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a b s t r a c t

Seismic impedance inversion is an important technique for structure identification and reservoir pre-
diction. Model-based and data-driven impedance inversion are the commonly used inversion methods.
In practice, the geophysical inversion problem is essentially an ill-posedness problem, which means that
there are many solutions corresponding to the same seismic data. Therefore, regularization schemes,
which can provide stable and unique inversion results to some extent, have been introduced into the
objective function as constrain terms. Among them, given a low-frequency initial impedance model is
the most commonly used regularization method, which can provide a smooth and stable solution.
However, this model-based inversion method relies heavily on the initial model and the inversion result
is band limited to the effective frequency bandwidth of seismic data, which cannot effectively improve
the seismic vertical resolution and is difficult to be applied to complex structural regions. Therefore, we
propose a data-driven approach for high-resolution impedance inversion based on the bidirectional long
short-term memory recurrent neural network, which regards seismic data as time-series rather than
image-like patches. Compared with the model-based inversion method, the data-driven approach pro-
vides higher resolution inversion results, which demonstrates the effectiveness of the data-driven
method for recovering the high-frequency components. However, judging from the inversion results
for characterization the spatial distribution of thin-layer sands, the accuracy of high-frequency compo-
nents is difficult to guarantee. Therefore, we add the model constraint to the objective function to
overcome the shortages of relying only on the data-driven schemes. First, constructing the supervisor1
based on the bidirectional long short-term memory recurrent neural network, which provides the
predicted impedance with higher resolution. Then, convolution constraint as supervisor2 is introduced
into the objective function to guarantee the reliability and accuracy of the inversion results, which makes
the synthetic seismic data obtained from the inversion result consistent with the input data. Finally, we
test the proposed scheme based on the synthetic and field seismic data. Compared to model-based and
purely data-driven impedance inversion methods, the proposed approach provides more accurate and
reliable inversion results while with higher vertical resolution and better spatial continuity. The inver-
sion results accurately characterize the spatial distribution relationship of thin sands. The model tests
demonstrate that the model-constrained and data-driven impedance inversion scheme can effectively
improve the thin-layer structure characterization based on the seismic data. Moreover, tests on the oil
field data indicate the practicality and adaptability of the proposed method.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
y Elsevier B.V. on behalf of KeAi Co
1. Introduction

Seismic inversion plays an important role in subsurface spatial
geometric characterization (e.g., the reservoir thickness, lateral
distributions, superimposed relationships) and reservoir physical
properties evaluation (e.g., porosity, fluid saturation) (Leli�evre and
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Oldenburg, 2009; Mavko et al., 2009). As an essential technical
approach, acoustic impedance inversion is mostly used method for
hydrocarbon and mineral exploration. Over the past few decades,
numerous impedance inversion methods have been proposed for
reservoir characterization (Singleton, 2008; Tetyukhina et al., 2010;
Xiang et al., 2021). However, due to the limited frequency band-
width of the acquired seismic data, it is far from satisfying the
resolution requirements of thin-layer sandstone characterization.
Consequently, applying a suitable inversion scheme to accurately
recover the high-frequency components is particularly important
for acoustic impedance inversion and quantitative seismic inter-
pretation (Wang et al., 2021a; Zhu and Gibson, 2016). According to
the different degrees of dependence on data, impedance inversion
can be divided into three categories, including model-based
impedance inversion, data-driven intelligent inversion, and data-
driven and model-constrained double-supervision inversion
scheme. Theoretically, data-driven intelligent inversion approach
can provide impedance inversion results with higher resolution
compared to themodel-based inversionmethod. However, without
clear physical meaning, networks have not interpretability, the
inversion results are difficult to evaluate, weak generalization
ability and adaptability weaken the further application and devel-
opment of data-driven inversion methods. The model-based
acoustic impedance inversion is still the most popular and useful
method for practical field application.

