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a b s t r a c t

Conventional seismic wave forward simulation generally uses mathematical means to solve the
macroscopic wave equation, and then obtains the corresponding seismic wavefield. Usually, when the
subsurface structure is finely constructed and the continuity of media is poor, this strategy is difficult to
meet the requirements of accurate wavefield calculation. This paper uses the multiple-relaxation-time
lattice Boltzmann method (MRT-LBM) to conduct the seismic acoustic wavefield simulation and verify
its computational accuracy. To cope with the problem of severe reflections at the truncated boundaries,
we analogize the viscous absorbing boundary and perfectly matched layer (PML) absorbing boundary
based on the single-relaxation-time lattice Boltzmann (SRT-LB) equation to the MRT-LB equation, and
further, propose a joint absorbing boundary through comparative analysis. We give the specific forms of
the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional (2D)
and three-dimensional (3D) cases, respectively. Then, we verify the effects of this absorbing boundary
scheme on a 2D homogeneous model, 2D modified British Petroleum (BP) gas-cloud model, and 3D
homogeneous model, respectively. The results reveal that by comparing with the viscous absorbing
boundary and PML absorbing boundary, the joint absorbing boundary has the best absorption perfor-
mance, although it is a little bit complicated. Therefore, this joint absorbing boundary better solves the
problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields, which
is pivotal to its wide application in the field of exploration seismology.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The numerical simulation of seismic wavefields is a highly
important fundamental problem in seismology (Ba et al., 2008;
Wang et al., 2019; Wang et al., 2020). In general, it is recognized
that the motion of seismic waves in the subsurface medium can be
well described by the macroscopic wave equation and its corre-
sponding variants. The wave equation is based on continuum me-
chanics and can be mathematically solved by certain numerical
discretization schemes, such as the finite-difference method (FDM)
(e.g., Zang et al., 2021), pseudo-spectral method (PSM) (e.g., Kosloff
and Baysal, 1982; Klin et al., 2010), and finite element method
y Elsevier B.V. on behalf of KeAi Co
(FEM) (e.g., Marfurt, 1984; Sotelo et al., 2021), to acquire the rele-
vant seismic wavefields. In particular, FDM is the most widely
accepted one in practical simulation and production, mainly
attributed to its simplicity, high computational efficiency, and
acceptable accuracy. However, for the macroscopic wave equation,
when the structure of the media is complex or there are strong
physical discontinuities, for example, faults or solid-fluid multi-
phase interfaces, the calculation results of the traditional wavefield
simulation schemes are sometimes difficult to meet the needs of
accurate wavefield calculations (Dhuri et al., 2017; Xia et al., 2022;
Jiang et al., 2022).

The wave equation considers the wave problem in seismology
from amacroscopic scale, it is also possible to seek a physical model
for wavefield simulation from a mesoscopic perspective. The lattice
Boltzmann method (LBM) is an alternative numerical simulation
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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method for solving the Navier-Stokes equation based on the
Boltzmann equation, with contemporary statistical physics as its
theoretical basis (He and Luo, 1997; Lallemand and Luo, 2000;
Zadehgol, 2022). It attempts to achieve the simulation of complex
physical phenomena at the macroscopic level by tracking the in-
teractions of discrete particles on the mesoscopic scale. LBM orig-
inated from the lattice gas automata (LGA) (Frisch et al., 1986), and
was first proposed by McNamara and Zanetti (1988). The LBM al-
gorithm is easy to understand and implement and has good sta-
bility. Because LBM is a mesoscopic method, there is no need to
make continuity assumptions of the wave equations. In addition,
due to its flexible boundary processing and completely discrete
characteristics, it is very suitable for dealing with irregular
boundaries and wavefield simulations of multiphase porous media
(Dhuri et al., 2017; Xia et al., 2022). Through the remarkable con-
tributions of many predecessors, LBM has developed rapidly in the
fields of computational fluid dynamics, thermodynamics, and
electromagnetics (e.g., Chen and Doolen, 1998; He and Doolen,
2002; Krüger et al., 2017; Hauser and Verhey, 2019; Wang et al.,
2019). Nowadays, the most widely used and accepted one is the
single-relaxation-time LBM (SRT-LBM) based on the Bhatnagar-
Gross-Krook (BGK) collision operator (Qian et al., 1992), which is
attributed to its high computational efficiency. However, another
LBM method, called multiple-relaxation-time LBM (MRT-LBM)
(e.g., Xu et al., 2012; Aslan et al., 2014; Wang, 2020) accompanied
by multiple relaxation parameters, is also increasingly drawing
researchers' interest, due to its higher computational accuracy, and
better stability, etc. d’Humi�eres (1992) first proposed MRT-LBM in
rarefied gas dynamics, and then d'Humi�eres (2002) provided a
concise exposition of the MRT-LB equation and demonstrated its
superior numerical stability over the popular lattice-BGK equation.
Yu and Fan (2010) developed an MRT interaction-potential-based
lattice Boltzmann model for two-phase flow, which significantly
enhanced the numerical stability at low viscosities. Then, Chai and
Zhao (2012) performed a detailed Chapman-Enskog analysis where
the force term effect was also included. And recently, Chai and Shi
(2020) presented a unified framework of MRT-LBM for the Navier-
Stokes and nonlinear convection equations and conducted some
detailed analysis.

