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a b s t r a c t

As an important indicator parameter of fluid identification, fluid factor has always been a concern for
scholars. However, when predicting Russell fluid factor or effective pore-fluid bulk modulus, it is
necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared (DVRS).
In the process of fluid factor calculation or inversion, the existing methods take this parameter as a static
constant, which has been estimated in advance, and then apply it to the fluid factor calculation and
inversion. The fluid identification analysis based on a portion of the Marmousi 2 model and numerical
forward modeling test show that, taking the DVRS as a static constant will limit the identification ability
of fluid factor and reduce the inversion accuracy. To solve the above problems, we proposed a new
method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,
then apply it to fluid factor calculation and inversion. Firstly, the exact Zoeppritz equations are rewritten
into a new form containing the fluid factor and DVRS of upper and lower layers. Next, the new equations
are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion
(GNI) method. The testing results on a portion of the Marmousi 2 model and field data show that dy-
namic DVRS can significantly improve the fluid factor identification ability, effectively suppress illusion.
Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deter-
ministic inversion (BDI) theory can successfully solve the above four parameter simultaneous inversion
problem, and taking the dynamic DVRS as a target inversion parameter can effectively improve the
inversion accuracy of fluid factor. All these results completely verified the feasibility and effectiveness of
the proposed method.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

How to effectively identify reservoir fluid has always been the
focus of reservoir exploration. A large number of geophysicists have
carried out relevant researches to improve the quality of fluid
discrimination (Wang et al., 2020, 2021). Smith and Gidlow (1987)
put forward the concept of fluid factor for the first time, and
demonstrated the advantages of fluid factor in fluid identification
y Elsevier B.V. on behalf of KeAi Co
through practical application. After that, the fluid factor has
received a lot of attention and development. Goodway et al. (1997),
Gray et al. (1999), Russell et al. (2003, 2011), Du and Yan (2013), Yin
and Zhang (2014) and Li (2014) have defined different fluid factor
forms from different perspectives. For example, the product of
density and shear modulus (rm), the product of compression
modulus and density (lr), Russell fluid factor f (f ¼ rV2

P � g2
dryrV

2
S ,

g2
dry ¼ ðVP=VSÞ2dry is the dry-rock VP/VS ratio squared (DVRS)), the

product of Russell fluid factor and density (rf ),

Fr ¼ ðrVPÞ2 � ðð3V2
P �4V2

S Þ =ðV2
P �V2

S ÞÞðrVSÞ2 and the effective pore-
fluid bulk modulus (Kf ). In fact, except Russell fluid factor f and
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effective pore-fluid bulk modulus Kf derived from the poroelas-
ticity theory, other forms of fluid factors have no clear physical
meaning and the fluid identification ability is not representative.
Therefore, f and Kf with clear physical meaning and good fluid
identification performance are still the main target inversion pa-
rameters. Zong et al. (2013) proposed a direct inversion method for
fluid factor f based on the Russell linear approximate formula. Chen
et al. (2018) rewrote the three-term Russell linear approximate
formula into two terms and developed a direct inversion method
for fluid factor f , which improved the stability of inversion results.
To improve the quality of fluid identification, Yin and Zhang (2014)
defined the effective pore-fluid bulk modulus Kf as the fluid factor,
and then derived a new linear approximate formula containing this
fluid factor. Based on this linear approximate formula, they suc-
cessfully estimated Kf using the Bayesian prestack inversion
method. On the basis of Yin and Zhang's research, Du et al. (2019)
further developed a matrix-fluid decoupling-based joint PP-PS-
wave seismic inversion method, which effectively improving the
estimation accuracy of fluid factor Kf . Zhou et al. (2021a) focused on
the direct inversion method for fluid factor f based on the exact
Zoeppritz equations, which overcomes the limitations of approxi-
mate formulas on the inversion accuracy of fluid factor f , and
significantly improve the inversion accuracy and resolution. How-
ever, by analyzing the above researches, it can be found that these
prestack inversion methods for fluid factors f and Kf take the DVRS
as a static constant. Zhou et al. (2021a) pointed out that the static
constant DVRS has a negative impact on the estimation accuracy of
the fluid factor. In physical sense, the DVRS should varies with the
different lithology at different depth (or travel time). If we take it as
a static constant, and apply to the calculation of fluid factor f and
the prestack inversion, it will inevitably degrade the identification
ability of fluid factor f and the estimation accuracy of f and Kf .
Hence, it is necessary to propose a new method to eliminate the
influence of the static constant DVRS. In this paper, we will choose
the Russell fluid factor f as the target inversion parameter to study
how to solve this problem, so as to further improve the identifi-
cation quality and estimation accuracy.