Geophysical inversion problems are often seriously ill-posed
due to the noise contamination and limited seismic frequency
bandwidth, there are many impedance models that can approxi-
mately explain the same seismic records (Tarantola, 2005). More-
over, it is not enough to detailed characterize the geological
structures based on the seismic data with limited bandwidth.
Therefore, the development of the acoustic impedance inversion
aims to obtain unique and stable inversion results with higher
resolution. In order to overcome the ill-posedness of impedance
inversion, regularization terms are introduced into the objective
function by imposing the inversion results to follow the expected
distribution features to obtain a specific solution (Liu and Yin, 2015;
Gholami and Siahkoohi, 2010; Wang et al., 2020; He et al., 2022).
The introduction of the prior information (e.g., borehole data,
geological and statistical characteristics) can narrow the solution
space and provide a compromise solution between the expected
model and observed seismic records. The smooth constraint is the
most commonly used regularization scheme (Tikhonov, 1963;
Tikhonov and Arsenin, 1977), which can effectively stabilize the
solution by minimizing the l2 norm of the gradient for the esti-
mated parameter. The inversion results can be used to describe the
variation tendency of the estimated parameter while is difficult to
characterize the small-scale structures. Therefore, the regulariza-
tion method is proposed and applied to improve the resolution of
the inversion results by assuming that the inverted model has
sparse gradients (Alemie and Sacchi, 2011; Gholami, 2015). This
blocky regularizations use the l1 norm to produce blocky solutions,
which can properly preserve the edges and discontinuities. Further,
in recent years, more complex regularization schemes (e.g., l1,2
mixed norm) have been proposed to consider the blocky and
continuous features of subsurface geological structures simulta-
neously (Chen et al., 2016; P�erez et al., 2017). The challenges of
these inversion approaches are that they only suitable for specific
blocks with single geological characteristics. In addition, choosing
an appropriate algorithm to solve the objective function is also
important.

Even with the introduction of regularization terms, the model-
based inversion results are still difficult to satisfy the resolution
requirements for thin-layer structure characterization. With the
successful application of deep learning technologies in the field of
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geophysics (e.g., first-break picking, seismic noise attenuation,
seismic facies classification, fault identification, velocity modeling,
wavefield simulation, high-resolution processing, seismic data
interpolation, local slope estimation, reservoir characterization)
(Zwartjes and Yoo, 2022; Gao et al., 2021, 2022; Silva et al., 2020;
Fabien-Outllet and Sarkar, 2020; Siahkoohi et al., 2019; Chai et al.,
2021; Yoon et al., 2021; Huang et al., 2021; Zhang and Alkhalifah,
2020; Zhu et al., 2020; Chen et al., 2020), the data-driven imped-
ance inversion is applied for obtaining high-resolution reservoir
structures (Wang et al., 2021b; Meng et al., 2022; She et al., 2019).
Das et al. (2019) perform the impedance inversion experiments
based on the convolutional neural networks (CNNs) and evaluate
the robustness of the method. Mustafa et al. (2019) use 1-D tem-
poral convolutional network (TCN) to predict acoustic impedance
by posing the inversion problem as sequence modeling, which
successfully captures the long-term trends. Furthermore, without
known wavelet, Guo et al. (2019) obtain the predicted impedance
with good lateral continuity based on the bidirectional long short-
term memory (BiLSTM) network. Different from the CNNs, the
BiLSTM neural network introduces the internal correlation be-
tween adjacent hidden layers which treat seismic data as se-
quences of time-series data rather than image-like patches.
Moreover, the introduction of gating system and cell state alleviates
the gradient problem caused by long-term dependence. In recent
years, the evaluation and analysis of high-resolution inversion re-
sults from the data-driven methods have become important. The
introduction of model constraints and prior information improve
the credibility of the inversion results and the interpretability of the
neural network models to some extent. Yuan et al. (2019) construct
a prior constraint using the long-wavelength information from full-
waveform inversion(FWI) for poststack impedance inversion,
which yields a broadband predicted impedance. Song et al. (2021)
train the network model by the way of semi-supervised learning
to overcome the limited labeled data. Wang et al. (2022) adopt the
Robinson convolutional model to simulate the seismic forward
process and constrain the inversion process. In addition, bilateral
filtering is applied to guarantee the spatial continuity of the
inversion results. Incorporating model constraints into the deep-
learning impedance inversion schemes further improves the reli-
ability and accuracy of inversion results.