In recent years, LBM has been gradually introduced into seis-
mology as an alternative new simulation scheme for wave propa-
gation. Zhang et al. (2009) proposed a lattice Boltzmannmodel for a
two-dimensional (2D) wave equation by using the higher-order
moment method. O'Brien et al. (2012) successfully applied LBM to
model the elastic wave propagation and performed a similar von
Neumann stability analysis. In particular, Viggen (2014) covered the
lattice Boltzmann acoustics systematically and comprehensively.
After that, Xia et al. (2017) employed LBM to simulate wave prop-
agation in viscousmedia and revealed the relationship between the
relaxation time in LBM and the quality factor in the Kelvin-Voigt-
based wave equation. Not long after, Dhuri et al. (2017) analyzed
a linear lattice Boltzmann formulation for the simulation of linear
acoustic wave propagation in heterogeneous media, and studied
the numerical anisotropy of the dispersion relation on various 2D
lattices. Escande et al. (2020) proposed the von Neumann stability
analysis along with a Chapman-Enskog analysis for SRT-LBM for
wave propagation in isotropic linear elastic solids and successfully
computed surface waves for the first time by LBM for elastic solids.

For wave problems in seismology, an inescapable aspect is the
treatment of truncated boundary reflections (Tang et al., 2021).
Generally, the best absorbing boundary for the macroscopic wave
equation is recognized as the perfectly matched layer (PML)
scheme, which has been developed and enhanced bymany scholars
(e.g., Chen et al., 2014; Wang et al., 2019), since it was proposed by
Berenger (1994). Similarly, when adopting LBM to analyze wave
2114
problems, a good absorbing boundary scheme will greatly impact
the calculation results. Some researchers have studied the
absorbing boundary issue of LBM in different fields. Most of them
are aimed at the SRT-LB equation, and the primary developments
are briefly summarized below.

Kam et al. (2007) introduced a sponge layer formulation by
adding an attenuation term to the lattice Boltzmann equation and
achieved a certain absorption effect. Tekitek et al. (2009) showed
that the reflection of sound waves could be simply reduced by
changing the advection step of the lattice Boltzmann algorithm on
the nodes close to the interface. In the field of computational fluid
dynamics, Vergnault et al. (2012) developed a sponge-layer
absorbing boundary based on the relaxation time, when using
LBM to solve the time evolution of nonlinear disturbances around
an arbitrary base flow. This scheme is simple and low-cost in the
calculation, but it needs more absorption layers to achieve a better
absorption effect. Subsequently, Vergnault et al. (2013) adopted this
sponge-layer absorbing boundary to settle the problem of noise
source identification. After this, the sponge-layer was often used to
handle the external nonreflecting boundaries for compressible
flows (e.g., Zhuo and Sagaut, 2017; Feng et al., 2019). In particular,
Najafi-Yazdi and Mongeau (2012) derived a non-reflecting bound-
ary condition based on PML in the field of computational aero-
acoustics. This scheme is theoretically capable of realizing
exponential attenuation of boundary reflections, but the simulation
is prone to instability if the attenuation parameters are not properly
chosen. More recently, in the field of seismology, Jiang et al. (2020)
introduced the viscous absorbing boundary during the numerical
simulation of the LBM wavefield, and by changing the attenuation
coefficient and function type, a better-truncated boundary reflec-
tion suppression performance was achieved. In addition to this,
there are some other studies of absorbing boundaries for SRT-LBM,
such as characteristic boundary conditions (e.g., Schlaffer, 2013;
Heubes et al., 2014). The collision process of MRT-LBM is more
complicated, and thus its absorbing boundary is less studied.
However, given the higher accuracy, better stability, and more
flexible adjustment of relaxation parameters in wavefield simula-
tions, the wide application of MRT-LBM in acoustic wave problems
is a general trend. As a result, it is imperative to choose a good
absorbing boundary scheme for wavefield modeling using MRT-
LBM. In this article, we extend the viscous absorbing boundary
(VAB) and the PML absorbing boundary to the MRT-LB equation
and further propose a joint absorbing boundary (JAB) by combining
the two strategies to attenuate more effectively the boundary re-
flections during MRT-LBM wavefield simulations.

The remainder of this paper is organized as follows. First, we
introduce the basic theory of MRT-LBM-based wavefield simula-
tions, and derive specific expressions for the VAB, PML, and JAB in
the framework of MRT-LBM; then, we verify the accuracy of the
MRT-LBM-simulated wavefield, and further compare the perfor-
mances of the three absorption boundary schemes by numerical
examples; after this, we conduct some brief discussions and finally
draw some conclusions.

2. Theory

2.1. Multiple-relaxation-time lattice Boltzmann model

The continuous and force-free Boltzmann equation (Krüger
et al., 2017) reads

vf ðx; c; tÞ
vt

þ ca
vf ðx; c; tÞ

vxa
¼Uðf Þ; (1)

where f ðx; c; tÞ is a mesoscopic quantity named the particle



Fig. 2. The processing of unknown particle distribution functions (i.e., f2;5;6ð1; jÞ) for
the lower boundary.
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distribution function describing the density of particles with par-
ticle velocity c at the position x ¼ ½x; z� for a 2D case or x ¼ ½x; y; z�
for a 3D case and at time t, Uðf Þ is the collision operator. The ve-
locity discretization and the spatial and temporal discretization of
Equation (1) are carried out in sequence, and the multiple-
relaxation-time collision scheme is adopted, therefore the so-
called multiple-relaxation-time lattice Boltzmann equation
(Krüger et al., 2017) can be written as

f ðxþ clDt; t þ DtÞ � f ðx; tÞ ¼ �DtM�1S½mðx; tÞ �meqðx; tÞ �;
(2)

where Dt stands for temporal sampling interval, S is a diagonal
matrix, M is a transformation matrix connecting the particle dis-
tribution function f ðx; tÞ and equilibrium distribution function
f eqðx; tÞ in velocity space, and the velocity moment vector mðx; tÞ
and equilibrium moment vector meqðx; tÞ in moment space via

