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a b s t r a c t

Intrinsic attenuation of the earth causes energy loss and phase distortion in seismic wave propagation. To
obtain high-resolution imaging results, these negative effects must be considered during reverse time
migration (RTM). We can easily implement attenuation-compensated RTM using the constant Q vis-
coacoustic wave equation with decoupled amplitude attenuation and phase dispersion terms. However,
the nonphysical amplitude-compensation process will inevitably amplify the high-frequency noise in the
wavefield in an exponential form, causing the numerical simulation to become unstable. This is due to
the fact that the amplitude of the compensation grows exponentially with frequency. In order to achieve
stable attenuation-compensated RTM, we modify the analytic expression of the attenuation compen-
sation extrapolation operator and make it only compensate for amplitude loss within the effective fre-
quency band. Based on this modified analytic formula, we then derive an explicit time-space domain
attenuation compensation extrapolation operator. Finally, the implementation procedure of stable
attenuation-compensated RTM is presented. In addition to being simple to implement, the newly pro-
posed attenuation-compensated extrapolation operator is superior to the conventional low-pass filter in
suppressing random noise, which will further improve the imaging resolution. We use two synthetic and
one land seismic datasets to verify the stability and effectiveness of the proposed attenuation-
compensated RTM in improving imaging resolution in viscous media.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

It has been observed that the intrinsic attenuation of the earth is
widely distributed in the subsurface layers (Kjartansson, 1979; Aki
and Richards, 1980; Carcione, 2007; Bai et al., 2013). For example,
the seismic wave will exhibit significant attenuation characteristics
as it travels through the gas chimneys or gas-saturated shale for-
mations (Zhang et al., 2010; Zhu et al., 2014). If the amplitude
attenuation and phase dispersion of seismic waves are not cor-
rected during migration imaging, the imaging amplitude will be
weaken and the imaging resolution will be reduced. Therefore, it is
necessary to develop a corresponding prestack depth migration
imaging method to correct these effects in viscoacoustic media and
hina University of Petroleum

Mu), jphuang@upc.edu.cn

y Elsevier B.V. on behalf of KeAi Co
obtain more interpretable imaging results.
There are some mathematical and physical models to describe

seismic attenuation, such as the constant Q attenuation model
((Kjartansson, 1979; Aki and Richards, 1980) and the superposition
of standard linear solid (SLS) elements (Carcione et al., 1988; Zhu
et al., 2013). In the initial application stage of correcting the ef-
fects of viscosity, geophysicists usually used the inverse Q filtering
method to compensate for seismic attenuation (Wang, 2002, 2006).
However, because it is based on a 1D model, this approach is
incapable of dealing with complex subsurface structures. Therefore,
the ray theory based (Traynin et al., 2008; Xie et al., 2009; Yue et al.,
2021), one-way wave equation based (Zhang and Wapenaar, 2002;
Shen et al., 2018; Mu et al., 2021), and two-way wave equation
based migration imaging methods were proposed to correct
attenuation effects over the past two decades. The two-way wave
equation-based reverse time migration (RTM), which can handle
complex models with steep dip layers, is regarded to be the most
precise imaging technique among these (Deng and McMechan,
2007; Zhu et al., 2014; Yang and Zhu, 2018).
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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For implementing RTM applications with amplitude compen-
sation and phase correction, many time- and frequency-domain
viscoacoustic wave equations have been proposed to describe the
effect of viscosity on seismic wave propagation (e.g., Emmerich and
Korn, 1987; Liao and McMechan, 1996; Carcione et al., 1998; Operto
et al., 2007; Zhu and Harris, 2014; Bai et al., 2014; Yang and Zhu,
2018). It is simple to simulate viscoacoustic wave propagation in
the frequency domain by incorporating a frequency-dependent
complex-valued velocity into the frequency-domain acoustic
wave equation (Liao and McMechan, 1996; Operto et al., 2007;
Sourbier et al., 2011). However, due to the high computational cost
and complex numerical solutions, these frequency-domain vis-
coacoustic equations are rarely used in the petroleum industry for
imaging and inversion. Because of its simple numerical solution
and minimal calculation, the viscoacoustic wave equation in the
time domain is more commonly used in practice. The viscoacoustic
wave equation based on the SLS model is a common time-domain
viscoacoustic wave equation that is frequently used as the forward
and backward propagation operator in attenuation compensation
RTM (Carcione et al., 1998; Zhu et al., 2013; Dutta and Schuster,
2014; Fathalian et al., 2020). This type of viscoacoustic wave
equation can be solved using the high-efficiency finite difference
(FD) method, but it contains coupled phase dispersion and ampli-
tude loss terms, making attenuation-compensated RTM not
straightforward to implement. Based on Kjartansson's constant Q
(CQ) attenuation model, several time-domain viscoacoustic wave
equations with fractional space derivative are proposed (Carcione,
2010; Zhu and Harris, 2014; Mu et al., 2021). The appearance of
the viscoacoustic equation with decoupled amplitude attenuation
and phase dispersion terms set off a hot wave of research on
migration imaging and velocity inversion for viscous media in in-
dustrial applications. A great deal of research work has been done
on the derivation of the high precision viscoacoustic wave equation
based on the constant Q model (Mu et al., 2021), the numerical
solution of the variable spatial fractional Laplace operators (Chen
et al., 2016, 2019; Li et al., 2016; Zhang et al., 2020; Zhao et al.,
2020; Mu et al., 2022a; Wang et al., 2022a), and the application
of RTM and full waveform inversion (Sun et al., 2015; Sun and Zhu,
2018; Chen et al., 2021).

