ1Þ ¼H h;x

�
Xðtþ1Þ

�
(14a)
3

(14b)
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fh;x
�h

Xðtþ1Þ
i
i;l

�
¼
2
h
Xðtþ1Þ

i
i;l

3ð1þxÞ

 
1þcos

 
2p
3
�
24h;x

�h
Xðtþ1Þ

i
i;l

�
3

!!
(14c)

4h;x

�h
Xðtþ1Þ

i
i;l

�
¼ arccos

0@h

8
ð1þ xÞ1=2

 ���hXðtþ1Þ
i
i;l

���
3

!�3=2
1A

(14d)

where h ¼ g
l
, x ¼ gm

l
, Xðtþ1Þ ¼ F �1ðbXðtþ1ÞÞ, F �1ð $Þ represents the

inverse Fourier operator, and ½Xðtþ1Þ�i;l denotes the element of the i-

th row and l-th column of the matrix Xðtþ1Þ.
For the dictionary update step, it is actually a convolution

version of the constrained optimum directionmethod (Engan et al.,
1999) as follows

argmin
fdmg

1
2

XK
k¼1

�����yk�XM
m¼1

dm*xm;k

�����
2

2

s:t: dm2GPN;cm2f1;…;Mg

(15)

where GPN is a set composed of support constraint and normalized
constraint, which is defined as

GPN ¼
n
c2RN :

�
I�PPT

�
c¼0; kck2 ¼1

o
(16)

where P represents a zero-padded projection operator. By defining
the indicator function of the constraint set as iGPN

ðSÞ ¼	
0 if S2GPN
∞if S;GPN

, Equation (15) can be rewritten into the following

unconstrained form

argmin
fdmg

1
2

XK
k¼1

�����yk � XM
m¼1

dm* xm;k

�����
2

2

þ
XM
m¼1

iGPN
ðdmÞ (17)

Defining Zm;kdm ¼ xm;k* dm, d ¼ ðd1 d2/dMÞT , y ¼

ðy1 y2/yKÞT and Z ¼

2664
Z1;1 Z1;2 / Z1;K
Z2;1 Z2;2 / Z2;K
« « « «

ZM;1 ZM;2 / ZM;K

3775 , Equation (17) can

be reformulated as

argmin
d

1
2
ky � Zdk22 þ iGPN

ðdÞ (18)

Similar to the encoding step, we also employ the HQSmethod to
solve Equation (18). Introducing the auxiliary variable g ¼ d into
Equation (18) yields the following constrained optimization
problem
2130
argmin
d

1
2
ky � Zdk22 þ iGPN

ðgÞ s:t: d ¼ g (19)

for which we have the HQS iterations

dðiþ1Þ ¼ argmin
d

1
2
ky � Zdk22 þ

t

2

���d� gðiÞ
���2
2

(20a)

gðiþ1Þ ¼ argmin
g

iGPN
ðgÞ þ t

2

���dðiþ1Þ � g
���2
2

(20b)

where t is a penalty parameter. Analogous to Equation (11),
transforming Equation (20a) into the frequency domain using FFT
obtains

bdðiþ1Þ ¼ argmin
d̂

1
2
kby � bZbdk22 þ t

2

���bd � bgðiÞ���2
2

(21)

where bd ¼ F ðdÞ, by ¼ F ðyÞ, bZ ¼ F ðZÞ, bg ¼ F ðgÞ. Equation (21)
has a closed-form solution that can be given by the following
linear system

bd¼
�bZHbZ þ lI

��1�bZHby þ tbg� (22)

Similarly, we also use the steepest gradient descent strategy to

update the main variable bd, as
bdðiþ1;jþ1Þ ¼ bdðiþ1;jÞ � d

�bZH�bZbdðiþ1;jÞ � y
_
�
þ t
�bdðiþ1;jÞ � bgðiÞ��

¼ Abdðiþ1;jÞ þ dbZHby þ dbgðiÞ

(23)

where A ¼ ð1�dtÞI� dbZHbZ and j is the inner iteration index.