Once the DVRS is taken as the target inversion parameter at the
same time, which means that the total target inversion parameters
of the inversion algorithm increases from three to four. For the
prestack AVO/AVA multi parameters nonlinear inversion problems
constructed by nonlinear forward equations, the common solving
methods are the fully nonlinear algorithm based on intelligent
optimization algorithms and the generalized nonlinear algorithm
(Bing et al., 2012; Zhe and Gu, 2013; Lu et al., 2018; Huang et al.,
2020; Ali et al., 2020; Ashraf et al., 2020, 2021; Liu et al., 2020,
2022a, 2022b; Zhou et al., 2021a; 2021b, 2022). It is well known
that the fully nonlinear algorithm is computationally expensive and
difficult to be applied to huge field data inversion. Therefore, the
generalized nonlinear algorithm based on Taylor series expansion
has been widely used in solving such complex nonlinear inversion
problems. Lu et al. (2015) successfully used the Levenberg-
Marquardt (LM) method (Levenberg, 1944; Marquardt, 1963) to
solve the nonlinear inversion problem constructed by the exact
Zoeppritz equations. Similarly, Zhi et al. (2016) successfully solved
the nonlinear inversion problem constructed by the exact Zoeppritz
equations using the iteratively regularizing Levenberg-Marquardt
(IRLM) method (Nocedal and Wright, 2006). Lu et al. (2018) com-
bined the LM method with Gauss-Newton method to solve the
nonlinear inversion problem of VTI media based on the exact
Zoeppritz equations. Zhou et al. (2021a) developed a nonlinear
inversion method based on the exact Zoeppritz equations using the
Bayesian deterministic inversion (BDI) method, which further
improved the estimation accuracy of reservoir parameters by
2823
introducing a prior information. Zhou et al. (2020, 2022) success-
fully solved the nonlinear simultaneous inversion problem of five
parameters of VTI media using the BDI method. It can be seen that
the LM method and the BDI method are the two most commonly
used generalized nonlinear inversion (GNI) methods to solve multi
parameters nonlinear inversion problems. In general, when the
parameterized form of nonlinear equations changes, the stability of
a GNI algorithm based on these equations will also changes. This
means that it is unclear whether the LMmethod or BDI method can
successfully solve the four parameters simultaneous nonlinear
inversion problem based on the new parameterized exact Zoep-
pritz equations. In fact, the LM methods based on damped least
squares algorithm and the BDI methods based Bayesian theory,
both of them have their own advantages and disadvantages. The LM
method might achieve stable inversion without introducing well
constraint, which can solve the problem that it is difficult to
accurately estimate the logging curve of the DVRS. The BDI method
can further reduce the multiplicity of inversion and improve the
stability and accuracy of inversion results by introducing a prior
information contained in well data. In this paper, we first analyze
and compare whether the IRLM method and the BDI method can
successfully solve the four parameters simultaneous inversion
problem of the Russell fluid factor (f ), shear modulus (m), density
(r), and DVRS (g2

dry). Then, a more appropriate method is selected.

To reduce the negative influences of DVRS on the identification
ability and inversion accuracy of fluid factor, it is studied for the first
time as a dynamic variable varying with lithology and depth (or
travel time), and takes it as another target inversion parameter.
First, we derive the new exact Zoeppritz equations containing four
unknown parameters, namely, the fluid factor, shear modulus,
density and DVRS by further rewriting the new form of exact
Zoeppritz equations containing fluid factor given by Zhou et al.
(2021a). Then, the nonlinear inversion objective function is con-
structed using the new equations. Finally, the GNI method is
selected according to the comparative analysis results to solve the
corresponding nonlinear inversion objective function. Both syn-
thetic and field data tests show that the proposed method can
effectively overcome the adverse influence of the static constant
DVRS, and improve the identification ability and the estimate ac-
curacy of fluid factor.
2. Methodology