Given that high-frequency noise is exponentially amplified
during the amplitude compensation process, the final imaging re-
sults will be unstable if we do not introduce some other stabiliza-
tion strategies (Li et al., 2019; Liu et al., 2020; Mu et al., 2022b).
Many stability strategies have been proposed and applied to im-
aging seismic data with good results. It is the easiest stabilization
method to obtain stable imaging results by using a low-pass filter to
suppress high-frequency noise in the wavefield (Zhu et al., 2014;
Zhu and Harris, 2015; Sun et al., 2015). However, for complex
models with sharp velocity contrast, the low-pass filter will dam-
age some effective signals and reduce the image quality. Incorpo-
rating a regularization operator to stabilize seismic wave
propagation is another typical stabilization technique (Tian et al.,
2015; Qu et al., 2017; Zhao et al., 2018). This approach provides
explicit expressions and is simple to numerically implement. By
deriving the adjoint operator of the viscoacoustic wave equation
and constructing a least-squares migration method, one can also
obtain stable imaging results (Dutta and Schuster, 2014; Yang and
Zhu, 2019). Nevertheless, this iterative method requires huge
computation costs in practical applications. The stabilization factor
method seems to be a better stability strategy, which can realize
adaptive attenuation compensation in the time-space domain
(Wang, 2006; Wang et al., 2018, 2022b; Chen et al., 2020). Mu et al.
(2022) recently proposed a wave propagation stabilization method
that uses a regulatory factor to limit the frequency range of atten-
uation compensation to the effective frequency band.
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To obtain high-resolution imaging results in viscoaoustic media,
it is of great significance to establish a stable and accurate
attenuation-compensated RTM. Because the constant Q viscoa-
coustic wave equation comprises decoupled amplitude attenuation
and phase dispersion terms, the attenuation-compensated
extrapolation formula can be constructed by simply reversing the
sign of the amplitude attenuation component while keeping the
sign of the dispersion term unchanged. However, the amplitude
compensation grows exponentially with frequency, causing severe
oscillation in the high-frequency wavefields and ultimately the
instability of the migration imaging result. On the basis of the
stability method proposed by Mu et al. (2022), we evaluate a new
stable attenuation compensation analytical expression, which can
better protect the effective signal. Then a stable attenuation
compensation simulation formula is developed by combining the
relation between wavenumber and angular frequency derived by
Mu et al. (2021) with the analytical expression of attenuation
compensation. This proposed attenuation compensation simula-
tion formula can efficiently suppress the high-frequency noises.
Finally, we build an attenuation-compensated RTM in accordance
with the source-normalized cross-correlation imaging condition.
Synthetic and field data tests show that the proposed attenuation-
compensated RTM method is stable and efficient in compensating
amplitude loss and correcting phase dispersion.

This paper is organized as follows. First, we review the decou-
pled fractional-order viscoacoustic wave equation. Then, we derive
a stable viscoacoustic attenuation-compensated propagation for-
mula. After that, the numerical methods for solving the viscoa-
coustic wave equation and the attenuation-compensated
propagation formula are illustrated. Finally, we show the robust-
ness and adaptability of the newly developed attenuation-
compensated RTM algorithm by using two synthetic and one field
datasets.

2. Methodology

2.1. Framework of the attenuation-compensated RTM

Similar to acoustic RTM, viscoacoustic RTM also includes three
procedures: forward propagation of the point sources; backward
propagation of the received shot gathers; and applying imaging
conditions. For the cross-correlation imaging condition, amplitude
compensation is required in both forward and backward propaga-
tion processes, while for the source-normalized cross-correlation
imaging condition, attenuation compensation is needed only in the
wavefield backpropagation process. The source-normalized cross-
correlation condition is better because the amplitude compensa-
tion simulation is invariably followed by the application of a sta-
bilization operator, and any stabilization operator will alter the
wavefield information (Zhu, 2016). Therefore, in this paper, we
construct the attenuation-compensated RTM workflow based on
the source-normalized cross-correlation condition.