In this paper, we propose a novel approach for post-stack
acoustic impedance inversion based on the BiLSTM neural
network model. We first train the BiLSTM neural network by using
seismic traces and corresponding impedance labels. Then, we test
the effectiveness of the proposed method for high-frequency
component recovery. Compared with the model-based imped-
ance inversion, the BiLSTM neural network model can evidently
enhance the resolution of the inversion results benefitting from
multiple nonlinear calculations. However, due to the weak gener-
alization ability and adaptability of deep learning technologies, it is
difficult to guarantee the accuracy of the high-frequency compo-
nents of the inversion results. Therefore, we introduce the convo-
lution constrains into the objective function to overcome this
shortage. The predicted impedance based on the BiLSTM neural
network is converted into the reflectivity series and then convolved
with the wavelet matrix of the forward model. The synthetic
seismic records and the input seismic traces form an error term to
correct the inversion results. Finally, we test the proposed method
on model data and filed data, the results show that introducing
model constraints into the data-driven inversion scheme not only
improves the resolution of the inversion results, but also ensures
the accuracy and reliability of the inversion results.

Data-driven inversion methods are difficult to interpret due to
unclear physical meaning. The introduction of model constraint
guarantees the reliability of solution and makes the BiLSTM neural
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network easier to understand. In double-supervision inversion
scheme, the BiLSTM neural network model plays the role of an
approximate inverse operator similar to the traditional model-
based impedance inversion approach, which convert the input
seismic traces into the impedance data. In addition, the proposed
method has more adaptability and fewer assumptions than model-
based inversion.

This paper is organized as follows. First, we compare the tradi-
tional model-based impedance inversion method with the data-
driven supervised impedance inversion approach. Second, we
introduce the basic principles of the BiLSTM neural network and
conduct experiments based on the model data. Then, the convo-
lution model is introduced into the objective function to guarantee
the accuracy of the inversion results. The data-driven and model-
constrained double-supervision acoustic impedance inversion
scheme is developed. We compare the inversion effects of these
three methods based on the model data. Finally, the field data tests
are conducted to illustrate and demonstrate the potential and
effectiveness of the proposed method for complex geologic zones.

2. Theory

2.1. Model-based impedance inversion

Model-based impedance inversion is one of the most commonly
used post-stack linearized impedance inversion method. The prior
knowledge or expectations of geological model are introduced into
the objective function to obtain a stable and specific solution. Based
on the convolutional theory (Yilmaz, 2001), the single-trace seismic
record can be expressed as the convolution of seismic wavelet with
reflectivity series.

d ¼ Wrþ n (1)

where d is the observed seismic data, W is the known wavelet
matrix, r represents the underground reflectivity series and n de-
notes the random noise. For post-stack seismic data, it is approxi-
mated that the reflection coefficient is determined by the
impedance of the strata above and below the interface.

ri ¼
Ziþ1 � Zi
Ziþ1 þ Zi

(2)

In general, the amplitude of reflectivity is no longer than 0.3
(Walker and Ulrych, 1983). Therefore, the reflectivity can be line-
arized expressed approximately by acoustic impedance as
following equation.

riz
DlnðZiÞ
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¼ 1

2
ðlnðZiþ1Þ� lnðZiÞÞ (3)

where Z is the acoustic impedance, i represents the interface be-
tween the strata i and iþ 1. Then, Eq. (1) can be expressed in matrix
form as follows (Stolt and Weglein, 1985; Russell and Hampson,
1991)
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where m is the natural logarithmic impedance. For simplicity, we
define the linearized forward operator as
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G ¼ 1
2
WD (5)

where D denotes the first-order difference matrix. The relationship
between seismic data d and natural logarithmic impedance m can
be rewritten as (Buland and More, 2003)

d ¼ Gmþ n (6)