Forward equations are the core of inversion algorithms. Their
parameterized form determines what parameters inversion results
can be output, and their calculation accuracy determines the ac-
curacy of parameter inversion results. Generally, the higher the
calculation accuracy of forward equations, the higher the accuracy
of inversion results. Therefore, to study the impact of static DVRS on
the inversion results, we first analyze the influence of static DVRS
on the calculation accuracy of forward equations. The traditional
expressions of the exact Zoeppritz equations are nonlinear equa-
tions about the P- and S-wave velocities and density. Therefore, we
first need to derive them into a form that includes the fluid factor
and static constant DVRS using rock physics relations. Since the
detailed derivation process was provided by Zhou et al. (2021a), we
have not repeated in this paper. In addition, the design of interface
models is also crucial when analyzing the calculation accuracy of
forward equations. To make our analysis results more representa-
tive, we design four kinds of common stratigraphic interface
models, namely, the shale and water sand interface model, the
water-sand and gas sand interface model, the water sand andwater
sand interface model, and the shale and gas sand interface model.
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2.1. The new form of the exact Zoeppritz equations

Zhou et al. (2021a) derived the new form of the Zoeppritz
equations in terms of fluid factor, shear modulus, density and static
DVRS (FMR-Zoeppritz equations), and their expressions are shown
below:
2
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(1)
where, f1, f2, m1, m2, r1 and r2 respectively represent the fluid factor,
shear modulus and density at the upper and lower layers of the
reflecting interface, q1 represents the incident angle of P-wave, and
g2
dry represents the DVRS. In these equations, g2dry is a known static

constant, which needs to be determined before the inversion.
The parameters of four models we mentioned above are shown

in Table 1. Here, the four models are used to analyze the impact of
static constant g2dry on the calculation accuracy of the FMR-

Zoeppritz equations. The analysis results are shown in Fig. 1.
From Fig. 1, it can be seen that setting the DVRS as a static

constant will introduce significant computational errors. The
negative influence of the introduced calculation errors on the
inversion results cannot be ignored. Therefore, it is necessary to
transform the g2

dry in Eq. (1) into a dynamic variable. In this way, the

FMR-Zoeppritz equations shown in Eq. (1) can be converted to the
FMR-g2

dry-Zoeppritz equations shown in Eq. (2):
2
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where g2
dry1 and g2

dry2 respectively represent the DVRS at the upper

and lower layers on both sides of reflecting interface.
In fact, setting the DVRS as a static constant not only reduces the

calculation accuracy of reflection coefficients, but also limits the
ability of fluid factor on formation fluid identification. Here, an
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extracted portion of the Marmousi 2 model (Martin et al., 2006)
shown in Fig. 2 (the blue rectangular box indicates the area) is
utilized to analyze the influence of DVRS on the fluid discrimination
performance of Russell fluid factor f . According to the estimation
method for the static DVRS proposed by Chen et al. (2018), the static
DVRS value of the selected area is about 3.95. We can obtain the
fluid factor profile that is shown in Fig. 3 by substituting this value
into the fluid factor calculation formula. As Chen et al. (2018)
described in their paper, the fluid factor based on the static DVRS
estimated by their method can effectively distinguish water wet
sand, oil charged sand and gas charged sand. However, we can also
notice that when a same static DVRS value is used for the whole
profile, water wet sand and dry sand cannot be effectively distin-
guished, which leads to the false interpretation and easy to identify
the dry sand as water wet sand. To solve this problem, we will
consider the impact of lithology and depth on the DVRS. Based on
the density profile, we divide the selected profile into four regions
along the vertical direction using three dotted lines shown in Fig. 4,
and then estimate the DVRS value in these four regions respec-
tively. Finally, a group of dynamic DVRS values are obtained, which
are 5.44, 4.25, 3.68, and 3.67 respectively. Substituting these dy-
namic DVRS values into the fluid factor calculation formula, finally,
the fluid factor profile shown in Fig. 5 is obtained. We find that the
fluid factor profile calculated by dynamic DVRS values can not only
effectively distinguish water wet sand, oil charged sand and gas
charged sand, but also effectively distinguish water wet sand and
dry sandstone. The above analysis shows that it is necessary to
consider the DVRS as a dynamic parameter varying with lithology
and depth when applying the Russell fluid factor to identify



Table 1
Parameters of four models.