In attenuating media, the energy attenuation during seismic
wave propagation can be expressed by an exponential rate e�aL,
where a is the attenuation factor and L denotes the propagation
distance. As seen in Fig. 1a, seismic wave is excited by the source
and travels downward. After hitting a reflection layer, this wavewill
return to the surface and be detected by a surface-deployed de-
tector. In this process, the total energy attenuation is e�aLdowne�aLup ,
where Ldown and Lup are the propagation distances of the down-
going and upgoing waves, respectively. The received wavefield re-
flected from a certain subsurface point x can be expressed as RF ðx;
tÞ ¼ Rðx; tÞe�aLdowne�aLup , where Rðx; tÞ represents the received
wavefield in non-attenuating media, t is the time variable of
seismic wave propagation.



Fig. 1. Seismic wave propagation paths and mathematical representation for amplitude attenuation and compensation: Forward simulation (a) and RTM (b).
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For attenuation-compensated RTM with source-normalized
cross-correlation imaging condition, the source wavefield is
attenuated and the receiver wavefield is compensated as shown in
Fig. 1b (Zhu, 2016). Thus, the source wavefield at the imaging point
xI can be represented by SIðx; tÞ ¼ Sðx; tÞe�aLdown, where Sðx; tÞ de-
notes the source wavefield in non-attenuating media. The receiver
wavefield at the imaging point xI is defined by RIðx; tÞ ¼ RFðx;
tÞeþaLup . As a consequence, the source-normalized cross-correlation
imaging condition in attenuating media is written as

IðxÞ ¼

ðTmax

0
SIðx; tÞRIðx; tÞdtðTmax

0
SIðx; tÞSIðx; tÞdt

¼

ðTmax

0
Sðx; tÞRðx; tÞdtðTmax

0
Sðx; tÞSðx; tÞdt

; (1)

where Tmax is the total recording time of the shot gather. Theo-
retically, we can use Eq. (1) to provide imaging results in attenu-
ating media that are identical in amplitude and phase to those
produced in non-attenuating media.
2.2. Review of the viscoacoustic wave equation

In this section, we will briefly introduce the derivation of the
viscoacoustic wave equation. In exploration geophysics, attenua-
tion is considered to be nearly linear with frequency, and many
mathematical and physical models have been proposed to describe
the CQ attenuation (McDonal et al., 1958; Kjartansson, 1979; Aki
and Richards, 1980). Based on Kjartansson's CQ model, the com-
plex phase velocity of viscoacoustic media in the frequency domain
can be expressed as (Carcione et al., 2002)

v¼
ffiffiffiffiffi
M
r

s
; (2)

where r is the density, the complex function MðuÞ ¼ M0ðiu=u0Þ2g
and M0 ¼ rv20 cos2ðpg=2Þ, u denotes angular frequency and u0

represents reference angular frequency, v0 is the phase velocity
defined at u0, g ¼ arctanð1=QÞ=p, the value of g is (0, 0.5) for any
positive quality factor Q.

By replacing the velocity variable in the frequency-wavenumber
domain acoustic wave equation with Eq. (2), we can easily obtain
the CQ viscoacoustic wave equation (Aki and Richards, 1980; Liao
and McMechan, 1996; Yang and Zhu, 2018)

u2 ¼ v20 cos2ðpg=2Þ
�
iu
u0

�2g
k2; (3)

where k denotes the complex-valued wavenumber.
After making some derivations for Eq. (3), Mu et al. (2021)

constructed a time domain CQ viscoacoustic wave equation that
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includes decoupled terms in describing amplitude attenuation and
phase dispersion. It can be expressed as

u2

v21
¼ hk2gþ2 þ tðiuÞkgþ1

; (4)

where v1 ¼ v0 cosðpg=2Þ, h ¼ v
2g
0 cosðpgÞu�2g

0 cos2g
�pg
2

�
and t ¼

v
g�1
0 sinðpgÞu�g

0 cosg�1�pg
2

�
. Note that this equation has higher

accuracy in describing CQ attenuation than the one derived by Zhu
and Harris (2014).

By transforming Eq. (4) into the time-space domain, it can be
written as

1
v21

v2p
vt2

¼ �h
�
� V2

�gþ1
p� v

vt
t
�
� V2

�g=2þ1=2
pþ fs; (5)

where fs denotes source time function, p represents pressure
wavefield in the time-space domain.