Equation (20b) is a proximal operator of iGPN
ðgÞ at the point dðiþ1Þ,

and its solution can be calculated by

gðiþ1Þ ¼proxiGPN

�
dðiþ1Þ�¼ PPTdðiþ1Þ���PPTdðiþ1Þ

���
2

(24)

where proxiGPN ð $Þ represents the proximal operator, dðiþ1Þ ¼
1
2F

�1ðA
)

Rðbdðiþ1ÞÞÞþ 1
2F

�1ðAR
!ðbdðiþ1ÞÞÞ, A
)

Rð $Þ and AR

!ð $Þ denote

the forward estimate and backward estimate of the autoregressive
operator (Naghizadeh and Sacchi, 2012) that is employed to avoid
noise incursion into the atoms. Based on the above description,
Algorithm 1 comprehensively summarizes the workflow of the
ECDL algorithm developed in this paper.
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Algorithm 1. The developed ECDL algorithm summary.
2.2. Simultaneous denoising and resolution enhancement based on
ECDL

In noisy situations, the multichannel seismic signal fsjgJj¼1 to be

processed can be represented as

sj ¼uj þnj;cj2f1;…; Jg (25)

where uj denotes the noise-free signal (also called effective signal),
nj denotes the random noise, j is the trace index of seismic signal,
and J is the total number of seismic traces. Taking the noisy signal to
be processed as training samples and learning them with the pro-
posed ECDL algorithm, we can obtain the learned convolution

dictionary fdmgMm¼1 and the corresponding mapping coefficients
2131
fxm;jgJJ¼1 to represent the signal. Since the encoding step in the

proposed ECDL algorithm is essentially equivalent to the denoising
problem based on convolutional sparse representation (Li et al.,
2021), the approximation of the effective signal can be obtained
by the following equation

uj ¼
XM
m¼1

dm* xm;j;cj2f1;…; Jg (26)

where uj is the approximation of the effective signal.
Unfortunately, the above way does not provide a competitive

performance in denoising effect. Thus, a further denoising process
is still necessary. Inspired by existing work (Carrera et al., 2019), we
design aweighted convolutional sparse representation paradigm to
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encode the noisy data to acquire an optimal sparse approximation
of the effective signal, which has been shown to greatly boost the
performance in subsequent applications. Specifically, the paradigm
can be expressed as follows

~xm;j ¼ argmin
fxm;jg

1
2

�����sj � XM
m¼1

dm* xm;j

�����
2

2

þ g
XM
m¼1

���um;j1xm;j
��1=2
1=2 þm

��um;j1xm;j
��2
2

�
(27)

where ~xm;j is the optimal sparse approximation of the effective
signal uj, sj is the noisy signal to be processed, the symbol 1
represents the element-wise product, and um;j denotes the weight
vector, which is defined as

um;j ¼
1�

dm*uj
�2 ¼ 1�

DT
muj

�2 (28)

where dm is the conjugate filter of dictionary atom dm, Dm is the
matrix version of the atomic shifts, and 1

ð$Þ denotes point-wise di-

vision. The solution procedure of the paradigm shown in Equation
(27) is basically the same as the encoding step involved in the
developed ECDL algorithm. The only difference is that the auxiliary

variable Uðtþ1Þ needs to be updated by the following weighted
elastic half thresholding operation:h
Uðtþ1Þ

i
i;j
¼H h½W�i;j;x½W�i;j

�h
Xðtþ1Þ

i
i;j

�
;ci2f1;…MNg;cj2f1;…Jg

(29a)

W¼

2664
u1;1 u1;2 / u1;J
u2;1 u2;2 / u2;J
« « « «

uM;1 uM;2 / uM;J

3775 (29b)

where W denotes the weight matrix.
While completing the estimation process of the effective signal,

we need to construct a new dictionary based on the learned
convolution dictionary to enhance the resolution of seismic data.
Due to the fact that the seismic resolution is a function of the fre-
quency width of the seismic data (Okaya, 1995), the newly con-
structed dictionary must have a wider frequency bandwidth than
the learned dictionary. For this purpose, we first transform the
learned dictionary to the frequency domain and model its ampli-
tude spectrum using the following function

Wdm
ðf Þ¼ cmjf jzm exp

�
� zmðamjf jÞkm

.
km
�
;cm2f1;…Mg

(30)

whereWdm
ðf Þ is the amplitude spectrum of the atom dm, f denotes

the frequency, cm and am are nonnegative amplitude coefficients,
km and zm are nonnegative width parameters. For the estimation of
the modeling parameters cm, am, km, and zm, we do this by solving
the following least-squares problem