�
m ¼ Mf ;
meq ¼ Mf eq:

(3)

Since LBM differs from traditional macroscopic numerical
methods, which discretizes velocity, it is necessary to introduce the
concept of discrete velocity models. Conventionally, the discrete
velocity sets are denoted by DdQq (Qian et al., 1992), where d is the
number of spatial dimensions and q is the number of discrete ve-
locities. The most commonly used discrete velocity sets include
D1Q3, D2Q9, D3Q15, D3Q19, and D3Q27. Here, only D2Q9 and
D3Q15 are introduced in detail. These two schemes are displayed in
Fig. 1, whose discrete velocity sets respectively are

8<
:

c0 ¼ ð0;0Þ;
c1�4 ¼ ð±1;0Þ; ð0;±1Þ;
c5�8 ¼ ð±1;±1Þ;

(4)

and

8<
:

c0 ¼ ð0;0;0Þ;
c1�6 ¼ ð±1;0;0Þ; ð0;±1;0Þ; ð0;0;±1Þ
c7�14 ¼ ð±1;±1;±1Þ:

; (5)

The corresponding weighting factors are expressed respectively as

8<
:

w0 ¼ 4=9;
w1�4 ¼ 1=9;
w5�8 ¼ 1=36;

(6)

and
Fig. 1. The schematic diagram of (a) D2Q9 and (b) D3Q15 discrete velocity models for LBM
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8<
:

w0 ¼ 2=9;
w1�6 ¼ 1=9;
w7�14 ¼ 1=72:

(7)

Interestingly, the speeds of sound for the D2Q9 and D3Q15 schemes
are both cs ¼ 1=

ffiffiffi
3

p
.

Another quantity in LBM is the equilibrium distribution function
f eqðx; tÞ, its general form is defined as (Xia et al., 2017)

f eql ¼ rwl

"
1þ cl,u

c2s
þ ðcl,uÞ2

2c4s
� u2

2c2s

#
; (8)

where the dot stands for the inner product of two vectors, l ¼ 0, 1,
…, 8 for D2Q9 and l ¼ 0, 1,…, 14 for the D3Q15 scheme, r and u are
the macroscopic quantity density and vibration velocity vector,
respectively. Generally, these two macroscopic quantities can be
calculated through weighted sums known as moments of fl.

8>>><
>>>:

r ¼
X
l

fl;

u ¼ 1
r

X
l

flcl:
(9)

Then return to Equation (2), a straightforward and critical issue
is how to deal with it. Indeed, the core steps include collision and
, with the same color arrows in each subplot having the identical weighting factor.
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streaming processes. The first part is the collision

f *ðx; tÞ ¼ f ðx; tÞ � DtM�1S½mðx; tÞ �meqðx; tÞ �; (10)

where f *ðx; tÞ represents the distribution function after the
collision. Keep in mind that this step is performed in the moment
space and is simply an algebraic local operation. The other part is
streaming

f ðxþ clDt; tþDtÞ¼ f *ðx; tÞ: (11)

In contrast, this step is implemented in the velocity space. Usually,
the trouble that is often encountered during the streaming step is
that certain values of flðx; tÞ for the nodes on the boundary are
unknown. As a result, some boundary condition processingmust be
carried out in advance (e.g., Guo et al., 2002; Latt et al., 2008). In the
following part, the distribution functions of node ð1; jÞ illustrated as
a red spot in Fig. 2 at the lower boundary are considered as an
example. Obviously, the values of f2;5;6ð1; jÞ need to be confirmed,
and an extrapolation scheme is introduced here for boundary
processing

f2;5;6ð1; jÞ¼ f2;5;6ð2; jÞ: (12)

Of course, other boundary processing schemes (e.g., Mohammed
and Reis, 2021) are also valid and optional, but are not described
here.

Given that both MRT-LBM and the wave equation usually solved
by FDM can be used to describe wave phenomena, it is interesting
to compare the two in seismic wavefield propagation. The com-
parisons between MRT-LBM and FDM in terms of core algorithm,
numerical discrete method and source loading are as follows.

(1) Core algorithm. MRT-LBM is a mesoscopic scale numerical
algorithm that solves the Navier-Stokes equation. Its key
steps are the collision process and the streaming process.
FDM is a macro-scale numerical algorithm that can solve the
conventional wave equation. The key step of FDM is to
replace the time or space partial derivative of the wave
equation with the difference, and iteratively obtain the
pressure term and the vibration velocity term.

(2) Numerical discrete method. In addition to discretizing space
and time, MRT-LBM also discretizes velocity. FDM, however,
only discretizes space and time.