To illustrate the amplitude attenuation and phase dispersion
effects clearly, we further reformulate Eq. (5) as

1
v21

v2p
vt2

¼ V2pþ b1

	
� h
�
� V2

�gþ1 � V2


p

� b2
v

vt
t
�
� V2

�g=2þ1=2
pþ fs: (6)

Equation (6) becomes an acoustic wave equation if b1 and b2 are
both 0. If we only simulate the amplitude attenuation characteris-
tics, then we can assume b1 ¼ 0 and b2 ¼ 1. Conversely, if b1 ¼ 1
and b2 ¼ 0, only the phase dispersion feature is simulated. When
b1 ¼ 1 and b2 ¼ 1, Eq. (6) simulates both amplitude attenuation
and phase dispersion effects.
2.3. Derivation of the stable attenuation-compensated
extrapolation formula

By reversing the sign of the amplitude attenuation term while
keeping the phase dispersion term unchanged (i.e., b1 ¼ 1 and b2 ¼
� 1), the attenuation-compensated wave equation can be written
as (Zhu et al., 2014)

1
v21

v2p
vt2

¼V2pþ
	
�h
�
�V2

�gþ1�V2


pþ v

vt
t
�
�V2

�g=2þ1=2
p

þ fr;

(7)

where fr denotes the received seismic data. The high-frequency
noise in the wavefield will increase exponentially if we employ
Eq. (7) directly for attenuation compensation simulation, leading to
numerical instability of the imaging results.



Fig. 2. Attenuation compensation varies with frequency for different stabilization
factors. The solid lines are calculated by the exponential term of Eq. (12), whereas the
dashed lines are calculated by the exponential term of Eq. (14). Note that the solid red
line indicates attenuation compensation without the stabilization scheme.
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According to seismic wave propagation theory, the energy of a
seismic wave propagating in a viscous medium decays exponen-
tially with propagation distance. This relationship can be described
mathematically and physically as (Wang, 2002, 2006)

pðxþ Dx;uÞ ¼ pðx;uÞexp½ � ikcðuÞDx �; (8)

where Dx denotes the propagation distance, kcðuÞ denotes the
complex-valued dispersion relation of the frequency-independent
attenuation model (Kjartansson, 1979) and can be represented by

kcðuÞ ¼
ug
0u

1�ge�ipg=2

v0 cosðpg=2Þ ; (9)

where the real term is used to simulate phase dispersion, while the
imaginary part describes amplitude decay. Therefore, the corre-
sponding analytical solution of seismic wave propagation with
amplitude compensation and phase dispersion is described as (Mu
et al., 2022b)

pðxþ Dx;uÞ ¼ pðx;uÞexp
h
� i
�
krcðuÞ � ikicðuÞ

�
Dx
i
; (10)

where krc and kic represent the real and imaginary components of kc,
respectively. By substituting Eq. (9) into Eq. (10) and using a rela-
tionship Dt ¼ Dx=v0, we can obtain

pðt þ Dt;uÞ ¼ pðt;uÞexp
h
Dtug

0u
1�g tanðpg=2Þ

i
,exp

h
� iDtug

0u
1�g
i
: (11)

In Eq. (11), the exponential term with an imaginary part describes
the phase dispersion, and the exponential term with a real part
represents the amplitude compensation. In addition, Eq. (11) shows
that the amplitude amplification process is a frequency-dependent
exponential growth function. To avoid amplifying high-frequency
noise, we consider modifying Eq. (11) so that the attenuation
compensation process can only be performed in the effective fre-
quency band range. We add a stabilization term 2ð1�suÞ to Eq.
(11), and the attenuation compensation formula can be written as
(Mu et al., 2022b)

pðt þ Dt;uÞ ¼ pðt;uÞexp
h
2Dtug

0u
1�gð1� suÞtanðpg=2Þ

i
;

(12)

where s denotes the stabilization factor. The exponential term in
Eq. (12) is approximately a quadratic function of u and we can
regulate the amplitude compensation frequency range by altering
the stabilization factor s. The symmetry axis of this approximated
amplitude compensation function (i.e., exponential term of Eq.
(12)) is

us ¼ 1
2s

;

�
i:e:; s ¼ 1

2us

�
: (13)

By altering the stabilization factor s, the high-frequency com-
ponents can be suppressed, as shown by the variations of attenu-
ation compensationwith frequency in Fig. 2. In Fig. 2, the solid lines
are calculated by the exponential term of Eq. (12), and the solid red
line indicates attenuation compensation without the stabilization
scheme. The quality factor, Dt, and the reference frequency are 60,
1 ms and 30 Hz, respectively. From Fig. 2, we can observe that the
wavefield components with an angular frequency less than 2us are
compensated, while those with an angular frequency greater than
2us are suppressed. In other words, the wavefields within the
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effective frequency band are compensated, while those outside the
effective frequency band are suppressed.

As shown in Fig. 2, there are errors between the amplitude
compensation simulation formula described by Eq. (12) and the
exact amplitude compensation simulation formula. To obtain more
accurate attenuation compensation wavefields, we modify Eq. (12)
as

pðtþDt;uÞ¼pðt;uÞexp
h
RDtug

0u
1�gð1� suÞu tanðpg =2Þ

i
;

(14)

whereR is a s-dependent constant value, which can be determined
by the relation that

exp
h
RDtug

0u
1�gð1� suÞu tanðpg=2Þ

i
ju¼umax

≡exp
h
Dtug

0u
1�g tanðpg=2Þ

i
ju¼umax

;
(15)

whenu ¼ umax, the left term of Eq. (15) reaches its maximumvalue
and R ¼ 1=ðð1 � sumaxÞumaxÞ.