min
cm;zm;am;km

XM
m¼1

ε
2
m ¼

XM
m¼1

���ln�Wdm
ðf Þ�� ln cm � zm lnjf j

�zmðamjf jÞkm
.
km
���2
2

(31)
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where k$k22 denotes the square of the L2 norm, εm is the misfit error
to be minimized. After we obtain these modeling parameters, the
desired spectrum with a wider frequency bandwidth needs to be
constructed. In fact, the desired spectrum can be easily constructed
by a parameter scaling strategy. To be specific, scaling down both
width parameters (i.e., km and zm) simultaneously can achieve the
above purpose. It should be emphasized that, in practical applica-
tions, the scaling of the parameters km and zm needs to be opti-
mized by the cross-validation method to make the processing
results best fit the geological understanding of the work area. To
verify the feasibility of the parameter scaling strategy, a numerical
example is provided in Fig. 1. Fig. 1a shows a field seismic trace that
is used as a training sample to train the convolution dictionary with
optimal representation capability by the ECDL algorithm. Without
loss of generality, we randomly select an atom from the learned
convolutional dictionary as a validation object. Fig. 1b draws the
selected atom. Fig. 1c plots the spectrum (blue solid line) of the
atom shown in Fig. 1b and the modeled spectrum (red dotted line)
using Equation (30) with the modeling parameters cm ¼ 0:0012,
am ¼ 0:0393, km ¼ 1:833, and zm ¼ 2:785. From Fig. 1c, we can see
that the modeled spectrum is basically consistent with the original
spectrum, indicating that the modeling accuracy is satisfactory. By
shrinking the parameters km and zm (km ¼ 1:633 and zm ¼ 1:385),
we obtain the desired spectrum that is shown in Fig. 1d. As
observed in Fig. 1d, the desired spectrum is broadened at both the
high and low frequency ends, while the dominant frequency of the
atom is also improved. The improvements in bandwidth and
dominant frequency clearly show that the proposed parameter
scaling strategy effectively enhances the resolution of the dictio-
nary atom.

After obtaining the desired spectrum with a wide frequency
bandwidth, the matched filter between the original spectrum and
the desired spectrum needs to be estimated according to the least-
squares principle. Specifically, assuming that the input of the

matched filtering is Wdm
ðf Þ and the desired output is W

_

dm
ðf Þ, the

matched filter Hdm
ðf Þ in the least-square sense can be calculated by

the following equation

Hdm
ðf Þ¼

�
Wdm

ðf ÞWdm
ðf Þþ 22

��1
Wdm

ðf ÞW_ dm
ðf Þ;cm2f1;…;Mg

(32)

whereWdm
ðf Þ is the complex conjugate ofW

_

dm
ðf Þ, 2 is a small non-

negative factor that is used to ensure the stability of the solution.
For different dictionary atoms, the factor 2 is usually chosen be-
tween 0.001 and 0.01. Once the matched filters are computed by
Equation (32), the new high-resolution dictionary can be con-
structed by applying these filters to the spectrum of the learned
atoms through the following equation

d
_

m ¼ F �1�bdm1Hdm
ðf Þ����F �1�bdm1Hdm
ðf Þ����

2

;cm2f1;…;Mg (33)

where d
_

m is the new atom with a broadband spectrum. Subse-
quently, according to Equation (34), the optimal sparse approxi-
mation of the effective signal and the constructed high-resolution
dictionary are used to reconstruct the seismic traces, which can
simultaneously solve the problems of noise elimination and reso-
lution improvement.



Fig. 1. Efficiency test of the parameter scaling strategy on a field trace. (a) The field seismic trace. (b) An atom learned from (a) using the ECDL algorithm. (c) Modeling of the atomic
spectrum. (d) Desired spectrum constructed by the parameter scaling strategy.
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s
_
j ¼

XM
m¼1

d
_

m* ~xm;j;cj2f1;…; Jg (34)

where s
_

j denotes the reconstructed noiseless and high-resolution
seismic data. On the basis of the above-mentioned explanation,
the detailed working steps of the proposed method can be sum-
marized as follows:

(1) Construct the training sample set using the to-be-processed

noisy signal, and learn the convolution dictionary fdmgMm¼1

and the corresponding mapping coefficients fxm;jgJj¼1 from

the sample set by employing the ECDL algorithm described in
Algorithm 1;
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(2) Combine the convolution dictionary and the mapping co-
efficients by Equation (26) to obtain the initial approxima-
tion uj of the effective signal;

(3) Encode the noisy signal according to the weighted convolu-
tional sparse representation paradigm shown in Equation

(27) to obtain the optimal sparse approximation f~xm;jgJj¼1 of

the effective signal;
(4) Model the atomic spectrum Wdm

ðf Þ by solving Equation (31)

and design the desired spectrum W
_

dm
ðf Þ by scaling the pa-

rameters km and zm;
(5) Estimate the matched filter Hdm

ðf Þ using Equation (32), and

construct the new atom d
_

m by applying the matched filter to
the frequency spectrum of the dictionary atoms according to
Equation (33);



Fig. 2. Synthetic model. (a) Velocity model (unit: m/s). (b) Noise-free synthetic data.
(c) Noisy data with 5 dB S/N.
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(6) Repeat steps (4)e(5) until all convolution dictionary atoms
complete the resolution enhancement procedure;