Classify Lithology f ;GPa m;GPa r;g=cm3 VP ;m=s VS;m=s g2
dry

Model 1 Shale 7.279 5.509 2.40 3095 1515 2.852
Water sand 4.678 13.983 2.32 4115 2455 2.475

Model 2 Gas sand 3.303 5.766 2.08 2780 1665 2.215
Water sand 6.584 5.673 2.23 3050 1595 2.496

Model 3 Water sand 5.610 1.561 2.11 2135 860 2.568
Water sand 9.049 2.483 2.21 2590 1060 2.326

Model 4 Shale 10.544 6.141 2.34 3240 1620 2.283
Gas sand 0.874 2.459 2.07 1650 1090 1.936
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reservoir fluid. Next, wewill study how to construct a simultaneous
inversion method for the dynamic DVRS and fluid factor to further
improve the inversion accuracy and fluid identification ability of
Russell fluid factor.

2.2. Prestack multi-parameter AVA nonlinear inversion

The LM method and the BDI method are the most commonly
used methods for solving prestack multi-parameter AVA nonlinear
inversion problems. The LM method does not need to provide well
constraints. It has a low demand for logging curves. Theoretically, it
is applicable even in areas where there are no or few well logging
curves. However, with the change or increase of target inversion
parameters, it is easy to fall into local minima, which leads to
inaccurate inversion results. The BDI method can further reduce the
multiplicity of inversion problems and improve the accuracy of
inversion results by introducing a prior information contained in
logging data. However, due to the limitations of logging technology
or cost, it is difficult to obtain the logging curves of unconventional
logging parameters in advance, which may limit the application of
the BDI method. In this paper, we compare and analyze the capa-
bility and accuracy of the above two methods based on the
simultaneous inversion problem of four parameters including the
fluid factor, shear modulus, density and DVRS.

2.2.1. Iteratively regularizing Levenberg-Marquardt (IRLM) method
Based on the convolution model, the prestack seismic forward

equation can be expressed as follows:

d¼GðmÞ þ n; (3)

where, d represents the observed seismic data, GðmÞ represents the
nonlinear forward operator based on Eq. (2),m ¼

h
f m r g2

dry

i
represents the target parameter vector, and n represents the
random noise.

Based on the forward equation shown in Eq. (3), the following
objective functions can be constructed using the least squares
principle:

LðmÞ ¼ kðd� GðmÞ Þk2 ¼ ðd� GðmÞ ÞTðd� GðmÞ Þ: (4)

Using a Taylor series expansion on the forward operatorGðmÞ at the
initial model parameters m0, we have:

GðmÞ¼G
�
m0
�
þ vG

�
m0�

vm
Dmþ/: (5)

Taking the first order approximation of Eq. (5) and substituting
it into Eq. (4). Then, the solution expression of target parameter
perturbation term based on the LMmethod can be given as follows:
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where b is a Lagrange multiplier and I is an identity matrix.
Zhi et al. (2016) pointed out that the iteratively regularizing

Levenberg-Marquardt (IRLM) method can minimizes the misfit
between the observation data and model data at the same time by
incorporating the Tikhonov regularization method, thereby
improving the stability of the inversion algorithm. In this way, the
solution expression shown in Eq. (6) can be rewritten as follows:
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(7)

where D is the first derivative operator, and the formula for
parameter bk is shown below:

bk¼
����d� G

�
mk
�����2: (8)

Based on Eq. (7), the updated iteration equation of the target
parameters is given below:

mkþ1 ¼ mk þ lkDmk; k ¼ 0; 1; 2:::: (9)

For iteration step size lk, Zhi et al. (2016) gave the strong Wolfe
line search algorithm to obtain this parameter, which only needs to
meet the following conditions:

L
�
mk þ lkDmk

�
� L
�
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�

þ dlk

0
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0
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�
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�
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1
A
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G
�
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�
;Dmk

1
CA; (10)



Fig. 1. Comparison of the exact Zoeppritz equations (red line) and the FMR-Zoeppritz equations with the different static g2
dry for four Models. (a) Model 1, (b) Model 2, (c) Model 3,

(d) Model 4.
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Fig. 2. Marmousi 2 model, the blue rectangle indicates the test area.

Fig. 3. The fluid factor f calculated by the static g2
dry ¼ 3:95.

Fig. 4. The density in the extracted portion of the Marmousi 2 model.
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2.2.2. Bayesian deterministic inversion (BDI) method
According to the research of Zhou et al. (2021a), the expression

of BDI objective function with differentiable Laplace distribution
blockiness constraint term for four parameters simultaneous
inversion is given below:
Fig. 5. The fluid factor f calculated by the dynamic g2
dry.