Similarly, we use the exponential term from Eq. (14) to plot the
characteristics of amplitude compensation, which are shown as
dashed lines in Fig. 2. The improved formula (Eq. (14)) describes
amplitude compensation more precisely than Eq. (12), as seen in
Fig. 2. Based on Eq. (14), we obtain the analytical equation with
stable attenuation compensation and phase correction effects as

pðt þ Dt;uÞ ¼ pðt;uÞexp
h
RDtug

0u
1�gð1� suÞu tanðpg=2Þ

i
,exp

h
� iDtug

0u
1�g
i
:

(16)

The dispersion relation associated with Eq. (16) can be written
as

kcðuÞ ¼ v�1
0 ug

0u
1�g
�
iRu tanðpg=2Þ � isRu2 tanðpg=2Þ þ 1

�
:

(17)

After some mathematical derivations, we obtain the
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corresponding approximate complex velocity of Eq. (17) as

vpðuÞ ¼ v0u
�g
0 ug

�
� i
�
Ru tanðpg=2Þ � sRu2 tanðpg=2Þ

�
þ 1

�
:

(18)

Similarly, by replacing the velocity of the frequency-
wavenumber domain acoustic equation with Eq. (18), we can
derive a stable attenuation-compensated extrapolation formula

u2P¼v20u
�2g
0 u2g

0
B@�R2u2tan2ðpg=2Þ�s2R2u4tan2ðpg=2Þ
þ2R2u3stan2ðpg=2Þþ1
�2iRutanðpg=2Þþ2isRu2tanðpg=2Þ

1
CAk2P;

(19)

where P denotes the frequency-wavenumber wavefield. Note that
the value of R is only related to the choice of the stability factor s

and decreases as s decreases. When s equals ð80pÞ�1s=rad, we can
use Eq. (15) to calculateR and it equals 0.0181. Since the value ofR
is very small, the terms related to the second power of R can be
ignored in Eq. (19) to reduce the computational burden. As a result,
we ignore the second-order term associated with R in the
following derivations.

In the literature of Zhu and Harris (2014) and Mu et al. (2021),
there are three approximate formulas that can be written as

uzv0k;u
2gzv

2g
0 cos2gðpg=2Þk2g; iu2gziuvg�1

0 cosg�1

ðpg=2Þug
0k

g�1:

(20)

Substituting Eq. (20) into Eq. (19) yields

u2P¼
�
x1k

2gþ2 þ x2ðiuÞk2gþ2 þ x3ðiuÞkgþ3
�
P; (21)

where x1 ¼ v
2gþ2
0 u�2g

0 cos2gðpg=2Þ; x2 ¼ �2R tanðpg=2Þv2gþ2
0

u�2g
0 cos2gðpg=2Þ; and x3 ¼ 2sR tanðpg=2Þvgþ3

0 u�g
0 cosg�1ðpg=2Þ.

By transforming Eq. (21) from the frequency-wavenumber
domain into the time-space domain, we obtain

v2p
vt2

¼ �
�
x1

�
� V2

�gþ1 þ x2
v

vt

�
� V2

�gþ1

þ x3
v

vt

�
� V2

�g=2þ1:5
�
pþ fr: (22)

It should be noted that the stable attenuation compensation
modeling equation proposed in this paper has an explicit expres-
sion (Eq. (22)) and will not significantly increase the computational
cost over the amplitude attenuation simulation formula (Eq. (5)).
v2p
vt2

¼ �v21

0
BBB@

h
�
F�1

h
k2FðpÞ

i
þ 2gF�1

h
k2 lnðkÞFðpÞ

i
þ 2g2F�1

h
k2 lnðk

þt

 
F�1

�
kF
�
vp
vt

��
þ gF�1

�
k lnðkÞF

�
vp
vt

��
þ g2F�1

"
k
ln
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2.4. Method for determining us

The choice of cutoff angular frequency us is determined by the
model's complexity and the frequency band range of seismic data. A
low value of us will result in undercompensation. A high value of
us will result in overcompensation. Synthetic tests show that cutoff
angular frequency us should be larger than the dominant angular
frequency of the wavelet in order to obtain accurate attenuation
compensation imaging results. It can be calculated using an
expression us ¼ 2pðfm þ faÞ, where fm represents the main fre-
quency of the source time function and fa denotes the frequency
increment (usually 5< fa <20). An accurate us can be determined
by the following two steps. First, we simulate the wavefield prop-
agation using a stable attenuation compensation extrapolation
operator based on a low-pass filter (Zhu, 2016) and use the simu-
lated wavefield as a reference. We then use Eq. (22) to simulate the
amplitude compensated wavefield. The value of us is adjusted until
the simulated wavefield is the most similar to the reference
wavefield possible. In this case, the value of us is the final optimal
value. After determining us, s can be computed by Eq. (13).
3. Numerical implement