(7) Reconstruct the noise-free and high-resolution seismic

traces f s_jgJj¼1 using the optimal sparse approximation

f~xm;jgJj¼1 of the effective signal and the high-resolution dic-

tionary fd
_

mgMm¼1 by Equation (34).
3. Examples

3.1. Synthetic data example

To verify the viability of the proposed method, we use a
geological model (Fig. 2a) with known layer thickness and medium
properties to create synthetic data. Fig. 2b presents the noise-free
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synthetic data generated by convolving a 25 Hz Ricker wavelet
with the above geological model (tuning thickness ¼ 15.59 ms). In
Fig. 2b, the resolution limits of the two thin layers in the shallow
part are 26 m and 37 m respectively, which are nowhere near their
true thicknesses (13 m and 15 m). Therefore, these two thin layers
are indistinguishable in Fig. 2b. The same situation is evident in two
wedge-shaped strata of the deep part. To simulate a real noisy
situation, we add 5 dB random noise in Fig. 2b and obtain the
experimental data shown in Fig. 2c. We use spectral whitening
(Naghadeh and Morley, 2017), deconvolution (Treitel and Lines,
1982), and the developed method to process Fig. 2c, and exhibit
their results in Fig. 3. Note that the spectral whitening and
deconvolution method is not robust in noisy situations, so a
denoising process needs to be executed before their processing. In
this paper, the denoising step is done by the F-X deconvolution (FX-
Decon) method (Gulunay, 1986). As evident in Fig. 3, all three
methods effectively resolve two thin layers in the shallow part,
indicating that three methods are successful in enhancing seismic
resolution. However, the developed method is superior to the other
two methods in terms of recognizing thin layers since the events
indicated by the red arrows in Fig. 3d are more evident and
continuous than those in Fig. 3a and 3b. In addition, we can also
find in Fig. 3a and 3b that the deconvolution and spectral whitening
methods produce false reflection events and introduce a certain
amount of extra interference in the processed result, strengthening
the difficulty of accurately identifying valid reflection signals. In
contrast, the proposed method better improves the S/N and reso-
lution of seismic data without introducing too much interference
(see Fig. 3c).

For a better comparison, Fig. 4ae4d display a local close-up of
Fig. 2c and Fig. 3ae3c, respectively. It can be seen from Fig. 4a that,
due to resolution limitations, the two reflection events at the top
and bottom interfaces of the wedge-shaped strata can only be
completely separated at the 42nd trace (onlap termination A) and
57th trace (pinch out termination B) of the synthetic data. After
processing by the three methods, the seismic traces that can
completely separate the reflection events at the top and bottom
interfaces move toward the true locations of terminations A and B,
which further demonstrates that all three methods effectively
improve the resolution of the data. In addition, we also notice that
the deconvolution method and the spectral whitening method can
completely separate the top-bottom reflections of two wedge-
shaped strata at the 46th and 60th traces, while the method pro-
posed in this paper can separate them at the 47th and 61st traces.
This shows that the deconvolution and spectral whitening methods
are inferior to the developed method in resolution enhancement.
Meanwhile, the above two methods are much worse than the
proposed method in terms of fidelity because they introduce more
additional interference in the processing results (as marked by the
arrows in Fig. 4b and Fig. 4c). To compare the three methods more
explicitly, the spectra of Fig. 2 and Fig. 3 are drawn in Fig. 5. Fig. 5a
and Fig. 5b plot the spectrum of Fig. 2b and Fig. 2c, respectively.
Fig. 5c plots the spectrum of Fig. 3a and clearly shows that the
deconvolution method effectively broadens the bandwidth of the
synthetic data, but it also retains visible noise. Fig. 5d shows the
spectrum of Fig. 3b. It can be evidently viewed that the noise is
greatly suppressed and the bandwidth of the data is significantly
expanded after processing by the spectral whitening method.
Fig. 5e shows the spectrum of Fig. 3c. From Fig. 5e, we can find that
the developed method obtains a cleaner and wider spectrum than
the other two methods. This result indicates that the method
proposed in this paper works more effectively and satisfactorily in
terms of simultaneous denoising and resolution improvement.