The post-stack impedance inversion aims to estimate m from
known seismic records d. However, due to the ill-posedness of the
inverse problem, there are multiple solutions to Eq. (6) Model-
based impedance inversion method obtains stable and unique so-
lutions by giving a low-frequency initial model, which derived from
the low-pass filtering of interpolation and extrapolation of well
logging data. The objective function for impedance inversion can be
written as

JðmÞ ¼ min
m

jjd� Gmjj22 þ ljjm�m0jj22 (7)

where ||�||p denotes the p norm, m0 is the low-frequency initial
model, l is a trade-off parameter used for controlling the contri-
bution of the initial model for inversion result, which is determined
by multiple trials. The solution to Eq. (7) can be obtained based on
the iterative algorithm and is presented as

m ¼ ðGTGþ lIÞ�1ðGTdþ lm0Þ (8)

Given a low-frequency initial model, model-based impedance
inversion can obtain an unique and smooth solution. In addition,
another most commonly used regularization scheme is to enforce
the impedance m to have a sparse gradient. The regularization
terms include some prior knowledge or expectations about the
unknown parameter, therefore, a more general expression for
model-based impedance inversion is written as follows

cm ¼ arg min
m

fjjd�Gmjj22 þ lf ðmÞg (9)

where f(m) is the regularization term and presents additional
cognition. By introducing a regularization term, model-based
impedance inversion can obtain a stable unique solution. Never-
theless, the solution depends heavily on the quality of the seismic
data, the initial model, the extracted wavelets and inversion algo-
rithms(Yuan et al., 2022). The enhancement of resolution and
characterization of thin-layer structures based on the inversion
result is still limited.
2.2. Data-driven impedance inversion

The inversion results of the model-based impedance inversion
method are band limited to the effective frequency bandwidth of
raw seismic data. This restriction means that model-based
impedance inversion cannot evidently improve the resolution of
inversion results and effectively describe the spatial distribution of
thin-layer sand bodies. Therefore, we propose a data-driven
inversion approach based on the BiLSTM neural network.
Different from the model-based inversion scheme, data-driven
methods have strong power to learn and represent high-level
features, which is another effective scheme to improve the char-
acterization of subsurface structures (Kim and Nakata, 2018; Wu
et al., 2020, 2022).

The LSTM model is a variant network of the basic RNN, which
contains four special connection patterns in one LSTM unit. The
introduction of gates enables the LSTM to handle the long-term
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dependencies and alleviate the overfitting problems (Williams and
Zipser, 1989; Hochreiter, 1998; Hochreiter and Schmidhuber, 1997).
The calculation of current time step includes the filtered informa-
tion of the previous time step and input new information. The
introduction of cell state gives the LSTM memory function and
provides a path for information transmission. Meanwhile, which
information will be reserved is decided through a gating system.
The forget gate is used to retain the memory information and the
input gate handles the current input sequence information, while
the output gate is used to calculate the unit output. These three
gates are associated by the cell state for entire information pro-
cessing in one LSTM unit. Updating the cell state is the key for LSTM
to deal with long sequence data. Fig. 1 shows the internal structures
of an LSTM cell unit. The specific calculation process is as follows

ft ¼ sðWf xt þUfht�1 þbf Þ (10)

it ¼ sðWixt þUiht�1 þbiÞ (11)

ot ¼ sðWoxt þUoht�1 þboÞ (12)

gt ¼ tanhðWgxt þUght�1 þbgÞ (13)

ct ¼ ft1ct�1 þ it1gt (14)

ht ¼ ot1tanhðctÞ (15)

yt ¼ Wyht þ by (16)

where the cell state ct and hidden state ht are updated by input gate
it, forget gate ft and output gate ot. s is a sigmoid activation func-
tion, its output value is between 0 and 1, 0 presents discard and 1
means reserve, which is used for three gates to select information.
W, U and b are the weight coefficient matrix and the bias vector,1
is the Hadamard product, denotes elementwise multiply for two
matrix. tanh is another activation function, which is used for cell
state update and information output.