Some methods have been proposed for solving the spatial var-
iable fractional Laplacian operators in Eqs. (5) and (22). For
example, the average Q strategy (Zhu and Harris, 2014), low-rank
approximation method (Sun et al., 2015), Hermite distributed
approximation method (Yao et al., 2017), and fractional-order
operator approximation scheme (Li et al., 2016; Chen et al., 2016;
Zhang et al., 2020). Here, we decouple the wavenumber and
fractional-order by using the second-order Taylor series expansion
(TSE) to represent the variable fractional Laplacians (Zhang et al.,
2020). The approximation of the mixed-domain operators k2g and
kg can be described as

k2gz1þ 2 lnðkÞgþ 2 lnðkÞ2g2 ðk>0Þ;
kgz1þ lnðkÞgþ 0:5 lnðkÞ2g2 ðk>0Þ; (23)

By inserting Eq. (23) into Eq. (5) and transforming it from the
wavenumber domain to the time domain, we can obtain the
approximate time-wavenumber domain viscoacoustic wave equa-
tion as

v2p
vt2

¼ �v21

�
h
�
1þ 2 lnðkÞgþ 2 lnðkÞ2g2

�
k2 þ tðiuÞ

�
kþ g lnðkÞk

þ g2 lnðkÞ2k
.
2
��

Pw þ fs;

(24)

where Pw denoted the time-wavenumber domain expression of p.
By means of the pseudospectrum method (PSM), Eq. (24) can be
reformulated as
Þ2FðpÞ
i �

ðkÞ2
2

F
�
vp
vt

�#!
1
CCCAþ fs: (25)
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Similar to Eq. (5), the attenuation-compensated extrapolation
formula (Eq. (22)) can be solved by PSM as
v2p
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¼ �
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4. Synthetic tests and field data application

In this section, two synthetic and one land seismic dataset tests
are used to demonstrate the effectiveness of the proposed
attenuation-compensated RTM. Before running RTM, we smooth
the true models and use them as the migration models. For nu-
merical simulation, the 500 m wide sponge absorbing boundary is
used to attenuate boundary reflections on four boundaries (Cerjan
et al., 1985). We also mute the direct waves to obtain clean imaging
results.

4.1. Layered attenuation model

We first use a simple layered velocity model to demonstrate the
effectiveness of our method in compensating amplitude attenua-
tion and correcting phase dispersion. The layered attenuation
model is shown in Fig. 3, which contains a low-Q anomaly in the
middle of the model. There will be strong attenuation of seismic
waves that propagate through the low-Q anomaly. The model has
401 � 201 grid points. The grid spacing is 10 m in the x- and z-
directions. To generate synthetic data, Eq. (5) is used and 81 shots
are evenly spaced at a depth of 10 m. In addition, a total of 401
receivers are evenly distributed on both sides of the source to
receive the reflections. The receivers are also located below the
surface at a depth of 10 m. A Ricker wavelet with a dominant fre-
quency of 25 Hz is used as the source time function. The reference
frequency in this example is 500 Hz. The records last 2 s and the
time interval is 0.001 s. For the simulation of the common shot
gathers without attenuation, we also use Eq. (5) by assuming Q/

∞.
Fig. 4aec displays the acoustic RTM image obtained by using

acoustic data (reference imaging result), the acoustic RTM image
obtained by using viscoacoustic data, and the proposed
attenuation-compensated RTM image obtained by using viscoa-
coustic data, respectively. The us is 70p rad/s in this test. In Fig. 4b,
the deeper layers below the anomaly exhibit weaker amplitudes
compared with Fig. 4a. After attenuation compensation correction,
Fig. 3. A simple layer model. (a)
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the weak amplitudes are recovered as shown in Fig. 4c. A more
intuitive comparison (Fig. 5) is made by extracting single traces
from Fig. 4. The black dashed line in Fig. 5 has a lower amplitude
and a phase shift when compared to the blue solid line. In contrast,
there is good agreement in both amplitude and phase between the
blue solid line and the red dashed line. These findings show that
our proposed attenuation-compensated RTM can effectively correct
the influence of viscosity and produce accurate imaging results.

4.2. Marmousi model

To further verify the reliability and stability of the proposed
attenuation-compensated RTM, we test the attenuation-
compensated RTM on a more complex Marmousi model. The real
velocity and Q models are depicted in Fig. 6a and b, respectively. In
the shallow region of the model, there are three anomalies with
extremely high attenuation, which are typically brought on by gas
accumulation. The grid size of this model is 396 � 201, with grid
intervals of 10 m in both the horizontal and vertical directions. The
reference frequency is set to 25 Hz here. We use Fig. 6 to simulate
synthetic common shot gathers. The total recording time is 2.0 s
with a time sampling interval of 0.8 ms. A 25 Hz Ricker wavelet is
used as the source time function. The fixed spread geometry con-
tains 46 sources that are evenly distributed with a shot spacing size
of 80 m and a shot depth of 10 m. For each shot, 369 surface-
deployed receivers with a receiver interval of 10 m are used to
record the reflections. The viscoacoustic shot gathers are calculated
by Eq. (5). Accordingly, we can obtain the acoustic data by assuming
that Q is infinite.