(3) Source loading. The source of MRT-LBM is generally loaded
on the mesoscopic particle distribution function, while that
of FDM is usually loaded on the macroscopic pressure or
vibration velocity. In addition, the settings of initial condi-
tions and boundary conditions are also different.
2.2. Viscous absorbing boundary

When using a certain numerical method to simulate the seismic
wavefield, the suppression of the truncated boundary reflection is
an inevitable problem. Vergnault et al. (2012) proposed an idea for
SRT-LBM to achieve boundary attenuation through varying the
relaxation time t, which is primarily based on the close correlation
between t and the shear viscosity y (Viggen, 2014)

y¼ c2s

�
t�1

2

�
: (13)

This idea is simple and extensible. Nevertheless, how to smoothly
vary t of the absorbing layer is a subject worth exploring. Naturally,
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it is straightforward to transfer this idea to MRT-LBM. Regarding
D2Q9-based MRT-LBM, its diagonal matrix S in Equation (10)
contains 9 relaxation parameters

S¼diagðs1; s2; s3; s4; s5; s6; s7; s8; s9Þ; (14)

among them, s2 and s8 (or s9) are related to bulk viscosity yB and
shear viscosity y, respectively

8>>><
>>>:

y ¼ c2s

�
1
s8

� 1
2

�
;

yB ¼ c2s

�
1
s2

� 1
2

�
� 1
3
y:

(15)

In this way, it gives a theoretical basis for the viscous absorbing
boundary. Basically, the three relaxation parameters do not change
in the inner region (i.e., s*l ðxÞ ¼ sl), while in the right absorbing
region they can be expressed as

s*l ðxÞ ¼
1

1=sl þ gðxÞ ; l ¼ 2;8;9 ; (16)

where sl is the relaxation parameter of the inner region, and gðxÞ is
a monotonically increasing function to be determined. The viscous
absorbing boundary algorithm is uncomplicated. Unfortunately, the
absorption effect is sensitive to gðxÞ and not quite significant.
2.3. PML absorbing boundary

On the other hand, Najafi-Yazdi and Mongeau (2012) derived a
PML-based absorbing boundary for the SRT-LB equation to sup-
press the truncated boundary reflection and achieved good effects.
is convenient to apply this idea to the MRT-LBM-based continuous
Boltzmann equation. Similarly, only the D2Q9 velocity model is
considered here, therefore the discrete-velocity Boltzmann equa-
tion is simplified to

vf
vt

þ P
vf
vx

þ Q
vf
vz

¼ �DtM�1S½m�meq�; (17)

where P ¼ diagðcxlÞ;Q ¼ diagðczlÞ; l ¼ 1;2;/9: To load the PML
absorbing boundary to the above equation, f must be decomposed
as follows

f ¼ f neq þ f eq ¼ f neq þ hþ l; (18)

where f neq is the non-equilibrium distribution function, h and l are
the perturbation component and mean component of f eq, respec-
tively. Further, decompose h into two terms h1 and h2, so that an
attenuation term can be conveniently introduced

8>><
>>:

vh1

vt
þ ah1 þ P

vh
vx

¼ 0;

vh2

vt
þ ah2 þ Q

vh
vz

¼ 0;

(19)

where a is the absorption attenuation factor. It is easy to prove that
the above equation can achieve PML exponential attenuation of
boundary reflections. Next, perform Fourier transformation on
Equation (19) and do some simple algebraic operations, we have

iuH� u

ia� u
P
vH
vx

� u

ia� u
Q
vH
vz

¼ 0; (20)

where i is the imaginary unit, and u is the angular frequency. Then,



Fig. 3. Wave profiles at (a) z ¼ 250 m and t ¼ 125 ms and (b) x ¼ 150 m and t ¼ 125 ms,
and (c) vibration records at (160 m, 120 m), (160 m, 140 m), (160 m, 160 m), and
(160 m, 180 m) calculated by SRT-LBM (green dashed line), MRT-LBM (black dashed
line) and FDM (red solid line), respectively.

Fig. 4. The size of the homogeneous model and the setup of the observation positions,
where the red star represents the source and the blue triangles represent eight
receivers.

Fig. 5. Trapezoidal absorption layers designed for all three absorbing schemes. The
absorption at the left and right absorbing regions is only related to x, and that at the
upper and lower regions is just relevant to z.
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through further derivations, the above equation can be rewritten as
Table 1
The quantitative differences of SRT-LBM andMRT-LBM relative to FDM calculated by
Equation (25).

hSRT 0.0562% 0.0604% 0.0875% 0.222%
hMRT 0.0557% 0.0398% 0.0394% 0.183%
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iuHþP
vH
vx

þQ
vH
vz

¼ ia
ia� u

�
P
vH
vx

þQ
vH
vz

�

¼ �2aH�a2

iu
H� a

iu

�
P
vH
vx

þQ
vH
vz

�
:

(21)

After that, carry out the inverse Fourier transformation on Equation
(21) to yield

vh
vt

þ P
vh
vx

þ Q
vh
vz

¼ �2ah� a2
ð
hdt � aP

v

ð
hdt

vx
� aQ

v

ð
hdt

vz
:

(22)

Hence, inserting the discrete format of Equation (22) into Equation
(2) yields the required MRT-LBM expression with PML attenuation
term. Note that the form of a is also a monotonic function with x or
z as the independent variable. Generally speaking, the PML
absorbing boundary shows a more remarkable effect than the
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viscous absorbing boundary, but the value range of a has to be
strictly controlled to avoid instability.

2.4. Joint absorbing boundary

In view of the fact that the viscous absorbing boundary and the
PML absorbing boundary apply to the same type of absorption layer
and their attenuation functions have a similar form, why not couple
them together to develop a new joint absorbing boundary to ach-
ieve a better absorption effect? Theoretically, the JAB has a more
effective absorption function under the premise of increasing a
certain amount of calculation, while the adjustment of attenuation
parameters is more flexible. Based on this, taking the right
boundary as an example, the discrete format of the modified MRT-
LBM scheme with JAB can be expressed as

f ðxþ clDt; t þ DtÞ � f ðx; tÞ ¼ �DtM�1S*½mðx; tÞ �meqðx; tÞ �

� aDt
�
2hþ aW

þ P
Wx;z �Wx�1;z

Dx

þ Q
Wx;z �Wx;z�1

Dz

�
;

(23)

where the modified relaxation matrix
S* ¼ diagðs1; s*2; s3; s4; s5; s6; s7; s*8; s*9Þ and the auxiliary quantity
W ¼ R

hdt. The transformation matrix M of D2Q9 is given in
Appendix A.