Fig. 3. Comparison of the results of different methods on synthetic data. (a) The result
obtained by the deconvolution method. (b) The result obtained by the spectral whit-
ening method. (c) The result obtained by the proposed method. Note that deconvo-
lution and spectral whitening methods need to be preprocessed by the FX-Decon
method to eliminate noise interference, which is not required for the proposed
method. The events shown by the red arrows in (c) are more obvious and continuous
than those in (a) and (b), meaning that the proposed method outperforms the other
two methods in resolving thin layers. In addition, as indicated by the black rectangle,
(c) is cleaner than (a) and (b), which indicates that the processing result of the pro-
posed method has a higher S/N.
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3.2. Field data example

To evaluate the effectiveness of the proposed method in prac-
tical processing, we apply it to a field post-stack profile. Fig. 6a
shows the profile that consists of 478 traces with 501 sampling
points and a sampling interval of 1 ms. In Fig. 6a, the reservoir is
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located between 1.2 s and 1.4 s. Due to the influence of overlying
high-velocity bodies and noise, this post-stack profile has a low
signal-to-noise ratio and resolution, causing more difficulty in
identifying and tracking the reservoir reflection events. To effec-
tively tackle this issue, we use deconvolution, spectral whitening,
and the proposed method to process it. Like the synthetic example,
this profile needs to be preprocessed with the FX-Decon method to
attenuate noise and highlight the effective signal before using
deconvolution and spectral whitening methods. Fig. 6be6d draw
the results of deconvolution, spectral whitening, and the proposed
method, respectively. It is clear from Fig. 6 that the noise is greatly
eliminated and the seismic resolution is significantly enhanced
after processing by the three methods. Further analysis of Fig. 6
reveals that the proposed method is better than the deconvolu-
tion and spectral whitening approaches in terms of processing ef-
fect because the section obtained by this method has better lateral
continuity and higher resolution. To make the comparison more
obvious, we enlarge the rectangular area of each subplot in Fig. 6
and show them in Fig. 7. Fig. 7a shows the local enlargement of
the original data (Fig. 6a). From Fig. 7a, we can see that the noise
destroys the continuity of seismic reflection as well as masks the
fault information, which seriously affects the subsequent reservoir
prediction work. Fig. 7b shows the local enlargement of the result
obtained by the deconvolution method. We can observe that
although the deconvolution method improves the seismic resolu-
tion and reveals the hidden features to some extent, there are
obvious artifacts (between traces 300 and 350) in the processed
profile. Fig. 7c and 7d show the local enlargement of the result
obtained by the spectral whitening method and the proposed
method, respectively. As seen in Fig. 7c and 7d, both methods
greatly enhance the resolution of the thin sand layer. The originally
discontinuous and weak thin reflection events become continuous
and strong reflection events (as shown by arrows), which is
meaningful for improving reservoir prediction accuracy.
Comparing Fig. 7c and Fig. 7d, it can be found that the processing
result of the presented method has higher resolution and better
event continuity than that of the spectral whitening method.
Additionally, we can also observe from Fig. 7 that the proposed
method outperforms the spectral whitening and deconvolution
methods in highlighting and portraying hidden features (especially
fault system), as indicated in the red rectangles.

In order to further compare and analyze the processing effect of
the three methods, we portray the spectra of Fig. 6 in Fig. 8.
Although the deconvolution method significantly widens the fre-
quency bandwidth (see Fig. 8b), it does not sufficiently enhance the
high-frequency components. This is the reason why the deconvo-
lution method has a lower resolution than the other two methods.
From Fig. 8c, we can see that the spectral whitening method can
expand the amplitude spectrum to fit the required bandwidth, but
it also suppresses some low-frequency components of the effective
signal. In contrast, the presented method effectively broadens the
bandwidth of seismic data while preserving low-frequency infor-
mation and boosting the dominant frequency of the data, as shown
in Fig. 8d. To check the rationality of the processing results, Fig. 9
shows the well-to-seismic calibration diagrams before and after
the processing by the three methods. Fig. 9a shows the well-to-
seismic calibration diagram before processing, in which the red
curve is the synthetic seismogram created by well logging and
Ricker wavelet, the blue curve is the through-well trace, and the
black curves are the traces next to the borehole. As visible in Fig. 9a,
the original data has low resolution and S/N, so the matching de-
gree between the through-well trace and the synthetic seismogram
is poor (shown by the green arrows). Fig. 9be9d show the well-to-



Fig. 4. Local close-up comparison of the synthetic data example. (a) Local close-up of the noise-free synthetic data. (b) Local close-up of the result obtained by deconvolution. (c)
Local close-up of the result obtained by spectral whitening. (d) Local close-up of the result obtained by the proposed method. Note that (d) can better identify both termination A
and B compared to (b) and (c), implying that the proposed method has a higher resolution. Meanwhile, as shown by the red arrows, more false reflection events are produced in (b)
and (c) compared to (d), which means that the method proposed in this paper is superior to the other two methods in terms of fidelity.