As shown in Fig. 7a, we perform acoustic RTM on the simulated
acoustic data to obtain a reference imaging profile. Fig. 7b and c
shows the imaging results of acoustic RTM and the proposed
attenuation-compensated RTM with viscoacoustic data, respec-
tively. For this example, the stabilization factor us is 65p rad/s. As
shown in Fig. 7b, the imaging results of acoustic RTM have dimmed
amplitudes and blurred structures due to the lack of attenuation
compensation correction. In contrast, the attenuation-
velocity and (b) Q models.



Fig. 4. (a) is obtained by using acoustic RTM on the simulated acoustic data (reference
imaging result), (b) is obtained by using acoustic RTM on the simulated viscoacoustic
data, and (c) is obtained by using the proposed attenuation-compensated RTM on the
simulated viscoacoustic data.

Fig. 5. Extracted vertical traces from Fig. 4 at a horizontal distance of 1.0 km (a) and 2 km
respectively.
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compensated RTM imaging results (Fig. 7c) have mostly recovered
the amplitude of the anticline structures. In order to demonstrate
the advantages of the attenuation-compensated RTM in compen-
sating amplitude attenuation and correcting phase dispersion in
detail, as shown by Fig. 8, we compare the waveforms of single
traces extracted from Fig. 7. In Fig. 8, we can clearly see that the red
dashed line agrees well with the blue solid line (reference imaging
result), while the black dashed line exhibits significantly lower
amplitude and phase distortion compared with the reference trace.
According to the comparison results, we can conclude that the
proposed attenuation-compensated RTM can produce accurate
imaging results in the complex attenuating media.

Fig. 7d shows the conventional attenuation-compensated RTM
with a low-pass filter. The cutoff frequency for the low-pass filter is
120 Hz. Comparing Fig. 7c and d, we can observe that when there is
no noise in the shot record, our attenuation-compensated RTM and
the conventional attenuation-compensated RTM with a low-pass
filter yield equivalent imaging results.

4.3. Land seismic data example

In this example, a real land seismic dataset is used to illustrate
the effectiveness of our proposed attenuation-compensated RTM in
improving imaging resolution and fidelity. The migration velocity
and Q models are displayed in Fig. 9. The empirical formula
Q ¼ 3:56v2:30 yields the Qmodel, with km/s serving as the unit of v0.
This model contains 2943 � 601 grid nodes with a grid spacing of
10 m in both the horizontal and vertical directions. The field data
includes 63 shots with an equivalent shot spacing of 350 m. Each
shot is recorded with 140 receivers, and the receiver interval is
50 m. The recording time is 3.6 s, and the time sampling interval is
0.6 ms. The excitation source is a Ricker wavelet with a peak fre-
quency of 35 Hz. The reference frequency is 35 Hz. To stabilize
wavefield propagation, the us is set to 72p rad/s in this test. Fig. 10
shows the imaging results obtained by using acoustic RTM and the
proposed attenuation-compensated RTM, respectively. In compar-
ison to Fig. 10a, the amplitude of Fig. 10b is more balanced in the
middle and deep regions. Furthermore, the attenuation-
compensated imaging results show better seismic event continu-
ity than the acoustic RTM imaging results (indicated by the black
dashed boxes and black arrows). According to the mean wave-
number spectra (Fig. 11) of the migration images shown in the
dashed boxes in Fig. 10a and b, we can see that the frequency band
has been widened after attenuation compensation. This demon-
strates that RTM with attenuation compensation can improve im-
aging resolution when there is viscosity in the acquired seismic
data.

5. Discussion

In this example, wewant to evaluate the applicability of the new
method to image noisy data. Here, we use the Marmousi model
(Fig. 6) and the same synthetic data as those used in Fig. 7. In
addition, Gaussian random noise is added to the synthetic common
(b), respectively. The blue, red, and black lines are extracted from Fig. 4a, b, and 4c,



Fig. 6. The true Marmousi model includes (a) velocity and (b) Q.

Fig. 7. (a) is the result of using acoustic RTM on simulated acoustic data (reference imaging result), (b) is the result of using acoustic RTM on simulated viscoacoustic data, (c) is the
result of using the proposed attenuation-compensated RTM on simulated viscoacoustic data, and (d) is the result of using conventional attenuation-compensated RTM with a low-
pass filter on simulated viscoacoustic data.