In addition, there are two quantities, namely aðxÞ and gðxÞ, left
to be discussed. The choice of these two attenuation functions has a
certain influence on the absorption effect. For both, it is crucial to
determine the type of attenuation function, the thickness of the
absorbing layer and the attenuation constant associatedwith it. The
2118
strategy in this paper is to obtain the corresponding local optimum
solution by means of numerous repetitive numerical experiments.
This is done as follows.

Step 1: select some commonly used function types, e.g., linear,
parabolic, sine, etc. By careful comparison, the polynomial
functions (Chen, 2010; Modave et al., 2014) are adopted here

8>><
>>:

gðxÞ ¼ r1
�x
L

�n1

;

aðxÞ ¼ r2
�x
L

�n2

;

(24)

where L is the thickness of the absorbing layer, r1 and r2 are
different attenuation constants, n1 and n2 are different indexes,
varying from 0 to 4.

Step 2: select several sets of acceptable absorbing layer thick-
nesses, e.g., layers 10, 15, 20, 25, etc.
Step 3: select different magnitudes of attenuation coefficients,
e.g., 10�5, 10�3, 10�1, etc.

Once the three sets of parameters are available, normal nu-
merical simulations can be carried out, and by comparing the ab-
sorption effects of truncated boundary reflections in different cases
(i.e., by looking at thewavefield snapshots or calculating the energy
of the reflectedwaves, whichwill be described later), the optimized
attenuation function can be selected and obtained. This is, of
course, a tedious preparatory task, but it is also necessary.

With these foundations in place, finally, Algorithm 1 briefly
describes the process of seismic wavefield modeling by MRT-LBM
with the JAB scheme.

Algorithm 1. Seismic wavefield modeling by MRT-LBM loaded
with the joint absorbing boundary



Fig. 6. The SNRs calculated by Equation (26) for different absorption schemes with
absorption layers of 10, 15 and 20.

Table 2
The parameters of optimized attenuation functions in Equation (24).

n1 n2 r1 r2

VAB 3 � 0.005 �
PML � 2.5 � 0.00002
JAB 3 2.5 0.003 0.00003
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Fig. 7. For the 2D homogeneous model, wavefield snapshots at t ¼ 400 ms, seismic records a
VAB, (c) PML, and (d) JAB schemes.

2119
3. Numerical examples

This section consists of four numerical simulation examples.
First, the accuracy of wavefield simulation byMRT-LBM is tested on
a homogeneous model; then the effectiveness of JAB is verified on a
2D homogeneous model, a modified 2D British petroleum (BP) gas-
cloud model and a 3D homogeneous model.
t x ¼ 100 m and z ¼ 150 m computed by MRT-LBM with (a) no absorbing boundary, (b)



Fig. 8. Seismic records at the (a) 6th and (b) 8th receivers in the 2D homogeneous medium. The pink boxes indicate the boundary reflections are enlarged in this figure.

Fig. 9. The instantaneous total wavefield energy in the internal 2D homogeneous re-
gion calculated by Equation (27).

Fig. 10. The velocity of modified BP model, whose maximum and minimum velocities
are 4500 m/s and 1500 m/s, respectively. The red star indicates a source.

C.-T. Jiang, H. Zhou, M.-M. Xia et al. Petroleum Science 20 (2023) 2113e2126
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3.1. Accuracy of MRT-LBM

The work of Xia et al. (2017) demonstrates the wavefields
calculated by SRT-LBM are comparable to the corresponding finite-
difference solutions of wave equation. Before loading MRT-LBM
with an absorbing boundary scheme, it is necessary to discuss the
accuracy of MRT-LBM performing seismic simulations. Here, for
simplicity, the finite-difference method solving the wave equation
is utilized as the reference scheme. We employ three schemes,
namely SRT-LBM, MRT-LBM, and FDM, for the wavefield evolution
on a 2D homogeneous model. Noting that the FDM here uses a
much smaller temporal sampling interval to maintain high nu-
merical accuracy, other simulation parameters are the same.

The homogeneous 2D model is 400 m in the x-direction and
400 m in the z-direction. The spatial interval in both the x- and z-
direction is 1 m, and the temporal interval is 0.5 ms (For FDM, it is
0.01 ms). A Ricker wavelet source with a dominant frequency of
30 Hz is located at (200 m, 200 m). The velocity of the P-wave is
1154 m/s, and the density is 1000 kg/m3. Fig. 3a extracts the wave
profiles at the same depth, and similarly, Fig. 3b extracts the wave
profiles at the same horizontal position. By visual observation, we
find that the results obtained by these three schemes are almost
indistinguishable. In addition, we show the vibrations recorded at
four positions in Fig. 3c, from which the same conclusion as the
above subplots can be acquired. Further, we compare quantitatively
the differences between the seismic traces obtained with MRT-LBM
and SRT-LBM concerning the reference trace calculated by the
following formula

hL ¼
P
t
ðAFDMðtÞ � ALðtÞÞ2P

t
A2
FDMðtÞ � 100%; (25)

where AFDMðtÞ stands for the seismic trace obtained by the FDM
method, L ¼ SRT orMRT represents the simulated data obtained by
SRT-LBM or MRT-LBM, respectively. The quantitative results are
displayed in Table 1. It is seen from Table 1 that the accuracy of
MRT-LBM is a little higher than that of SRT-LBM, mainly because
MRT-LBM owns several free adjustable relaxation parameters,
some of which affect the numerical accuracy.
3.2. JAB effect for the 2D homogeneous model