Fig. 5. Spectra comparison of the synthetic data example. (a) The spectrum of the noise-free synthetic data. (b) The spectrum of the noisy synthetic data. (c) The spectrum of the
result obtained by deconvolution. (d) The spectrum of the result obtained by spectral whitening. (e) The spectrum of the result obtained by the proposed method.
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Fig. 6. Field post-stack data example. (a) Noisy field post-stack data. (b) The result of the deconvolution method. (b) The result of the spectral whitening method. (c) The result of
the proposed method. Note that deconvolution and spectral whitening methods need to be preprocessed by the FX-Decon method to eliminate noise interference, while the
proposed method does not. As the black rectangles indicates, the section obtained by the proposed method has better lateral continuity and higher resolution than those obtained
by the other two methods.

Fig. 7. Zoomed comparison of the field post-stack data example. (a) Noisy field post-stack data. (b) The result of the deconvolution method. (c) The result of the spectral whitening
method. (d) The result of the proposed method. Note that as indicated by the blue arrows, the events in (b) and (c) have inferior continuity, while they have good continuity in (d).
Also, as shown in the red rectangles, the fault features are better highlighted and characterized in (d) compared to (b) and (c).
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seismic calibration diagrams processed by deconvolution, spectral
whitening, and the proposed method, respectively. It can be seen
from Fig. 9be9d that after processing by the three methods, the
resolution and S/N of the seismic data are markedly boosted, and
the matching degree between the through-well trace and the
synthetic trace is greatly enhanced. As far as the resolution
enhancement effect is concerned, our proposed method works best
because the thin layers indicated by the red arrows can be distin-
guished in Fig. 9d while they cannot well be identified in Fig. 9b and
Fig. 9c. For quantitative comparison, we compute the correlation
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coefficient between the synthetic seismogram and the through-
well trace in Fig. 9. The correlation coefficients of Fig. 9ae9d are
0.3571, 0.5948, 0.6107 and 0.7351, respectively. This clearly illus-
trates that the method proposed in this paper is also superior to the
other two methods in terms of the reliability of the processing
result. In summary, the proposed method is a reliable technology
that can simultaneously improve the resolution and S/N of seismic
data, and has promising applications in lithologic reservoir iden-
tification and characterization.



Fig. 8. Spectra comparison of the field post-stack data example. (a) The spectrum of the noisy field post-stack data. (b) The spectrum of the result obtained by deconvolution. (c) The
spectrum of the result obtained by spectral whitening. (d) The spectrum of the result obtained by the proposed method.
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4. Conclusions

In this paper, we propose a novel processing method for
simultaneous denoising and resolution enhancement of seismic
data. Specifically, this method employs the elastic convolution
dictionary learning developed in this paper as a theoretical
framework to solve the problem that the resolution enhancement
effect is restricted by noise. To this end, we first develop aweighted
convolutional sparse representation paradigm to encode the noisy
data to obtain the optimal approximation of the effective signal in
the dictionary domain. To enhance the seismic resolution, we then
propose a new approach for constructing the high-resolution
convolution dictionary, whose steps include modeling the spectra
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of the learned dictionary atoms, designing the desired spectra for
the atoms with a parameter scaling strategy, and broadening the
atomic spectrum using matched filtering technology. By adding up
the convolution result between the optimal sparse approximation
of the effective signal and the constructed high-resolution dictio-
nary, we finally reconstruct the seismic data with both high reso-
lution and high S/N. We use a synthetic record and a field seismic
section to examine the accuracy of the proposed method. Our re-
sults demonstrate that, in comparison to the conventional decon-
volution and spectral whitening methods, the proposed method is
more competitive in seismic applications and can provide reliable
supporting data for fine exploration and development of oil
reservoirs.



Fig. 9. Comparison of well-to-seismic calibration of field data example. (a) Well-to-seismic calibration of the original field data. (b) Well-to-seismic calibration of the result obtained
by deconvolution. (c) Well-to-seismic calibration of the result obtained by spectral whitening. (d) Well-to-seismic calibration of the result obtained by the proposed method. Notice
that, as shown by the green arrows, the through-well traces in (b) and (c) are poorly matched with the well synthetic seismogram, but the through-well trace in (d) adequately ties
with the synthetic seismogram. At the same time, the thin layers indicated by the red arrows can be distinguished in (d) while they cannot well be identified in (b) and (c). They all
demonstrate that the proposed method works best.
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Kwietniak, A., Cichostępski, K., Pietsch, K., 2018. Resolution enhancement with
relative amplitude preservation for unconventional targets. Interpretation 6 (3),
SH59eSH71. https://doi.org/10.1190/INT-2017-0196.1.

Lan, N.Y., Zhang, F.C., Li, C.H., 2021. Robust high-dimensional seismic data inter-
polation based on elastic half norm regularization and tensor dictionary
learning. Geophysics 86 (5), V431eV444. https://doi.org/10.1190/geo2020-
0784.1.

Lee, M.W., 1986. Spectral whitening in the frequency domain. US Geological Survey
86e108.