Fig. 8. Extracted vertical slices from Fig. 7 at a distance of 1.5 km (a) and 2.5 km (b), respectively. Vertical traces extracted from Fig. 7a, b, and 7c are represented by blue solid, red
dashed, and black dashed lines, respectively.

Fig. 9. Migration velocity (a) and (b) Q models for land seismic data.
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Fig. 10. Migration imaging results for the land seismic data obtained by using the (a) acoustic RTM and the (b) proposed attenuation-compensated RTM.

Fig. 11. The average wavenumber spectrum of the images shown in the dashed boxes
in Fig. 10a and b. The migration images with and without compensation are repre-
sented by the red and blue lines, respectively.

Fig. 12. Noise-contaminated shot gatherings and the SNR are (a) 5 dB and (b) 10 dB, respe
random noise is greater than 60 Hz.
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shot gathers. The results obtained by the proposed attenuation-
compensated RTM (PAC-RTM) are compared with those obtained
by the conventional attenuation-compensated RTM (CAC-RTM)
with a low-pass filter. It should be noted that the parameters used
by the two migration imaging methods here are identical to those
shown in Fig. 7.

Firstly, we add different amounts of high-frequency random
noise to the noise-free shot gathers, and the signal to noise ratio
(SNR) of the shot gathers after adding noise is 5 dB and 10 dB,
respectively. It should be noted that the high-frequency noise spans
60e500Hz. Fig. 12 shows two noise-contaminated shot gathers
with the same source but different SNRs, and the source is located
at a distance of x ¼ 1.9 km. According to Fig. 12, the effective signal
energy increases as the SNR increases. We use these two built
seismic datasets to perform attenuation-compensated RTM and the
imaging results are shown in Fig. 13. Both conventional and newly
proposed attenuation-compensated migration imaging methods
can produce stable imaging results. The noise in imaging results
gradually increases as SNR decreases. When compared to CAC-RTM
imaging results (Fig. 13c and d), PAC-RTM imaging results (Fig. 13a
ctively. Note that the direct waves of the shot gathers are muted and the frequency of



Fig. 13. Migration imaging results are obtained by (a and b) PAC-RTM and (c, d) CAC-RTM. The SNRs of the used seismic data are (a and c) 5 dB and (b and d) 10 dB, respectively.

Fig. 14. Noise-contaminated shot gathers and the SNR are (a) 5 dB and (b) 10 dB, respectively. Note that the direct waves of the shot gathers are muted and the frequency of random
noise is distributed within 0e500 Hz.
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and b) have significantly less noise and higher resolution, particu-
larly for anticline structures (indicated by the dashed elliptical box).
This indicates, in suppressing high-frequency noise, the proposed
attenuation-compensated RTM outperforms the conventional low-
pass filter-based attenuation-compensated RTM.

To demonstrate the imaging quality of the new method when
there are some random noises in the effective frequency band,
random noise with a frequency band of 0e500 Hz is added to the
noise-free shot gathers. Fig. 14 shows two noise-contaminated shot
gathers with the same source location as those in Fig. 12 but
different SNRs. The energy of the effective signal in Fig. 14 is weaker
than that in Fig. 12 at the same SNR. Then we use CAC-RTM and
2793
PAC-RTM to image the seismic data with different SNR, and the
imaging results are shown in Fig. 15. Compared with Fig. 13, it can
be seen in Fig. 15 that the quality of imaging results deteriorates
when the noise frequency distribution range widens. The imaging
results in Fig. 15 show that the new method can successfully
recover complex underground structures even when the data SNR
is as low as 5. The CAC-RTM provides noisier imaging results than
the PAC-RTM and performs poorly when imaging anticline struc-
tures. This demonstrates that, when compared to a low-pass filter,
our stability strategy suppresses random noise better and produces
more accurate imaging results.



Fig. 15. Migration imaging results are obtained by (a and b) PAC-RTM and (c, d) CAC-RTM. The SNR of the used seismic data is (a and c) 5 dB and (b and d) 10 dB, respectively.
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6. Conclusion

Compensating for anelastic effects during RTM is an attractive
task for improving imaging resolution and balancing imaging
amplitude. However, backward propagation of the viscoacoustic
wavefield may lead to numerical instability due to tremendously
increased high-frequency noise. Given that numerical instability is
caused by overcompensation of the wavefield's high-frequency
components, we first develop a stable attenuation compensation
analytical expression that can suppress high-frequency noise while
adequately protecting the effective signal. Then a stable attenuation
compensation extrapolation operator is developed. The amplitude
attenuation and the derived amplitude compensation simulation
operators can be solved using the PSM. We then establish an
attenuation-compensated RTM algorithm based on the source
normalized cross-correlation imaging condition. Two synthetic and
one land seismic dataset tests show that attenuation-compensated
RTM can produce more balanced amplitude and higher resolution
imaging results than non-compensated RTM.
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