Fig. 6. The single-well model. The solid line represents true model data and the dashed line represents initial model data.
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where, Cm is a covariance matrix containing the statistical corre-
lations among four target parameters, which can be obtained from
logging data, m is the mean vector of target parameters, D is a first-
order differential matrix, kl; l ¼ 1; 2; 3; 4 are scaling parameters
(different for each target parameter) and b ¼ s2n controls theweight
of the prior information, where sn2 represents the noise variance.

Taking the first order approximation of Eq. (5) and substituting
it into Eq. (12). Then, we can obtain the solution expression of
target parameter perturbation term based on the BDI method as
follows:
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Fig. 7. Synthetic prestack angle gathers. (a) PP wave angle gathers w
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Based on the solution expression shown in Eq. (13), the target
parameters can be updated iteratively:

mjþ1 ¼ mj þ ljDmj; j ¼ 0; 1; 2::: (14)

where lj is step length of jth iteration. Similarly, this parameter can
also be linearly searched using the constraints shown in Eqs. (10)
and (11).

From the above formula derivation processes, we see that the
essential difference between the LM method and BDI method is
whether to introduce logging information to regularize the
ithout noise, (b) PP wave angle gathers with noise (S/N ¼ 0.5).



Fig. 8. PP wave inversion results by using the noise-free data (Inversion method
proposed by Zhou et al. (2021a)). The black line indicates initial model data, blue line
indicates inversion result and red line indicates true model data. (a) g2

dry ¼ 2.133, (b)
g2
dry ¼ 2.333, and (c) g2

dry ¼ 2.533.
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inversion algorithm. Next, we will use synthetic data to compare
the applicability of these two methods.
3. Synthetic data example

To facilitate comparison and highlight the advantages of the
new method, we still use the single-well model shown in Fig. 6
given by Zhou et al. (2021a) for test analysis. Fig. 7a shows the
synthetic PP wave angle gathers obtained by forward modeling of
well curves shown in Fig. 6, where the sampling interval is 2 ms,
and the seismic wavelet is the Ricker wavelet with the dominant
frequency of 30 Hz.

Firstly, to demonstrate the influence of the static DVRS on the
fluid factor inversion results, we use Eq. (1) to implement simul-
taneous inversion of three parameters based on a static DVRS value.
Fig. 8aec shows the corresponding inversion results when the
static DVRS equals 2.133, 2.333 and 2.533, respectively. From Fig. 8,
we see that changing the value of static DVRS has an obvious impact
on the accuracy of the fluid factor inversion results. Even though its
value is very close to the mean value of the dynamic DVRS
parameter curve, the fluid factor inversion results still have obvious
deviations in some places. In fact, the value of static DVRS is chal-
lenging to estimate accurately, limiting the estimation accuracy of
existing method for the fluid factor. Therefore, to reduce the
negative influence of static DVRS, it is necessary to take the
parameter DVRS as a dynamic variable and simultaneously as a
target inversion parameter.

Next, we use the single-well model shown in Fig. 6 to compare
and analyze whether the IRLM method and the BDI method can
successfully solve the four parameters simultaneous inversion
problem proposed in this paper. Using the noise-free synthetic PP
wave angle gathers shown in Fig. 7a, we implemented prestack
inversion based on the IRLM method and the BDI method respec-
tively. Fig. 9 shows the inversion results of the IRLMmethod. Fig. 10
shows the comparison between the PP wave angle gathers (input
data) shown in Fig. 7a and the forward synthetic gather based on
the inversion results (blue line) shown in Fig. 9 (synthetic data).
From Figs. 9 and 10, the IRLM method is prone to fall into local
minima when solving the four parameters simultaneous inversion
problem, failing to accurately obtain the key parameter fluid factor.
Fig. 11 shows the inversion results of the BDI method. It can be seen
from the comparison between Figs. 8 and 11 that taking the DVRS as
dynamic variable and simultaneously as target inversion parameter
can further improve the inversion accuracy of the fluid factor,
which verifies the feasibility and effectiveness of the new method.