Li, G., He, Z., Tang, J., et al., 2021. Dictionary learning and shift-invariant sparse
coding denoising for controlled-source electromagnetic data combined with
complementary ensemble empirical mode decomposition. Geophysics 86 (3),
E185eE198. https://doi.org/10.1190/geo2020-0246.1.

Manenti, R., Porsani, M., 2016. Spectral Whitening Using Single-Trace Singular Value
Decomposition Applied to Vibroseis Data. SEG Technical Program Expanded
Abstracts, pp. 4825e4829. https://doi.org/10.1190/segam2016-13960140.1.

Margrave, G.F., Lamoureux, M.P., Henley, D.C., 2011. Gabor deconvolution: esti-
mating reflectivity by nonstationary deconvolution of seismic data. Geophysics
76 (3), W15eW30. https://doi.org/10.1190/1.3560167.

Mila, N., Michael, K.N., 2005. Analysis of half-quadratic minimization methods for
signal and image recovery. SIAM J. Sci. Comput. 27 (3), 937e966. https://
doi.org/10.1137/030600862.
2140
Morozov, I., Haiba, M., Deng, W., 2018. Inverse attenuation filtering. Geophysics 83
(2), V135eV147. https://doi.org/10.1190/geo2016-0211.1.

Naghadeh, D.H., Morley, C.K., 2017. Enhancement of temporal resolution using
improved time-variant spectral whitening. J. Geophys. Eng. 14 (4), 822e832.
https://doi.org/10.1088/1742-2140/aa6ddf.

Naghizadeh, M., Sacchi, M., 2012. Multicomponent f-x seismic random noise
attenuation via vector autoregressive operators. Geophysics 77 (2), V91eV99.
https://doi.org/10.1190/GEO2011-0198.1.

Okaya, D.A., 1995. Spectral properties of the earth's contribution to seismic reso-
lution. Geophysics 60 (1), 241e251. https://doi.org/10.1190/1.1443752.

Oldenburg, D.W., 1981. A comprehensive solution to the linear deconvolution
problem. Geophys. J. Int. 65 (2), 331e357. https://doi.org/10.1111/j.1365-
246x.1981.tb02716.x.

Peng, G.J., 2019. Adaptive ADMM for dictionary learning in convolutional sparse
representation. IEEE Trans. Image Process. 28 (7), 3408e3422. https://doi.org/
10.1109/TIP.2019.2896541.

Perez, G., Marfurt, K.J., 2007. Improving lateral and vertical resolution of seismic
images by correcting for wavelet stretch in common-angle migration.
Geophysics 72 (6), C95eC104. https://doi.org/10.1190/1.2781619.

Rosa, A.L.R., Ulrych, T.J., 1991. Processing via spectral modeling. Geophysics 56 (8),
1244e1251. https://doi.org/10.1190/1.1443144.

Sheriff, R.E., Geldart, L.P., 1995. Exploration Seismology. Cambridge University Press.
Shao, J., Wang, Y.B., 2021. Simultaneous inversion of Q and reflectivity using dic-

tionary learning. Geophysics 86 (5), R763eR776. https://doi.org/10.1190/
geo2020-0095.1.

Song, A.H., Flores, F.J., Ba, D., 2020. Convolutional dictionary learning with grid
refinement. IEEE Trans. Signal Process. 68, 2558e2573. https://doi.org/10.1109/
TSP.2020.2986897.

Sui, Y., Ma, J., 2020. Blind sparse-spike deconvolution with thin layers and structure.
Geophysics 85 (6), V481eV496. https://doi.org/10.1190/geo2019-0423.1.

Treitel, S., Lines, L.R., 1982. Linear inverse theory and deconvolution. Geophysics 47
(8), 1153e1159. https://doi.org/10.1190/1.1441378.

Wang, L., Zhou, H., Wang, Y., et al., 2020. Adaptive seismic single-channel decon-
volution via convolutional sparse coding model. IEEE.Geosci. Rem. Sens. Lett. 17
(8), 1415e1419. https://doi.org/10.1109/LGRS.2019.2945799.

Wang, Y., 2006. Inverse Q-filter for seismic resolution enhancement. Geophysics 71
(3), V51eV60. https://doi.org/10.1190/1.2192912.

Wang, Y.F., Ma, X., Zhou, H., et al., 2018. L1�2 minimization for exact and stable
seismic attenuation compensation. Geophys. J. Int. 213 (3), 1629e1646. https://
doi.org/10.1093/gji/ggy064.

Wohlberg, B., 2014. Efficient convolutional sparse coding. In: IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 7173e7177. https://
doi.org/10.1109/icassp.2014.6854992.