After we analyze the accuracy of the MRT-LBM simulated
seismic wavefield, one may then be curious about the effects of the
JAB proposed in this paper. The simplest geological model, i.e., a 2D
homogeneous model with 1154 m/s velocity and 1000 kg/m3

density, is tested here. The size of the internal area and the setup of



Fig. 11. Wavefields in the 2D modified BP model. In each subplot there are snapshots at t ¼ 195 ms, seismograms at x ¼ 150 m and z ¼ 50 m computed by MRT-LBM with (a) no
absorbing boundary, (b) VAB, (c) PML, and (d) JAB schemes.
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the observation system are shown in Fig. 4, and the external ab-
sorption layer is in the form of four trapezoidal combinations, as
shown in Fig. 5. The relaxation parameters in the internal area are
s1 � s9 ¼ (0, 1.9, 1.7, 0, 1.8, 0, 1.8, 1.9, 1.9). To preliminarily compare
the effectiveness of three absorbing boundary schemes, their
signal-to-noise ratio (SNR) when the thickness of the absorbing
layer is 10, 15, and 20 are calculated by the following equation

SNR ¼ 1
8

X8
l¼1

10 lg
�
Edirl

.
Erefl

�
; (26)

where Edirl and Erefl stand for the direct wave energy and reflected
wave energy of the l-th receivers in Fig. 4, respectively. Both
attenuation functions used here are of Equation (24), and their
corresponding attenuation coefficients, which are closely related to
the thickness of the absorption layer, are optimized by certain
numerical tests.

The SNRs calculated for the three absorbing boundaries with
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different absorption layers are depicted in Fig. 6, fromwhich it can
be intuitively found that, in general, the more layers the better the
absorption effect; besides, for the same absorption layers, the JAB
absorption effect is ranked the best and VAB the worst.

Then, wavefield snapshots and seismic records simulated using
MRT-LBM combined with different absorbing boundaries in the
homogeneous medium are shown in Fig. 7. The thickness of the
absorption boundary is 20 layers, and other parameters of opti-
mized attenuation functions are shown in Table 2. Fig. 7a corre-
sponds to no absorbing boundary, and Fig. 7b, c, and 7d correspond
to VAB, PML, and JAB, respectively. By comparing these four sub-
plots, it is clear that the JAB has the best absorption effect and the
corresponding truncated boundary reflection is quite weak. In
addition, we show the vibration curves at the 6th and 8th receivers
in Fig. 8a and b, respectively, where the pink dashed rectangles
indicate the boundary reflections. To clearly view the details, the
signals in the rectangles are enlarged in Fig. 8. The reference so-
lution without boundary reflections (black line) is acquired by
expanding the simulation area. Fig. 8 reveals that the JAB (the red



Fig. 12. Seismic wave profile at t ¼ 250 ms and x ¼ 200 m in the 2D modified BP
model, and the zoomed-in part of the pink rectangle.

Fig. 13. The instantaneous total wavefield energy in the internal region calculated by
Equation (27) in the 2D modified BP model.
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dashed line) has minimal boundary reflections, which is exactly the
performance one expects. Further, the energy over the entire
simulation region is quantified as the wavefield moves in and out of
the boundary. For simplicity, the sum of squared amplitudes at all
spatial points at a given moment

EtotalðtÞ ¼
XNx
j¼1

XNz
l¼1

A2
j;kðtÞ; (27)

is taken as the total wavefield energy at that moment. It should be
noted that the energy of the absorption region is not included in
this formula.

Fig. 9 visualizes the variation of wavefield energy with propa-
gation time when different absorbing boundary schemes are
applied. Overall, the total wavefield energy decreases with time
even without the absorbing boundaries, which is partly attributed
to the fact that the LBM simulates a viscous acoustic wavefield. On
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the other hand, the wavefield energy corresponding to JAB decays
fastest and most significantly when the wave enters the absorption
layer, and the energy returns into the inner region is approximately
5.5 orders lower compared to that of the direct wave.

3.3. JAB effect for the 2D modified BP model

We further validate the applicability of this joint absorbing
boundary to complex models, such as the modified 2D BP model
displayed in Fig. 10, where the red star indicates the location of the
Ricker wavelet source. The velocity of the P-wave is shown in
Fig. 10, and the density is 1000 kg/m3. Likewise, the thickness of the
absorption layers is 20, and the attenuation functions are the same
as in the previous example. The spatial interval in both the x- and z-
direction is 1 m, and the temporal interval is 0.5 ms. The relaxation
parameters in the internal area are s1 � s9 ¼ (0, 1.9, 1.9, 0, 1.9, 0, 1.9,
1.9,1.9). The four subplots of Fig. 11 present thewavefield snapshots
and seismic records. Fig. 11a shows the wavefields derived without
boundary treatment and Fig. 11bed shows those obtained with
VAB, PML, and JAB, respectively. The positions of the cyan arrows in
this figure indicate the dominant truncated boundary reflections.
As observed in Fig. 11a, the truncated boundary reflection energy
severely interferes with the effective waves from interfaces. By
comparing Fig.11aed, we learn that the absorption efficiency of JAB
is the most significant for the same number of absorption layers.