To test the stability and anti-noise performance of the proposed
method, the noisy PP wave data shown in Fig. 7b is obtained by
adding random noise with a signal-to-noise ratio (S/N) of 0.5 to the
synthetic data shown in Fig. 7a. The corresponding inversion re-
sults are shown in Fig. 12. We see that the four parameters simul-
taneous inversion algorithm based on the BDI method (proposed
method) has good stability and anti-noise performance.

In addition, we also find that although the inversion accuracy of
the parameter DVRS is significantly lower than the other three
target parameters, this does not affect the estimation accuracy of
the main target parameter fluid factor. The main reason for the
relatively low estimation accuracy of parameter DVRS is that the
true model data of DVRS given in our single-well model is relatively
smoother than the other three parameters, which is a minor defect
in our model design. The main purpose of our paper is to further
improve the estimation accuracy of the Russell fluid factor. From
the comparison of inversion results, we have achieved this goal.
Moreover, the application of the parameter DVRS is not discussed in



Fig. 9. PP wave inversion results by using the noise-free data (IRLM method). The black line indicates initial model data, blue line indicates inversion result and red line indicates
true model data.

Fig. 10. Comparison between input gathers and synthetic gathers: (a) input data, (b) synthetic data and (c) residual data.
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this paper, so the inversion results of the parameters DVRS will not
be displayed and analyzed in subsequent inversion.

4. Field data example

The filed data used by Zhou et al. (2021a) is chosen in this paper
to demonstrate the effectiveness and advantages of the new
method. The test 2D PP wave angle gathers are extracted from a
field located in Eastern China with an effective angle range of
3�e45�. The stacked section of test data is shown in Fig. 13. The
locations of three known oil-bearing sandstone layers and two
wells (Well A and Well B) are clearly indicated. Similarly, only Well
A is used in the inversion and Well B is treated as a “blind” verifi-
cation well. Fig. 14 shows the inversion result of the fluid factor
obtained by the three parameters simultaneous inversion method
based on a static DVRS value provided by Zhou et al. (2021a).
Although the three oil sand layers can be finely identified and
depicted, the oil-bearing reservoir and the non-reservoir in the
middle are not effectively distinguished. This shows that the static
DVRS, without considering the influence of lithology, depth and
2830
other factors, greatly limit the actual reservoir fluid identification
quality of fluid factor inversion method based on the exact Zoep-
pritz equations. To solve this problem, we consider the impact of
lithology and depth (or travel time) on the parameter DVRS and
estimate a group of dynamic DVRS to reduce the adverse impact of
the static DVRS on the identification ability and estimation accuracy
of the fluid factor. Poisson's ratio and density have obvious ad-
vantages in lithology identification. Therefore, based on the Pois-
son's ratio and density logging curve shown in Fig. 15, we divide the
test profile into four large layers in vertical direction, and then use
the static value estimation method to estimate the DVRS values of
corresponding large layers, which are 2.47, 2.43, 2.47 and 2.33
respectively. The black curve shown in Fig. 16 is the Russell fluid
factor curve calculated using this group of dynamic DVRS values. In
Fig. 17, we also give the comparison and the crossplot between the
Russell fluid factor shown in Fig.16 and oil saturation logging curve.
It can be seen that the fluid factor curve calculated by the proposed
method effectively identifies the oil-bearing sandstone reservoir
and suppresses the illusions in the non-reservoir area. Based on this
group of dynamic DVRS values and the calculated fluid factor curve,



Fig. 11. PP wave inversion results by using the noise-free data (Proposed method). The black line indicates initial model data, blue line indicates inversion result and red line
indicates true model data.

Fig. 12. PP wave inversion results with S/N ¼ 0.5 (Proposed method). The black line indicates initial model data, blue line indicates inversion result and red line indicates true model
data.

Fig. 13. 2D Poststack seismic data section. The black lines indicate the location of Well
A and Well B.

Fig. 14. Inversion results fluid factor (Zhou et al., 2021a).
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Fig. 15. Logging curves of Poisson's ratio and density. The red dotted line is the
demarcation line of the large layer we defined.

Fig. 16. 2D Poststack seismic data section. The black curve is the Russell fluid factor
curve calculated using the dynamic DVRS.