Yuan, S., Wang, S., Tian, N., et al., 2016. Stable inversion-based multitrace deab-
sorption method for spatial continuity preservation and weak signal compen-
sation. Geophysics 81 (3), V199eV212. https://doi.org/10.1190/geo2015-0247.1.

Zhang, F.C., Lan, N.Y., 2020. Seismic-gather wavelet-stretching correction based on
multiwavelet decomposition algorithm. Geophysics 85 (5), V377eV384. https://
doi.org/10.1190/geo2018-0835.1.

Zhang, T., 2010. Analysis of multi-stage convex relaxation for sparse regularization.
J. Mach. Learn. Res. 11, 1081e1107.

Zeiler, M.D., Krishnan, D., Taylor, G.W., et al., 2010. Deconvolutional networks. In:
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2528e2535.
https://doi.org/10.1109/CVPR.2010.5539957.

https://doi.org/10.1137/S003614450037906X
https://doi.org/10.1137/S003614450037906X
https://doi.org/10.1109/LGRS.2018.2809564
https://doi.org/10.1109/LGRS.2018.2809564
https://doi.org/10.1109/TIP.2017.2761545
https://doi.org/10.1109/TIP.2017.2761545
https://doi.org/10.1016/j.cam.2005.02.013
https://doi.org/10.1016/j.cam.2005.02.013
https://doi.org/10.1109/icassp.1999.760624
https://doi.org/10.1190/GEO2015-0412.1
https://doi.org/10.1190/GEO2016-0666.1
https://doi.org/10.1190/1.1893128
http://refhub.elsevier.com/S1995-8226(23)00060-2/sref11
https://doi.org/10.1190/1.1581068
https://doi.org/10.1190/1.1581068
https://doi.org/10.1029/RG022i003p00255
https://doi.org/10.1190/1.3483900
https://doi.org/10.1190/1.3483900
https://doi.org/10.1190/geo2013-0465.1
https://doi.org/10.1190/INT-2017-0196.1
https://doi.org/10.1190/geo2020-0784.1
https://doi.org/10.1190/geo2020-0784.1
http://refhub.elsevier.com/S1995-8226(23)00060-2/sref18
http://refhub.elsevier.com/S1995-8226(23)00060-2/sref18
http://refhub.elsevier.com/S1995-8226(23)00060-2/sref18
https://doi.org/10.1190/geo2020-0246.1
https://doi.org/10.1190/segam2016-13960140.1
https://doi.org/10.1190/1.3560167
https://doi.org/10.1137/030600862
https://doi.org/10.1137/030600862
https://doi.org/10.1190/geo2016-0211.1
https://doi.org/10.1088/1742-2140/aa6ddf
https://doi.org/10.1190/GEO2011-0198.1
https://doi.org/10.1190/1.1443752
https://doi.org/10.1111/j.1365-246x.1981.tb02716.x
https://doi.org/10.1111/j.1365-246x.1981.tb02716.x
https://doi.org/10.1109/TIP.2019.2896541
https://doi.org/10.1109/TIP.2019.2896541
https://doi.org/10.1190/1.2781619
https://doi.org/10.1190/1.1443144
http://refhub.elsevier.com/S1995-8226(23)00060-2/sref31
https://doi.org/10.1190/geo2020-0095.1
https://doi.org/10.1190/geo2020-0095.1
https://doi.org/10.1109/TSP.2020.2986897
https://doi.org/10.1109/TSP.2020.2986897
https://doi.org/10.1190/geo2019-0423.1
https://doi.org/10.1190/1.1441378
https://doi.org/10.1109/LGRS.2019.2945799
https://doi.org/10.1190/1.2192912
https://doi.org/10.1093/gji/ggy064
https://doi.org/10.1093/gji/ggy064
https://doi.org/10.1109/icassp.2014.6854992
https://doi.org/10.1109/icassp.2014.6854992
https://doi.org/10.1190/geo2015-0247.1
https://doi.org/10.1190/geo2018-0835.1
https://doi.org/10.1190/geo2018-0835.1
http://refhub.elsevier.com/S1995-8226(23)00060-2/sref42
http://refhub.elsevier.com/S1995-8226(23)00060-2/sref42
http://refhub.elsevier.com/S1995-8226(23)00060-2/sref42
https://doi.org/10.1109/CVPR.2010.5539957

	Simultaneous denoising and resolution enhancement of seismic data based on elastic convolution dictionary learning
	1. Introduction
	2. Methodology
	2.1. Elastic convolution dictionary learning
	2.2. Simultaneous denoising and resolution enhancement based on ECDL

	3. Examples
	3.1. Synthetic data example
	3.2. Field data example

	4. Conclusions
	Acknowledgments
	References