Thewave profile at t¼ 250ms and x¼ 200m displayed in Fig.12
is taken for a clear comparison. The signals shallower than 50 m are
reflections from the upper boundary, which is framed by the pink
dashed rectangle and is zoomed in at the top-left area. It is seen
that JAB has a remarkable truncated boundary absorption perfor-
mance. Also, the curves of energy variationwith time for the whole
internal region are depicted in Fig. 13, from which we can draw a
similar conclusion. This implies that the JAB scheme is also appli-
cable to 2D complex media.

3.4. JAB effect for the 3D homogeneous model

Finally, we try to check the effectiveness of the MRT-LBM-based
joint absorbing boundary in a 3D homogeneousmodel. For the sake
of simplicity, the 3D discrete velocity model is chosen as D3Q15
introduced in Appendix A. It is not difficult to generalize the joint
absorbing boundary from two dimensions to three dimensions, and
the details are further described in Appendix B. The size of the
internal model is 150� 150� 150 grids. The spatial interval in both
the x- and z-direction is 1 m, and the temporal interval is 0.5 ms.
The location of a shot-point is ð10;10;10Þ in grid. The thickness of
the absorption layer is 20, and the selected attenuation functions
are the same as in the previous example. The relaxation parameters
in the internal area are s1 � s15 ¼ (0, 1.9, 1.9, 0, 1.9, 0, 1.9, 0, 1.9, 1.9,
1.9, 1.9, 1.9, 1.9, 1.9). Fig. 14 illustrates 3D wavefield snapshots ob-
tained by loading different absorbing boundaries, where three sli-
ces at x ¼ 50 m, y ¼ 50 m, and z ¼ 50 m are shown, respectively.
Comparing the boundary reflections indicated by the cyan arrows
in the four subplots, we find that the unfavorable reflections in
Fig.14d are pretty weak and almost indistinguishable. This example
demonstrates that the JAB is also applicable to MRT-LBM-based
wavefield simulations for a 3D homogeneous medium.

In addition to accounting for the differences in absorption ef-
fects, it is essential to discuss the computational efficiency of the
three schemes. Theoretically, PML and JAB consume more time
than VAB in terms of the complexity of algorithms. To verify this,
the 3D homogeneous model with a large simulation step is used as
an example. The simulations are performed on a PC configuration
with a 3 GHz Intel processor and 16 GB of RAM, andwith the same C
programming and running environment. Table 3 exhibits the



Fig. 14. Wavefields in the 3D homogeneous model. Snapshots at x ¼ 50 m, y ¼ 50 m, and z ¼ 50 m computed by MRT-LBM with (a) no absorbing boundary, (b) VAB, (c) PML, and (d)
JAB schemes.

Table 3
The elapsed time ofMRT-LBM accompanied by different absorption schemes and the
corresponding additional time consumption percentages calculated by Equation
(28).

Scheme None VAB PML JAB

Elapsed time, s 996 1008 1085 1098
b, % 0 1.2 8.9 10.2
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elapsed times and corresponding time consumption percentages b
obtained by the following equation for different schemes

b ¼ Ta � TNone
TNone

� 100%; (28)

where TNone represents the elapsed time without absorbing
boundary, Ta stands for the elapsed time with VAB, PML, or JAB. As
seen from Table 3, for the same number of absorption layers, the
time consumed by VAB does not differ much from the reference
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case. In contrast, JAB, due to the complexity of the algorithm, in-
creases the calculation time by about 10%, while improves signifi-
cantly the absorption effect. In reality, parallelism is a notable
feature of LBM. Therefore, the computational efficiency of MRT-
LBM can be improved by a certain parallel computing scheme
(e.g., Campos et al., 2016; Tak�a�c and Petr�a�s, 2021), which is beyond
the scope of this paper.

4. Discussion

Conventional seismic acoustic wavefield modeling is generally
done by solving the macroscopic wave equations, while in this
paper, we use an alternative scheme, which is MRT-LBM, that does
not depend on the wave equation at the mesoscopic scale. Xia et al.
(2017) verified that the wavefields simulated by SRT-LBM have a
high degree of agreement with those based on the Kelvin-Voigt
viscoacoustic equation. We further compare the wavefields simu-
lated by MRT-LBM to those by SRT-LBM and find that MRT-LBM
simulation is more accurate than SRT-LBM simulation, mainly
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because MRT-LBM can freely adjust more relaxation parameters.
Also, due to its characteristics, MRT-LBM is superior to SRT-LBM in
terms of stability, numerical dispersion suppression, etc., which of
course must be acknowledged as inevitably bringing a 10e20%
computational burden (Krüger et al., 2017).

Most notably, we successfully extend the viscous absorbing
boundary and PML absorbing boundary based on the SRT-LB
equation to the MRT-LB equation, and we have further con-
structed a joint absorbing boundary and embedded it into the
general MRT-LB equation (i.e., Equation (23) and B-1). By compar-
ison, this scheme is the best among the three schemes in terms of
absorption efficiency; however, it has the highest computational
complexity and takes about 1% more computational effort than the
PML absorption boundary. This joint absorbing boundary has been
tested on both simple 2D and 3Dmediawith relatively good results,
which has laid the foundation for its wide application in wavefield
simulations.