Fig. 17. The comparison and the crossplot between the Russell fl

Fig. 18. Inversion results section of the proposed method: (a) fluid factor, (b) shear
modulus, (c) density.
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we carried out the inversion test based on the proposed method.
Fig. 18 shows the inversion profiles of the fluid factor, shear
modulus and density. To clearly depict the oil bearing reservoirs
using the fluid factor inversion results, we set the values repre-
sented by the color bar in Fig. 18a based on the analysis results in
Fig. 17. Fig. 19 shows the inversion results at the location of Well B.
The comparison between Figs. 14 and 18a demonstrates that the
fluid factor estimated by the proposedmethod can finely depict the
uid factor shown in Fig. 16 and oil saturation logging curve.



Fig. 19. Inversion results of proposed method at the Well B location. The red lines
indicates the well curves, the blue lines indicates the inversion results and the black
lines indicates the initial model.

Fig. 20. Inversion results fluid factor (the static DVRS).

Fig. 21. Comparison of fluid factor inversion results at the Well B location. The red
lines indicates the well curves, the blue lines indicates the inversion results and the
black lines indicates the initial model: (a) proposed method, and (b) conventional
method proposed by Zhou et al. (2021a).
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oil-bearing sandstone reservoir and suppress the illusions in other
non-reservoir areas.

In addition, to further demonstrate the influence of the static
DVRS on the accuracy of the fluid factor inversion result, we use
Russell fluid factor curve shown in Fig. 16 to perform the three
parameters simultaneous inversion based on a static DVRS. The
corresponding fluid factor inversion results are shown in Figs. 20
and 21b. From the comparison between Figs. 19a and Fig. 20, and
the comparison between Fig. 21a and b, the proposed method can
further improve the characterizing accuracy of oil sand layer 2. In
conclusion, the proposed method can effectively overcome the
adverse influence of the static DVRS on Russell fluid factor fluid
identification ability and estimation accuracy, and further improve
the applicability of fluid factor inversion methods based on the
exact Zoeppritz equations, which demonstrates the advantages of
our method.
5. Discussion

In this paper, we propose a new method to further improve the
Russell fluid factor fluid detection ability and estimation accuracy
using the dynamic DVRS. Through theoretical analysis and com-
parison of synthetic data, it can be seen that compared with the
IRLMmethodwithout well constraint, the BDImethod based on the
prior information constraint of logging data is more suitable for
solving the four parameters simultaneous inversion problem,
which means that it is essential to estimate the dynamic DVRS
2833
curve varying with depth and lithology in advance. The field data
test shows that in the area with simple lithological changes, using
large-scale means to approximately estimate a group of simple
dynamic DVRS values in blocks can also improve the fluid
discrimination ability and estimation accuracy of the Russell fluid
factor. However, for complicated reservoirs, if we continue to use
large-scale means to estimate the dynamic DVRS curve at the well
location in advance and then apply it to Russell fluid factor calcu-
lation and inversion, it will reduce the identification ability and
estimation accuracy of the fluid factor. This is the limitation of the
new method. Therefore, how to estimate the dynamic DVRS curve
changing with depth and lithology needs to be further studied. In
further work, we will solve the problem of fluid identification for
complicated reservoirs and improve the quality of fluid
discrimination.

6. Conclusions

The analysis results based on a portion of the Marmousi 2
model, numerical forward modeling and synthetic data inversion
test show that the static DVRS will seriously degrade the fluid
identification ability and estimation accuracy of the fluid factor. To
reduce the adverse effects of the static DVRS, we propose a four
parameters simultaneous inversion method for the Russell fluid
factor by treating the DVRS as a dynamic variable for the first time.
From the analysis of the extracted portion of the Marmousi 2
model, we find that the selection of dynamic DVRS varying with
lithology and depth can significantly improve the fluid identifica-
tion quality of the fluid factor. Synthetic data example shows that
the BDI method is more suitable than the IRLMmethod to solve the
four-parameter simultaneous inversion problem proposed in our
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paper, and the new method can further improve the estimation
accuracy of the Russell fluid factor. The field data application
example demonstrates that the proposed method cannot only
clearly depict the fluid-bearing reservoir, but also effectively
distinguish the fluid-bearing reservoir from the non-reservoir, and
further improve the accuracy of the fluid factor inversion result,
which comprehensively verifies the feasibility and effectiveness of
the proposed method.

From the discussion part, it is essential to develop a high-
accuracy pseudo-well logging curve construction method for the
DVRS parameter, which is one of the important research directions
in the future. In addition, combining the dynamic DVRS with the
effective pore-fluid bulk modulus to improve the quality of reser-
voir fluid identification is also worthy of further research.
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