However, there are four points that should be noted. First, the
viscous absorbing boundary can usually achieve an acceptable
absorbing effect in the case of a relatively large number of
absorbing layers, its algorithm is simpler and more applicable (Xu
and Sagaut, 2013). Which kind of absorption scheme is needed
depends on the specific situation. Second, both the VAB and the
PML need reasonable coefficients of their attenuation functions,
otherwise, instability may occur. Therefore, for JAB, as a combina-
tion of VAB and PML, one should pay more attention to the two
attenuation coefficients. Third, for JAB in this paper, the attenuation
functions are all of the polynomial type, and the two constant co-
efficients are optimized by numerical experiments. However, this
process is troublesome and lacks theoretical formulas to guide it.
How to adjust the attenuation coefficients adaptively is a direction
worthy of future research. Finally, for the JAB scheme as well as
MRT-LBM itself, the problem of large computation should be
addressed in the future, such as trying some parallel computing
schemes (Tak�a�c and Petr�a�s, 2021).
5. Conclusions

We use MRT-LBM as a new scheme for modeling seismic
acoustic wavefields in the field of exploration seismology and verify
that MRT-LBM is more accurate than SRT-LBM in terms of wave-
forms. In addition, to better solve the severe truncated boundary
reflection problem encountered by MRT-LBM in simulating wave-
fields, we analogize the viscous absorbing boundary and the PML
absorbing boundary targeting the SRT-LB equation to the MRT-LB
equation, and further, propose a joint absorbing boundary
through certain combinations of these two absorbing schemes. The
joint scheme is proved to have a remarkable absorption perfor-
mance by numerical experiments on a 2D homogeneous model, a
2D modified BP model, and a 3D homogeneous model. The effec-
tiveness of the joint absorbing boundary promotes MRT-LBM for
modeling seismic acoustic wavefields, although its computational
efficiency is slightly lower than that of the PML scheme. In a word,
considering the advantages of flexible boundary strategies and
complete discrete characteristics of LBM, the proposed JAB scheme
for MRT-LBM will have better prospects in some media, such as
complex pore structures, thanks to its high accuracy and good
stability.
2124
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper. The authors
acknowledge there are no conflicts of interest recorded.
Acknowledgment

This work is supported in part by the National Natural Science
Foundation of China (U19B6003-04-01, 42204132, 41874130), R&D
Department of CNPC (2022DQ0604-01), and China Postdoctoral
Science Foundation (2020M680667, 2021T140661).
Appendix A. Transformation matrix for D2Q9 and D3Q15

The transformation matrix corresponding to D2Q9 is

M¼

2
6666666666664

1 1 1 1 1 1 1 1 1
�4 �1 �1 �1 �1 2 2 2 2
4 �2 �2 �2 �2 1 1 1 1
0 1 0 �1 0 1 �1 �1 1
0 �2 0 2 0 1 �1 �1 1
0 0 1 0 �1 1 1 �1 �1
0 0 �2 0 2 1 1 �1 �1
0 1 �1 1 �1 0 0 0 0
0 0 0 0 0 1 �1 1 �1

3
7777777777775
; (A-1)

and that of D3Q15 is

M¼

2
6666666666666666666666664

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 �1 �1 �1 �1 �1 �1 1 1 1 1 1 1 1 1
16 �4 �4 �4 �4 �4 �4 1 1 1 1 1 1 1 1
0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 �1 1
0 �4 4 0 0 0 0 1 �1 1 �1 1 �1 �1 1
0 0 0 1 �1 0 0 1 �1 1 �1 �1 1 1 �1
0 0 0 �4 4 0 0 1 �1 1 �1 �1 1 1 �1
0 0 0 0 0 1 �1 1 �1 �1 1 1 �1 1 �1
0 0 0 0 0 �4 4 1 �1 �1 1 1 �1 1 �1
0 2 2 �1 �1 �1 �1 0 0 0 0 0 0 0 0
0 0 0 1 1 �1 �1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 �1 �1 �1 �1
0 0 0 0 0 0 0 1 1 �1 �1 �1 �1 1 1
0 0 0 0 0 0 0 1 1 �1 �1 1 1 �1 �1
0 0 0 0 0 0 0 1 �1 �1 1 �1 1 �1 1

3
7777777777777777777777775

:

(A-2)

The inverse matrices of these two transformation matrices can
also be determined by a simple calculation.
Appendix B. The expression of JAB for D3Q15-MRT-LBM

The discrete format of themodifiedMRT-LB expression based on
the D3Q15 discrete velocity model accompanied by the joint
absorbing boundary is represented as follows (taking the right-
hand side boundary as an example)

where the modified relaxation matrix



f ðxþ clDt; tþDtÞ� f ðx; tÞ¼ �DtM�1S*½mðx; tÞ�meqðx; tÞ�

�aDt

0
BBB@

3hþ 3aJ þ 2P
Jx;y;z � Jx�1;y;z

Dx
þ 2R

Jx;y;z � Jx;y�1;z

Dy
þ 2Q

Jx;y;z � Jx;y;z�1

Dz

þa2K þ aP
Kx;y;z � Kx�1;y;z

Dx
þ aR

Kx;y;z � Kx;y�1;z

Dy
þ aQ

Kx;y;z � Kx;y;z�1

Dz

1
CCCA;

(B-1)
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S* ¼ diag
�
s1; s

*
2; s3; s4; s5; s6; s7; s8; s9; s

*
10; s

*
11; s

*
12; s

*
13; s

*
14; s15

	
;

(B-2)

s*l ðxÞ ¼
1

1=sl þ gðxÞ ; l ¼ 2;10;11;/;14 ; (B-3)

and the two auxiliary quantities J;K .

J ¼
ð
hdt; K ¼

ð
Jdt; (B-4)

and the three diagonal matrices P;Q ;R.

P¼ diagðcxlÞ;Q ¼diagðczlÞ;R¼diag
�
cyl

�
; l¼1;2;/15: (B-5)

In addition, the discrete velocity sets and weighting factors corre-
sponding to D3Q15 are shown in Equations (5) and (7) described
earlier, respectively.
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