Stacking two LSTM units as one hidden layer for processing both
forward and reverse sequence data constitutes a BiLSTM neural
network (Schuster and Paliwal, 1997). In this way, the output of the
current time step not only considers the information of the previ-
ous time step, but also selects the information from the future.
L

Fig. 1. Internal structure of an LSTM unit. The current input sequence data xt and
previous hidden state ht�1 are processed by the input gate, forget gate, cell state and
output gate for updating the hidden layer state, which control the input, discard,
transfer and output of information.
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Fig. 2 shows the data processing process of the BiLSTM neural
network. In current time step, the hidden state ht is a concatenated
matrix from two opposite directions as follows

ht ¼ ½ ht
�!

;ht

)

� (17)

where ht
�!

denotes the forward hidden state and ht

)

presents the
backward hidden state. The computation of the output vector yt
and other parameters are consistent with LSTM.

To determine the optimal neural network architectures and
hyperparameters, we chose the MSE as the objective function F and
minimize it.

F ¼ 1
N

XN
i¼1

ðZi � bZiÞ2 (18)

whereN represents the number of samples, the Zi and bZi denote the
true and predicted impedance, respectively. Fig. 3 displays the
schematic of high-resolution impedance inversion based on the
BiLSTM neural network. At time step i, the input seismic waveforms
x ¼ {x1, x2, …, xt}, which is mapped to a specific impedance label
through a designed network configurations. The high-resolution
inversion results are obtained by compressing the seismic wave-
forms to a great extent.
2.3. Model-constrained and data-driven impedance inversion

Benefiting from the powerful nonlinear mapping capability of
the deep learning technique, the data-driven method can signifi-
cantly improve the resolution of impedance inversion results and
recover the high-frequency components outside the effective fre-
quency bandwidth of seismic data. However, same as the model-
based impedance inversion technical scheme, it is still difficult to
guarantee whether the high-frequency components of the inver-
sion results is accurate and reliable. Different from themodel-based
impedance inversion, deep learning techniques have no clear
physical meaning and weak generalization ability, it is difficult to
accurately and comprehensively evaluate the inversion results.
Therefore, it is important to improve the reliability of impedance
prediction results of the BiLSTM neural network. Consequently, in
addition to constructing the BiLSTM neural network as supervisor1
to provide the predicted impedance with higher resolution. We
introduce the convolution model as supervisor2 in the objective
function to ensure that the synthetic seismic data from the pre-
dicted impedance is consistent with the input seismic data, thereby
improving the reliability of the inversion results. Fig. 4 shows the
framework of the model-constrained and data-driven impedance
inversion technology. The objective function of the double-
supervised inversion scheme is mathematically defined as

�bZ� ¼ min
Z

������Z� bZ������2
2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

data

þ l
������d�Wbr������2

2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
model

bri ¼ bZiþ1 � bZibZiþ1 þ bZi

(19)

where {d,Z} is the input data of the BiLSTM neural network, bZ
represents the predicted impedance,W denotes the wavelet matrix
used for convolutional forward model, br is the reflectivity series
calculated based on the predicted impedance and l represents the
regularization parameter used to balance the weights between the



Fig. 2. Schematic of the BiLSTM neural network model. The forward vector x and inverse vector x are input into the network simultaneously, output the predicted vector y after the
hidden state h and cell state are adjusted and updated.

Fig. 3. The configuration of the BiLSTM neural network model, which consist of the
input layer, hidden layer and output layer. Each hidden layer is composed of two LSTM
unit for processing the forward and inverse input seismic data simultaneously. Where t
represents the time step, the vector xi and yi represent the input seismic data and the
predicted acoustic impedance, respectively.
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predicted impedance error (the first term of Eq. (19) or supervisor1)
and the synthetic data error (the second term of Eq. (19) or
supervisor2).
Fig. 4. The framework of the model-constrained and data-driven double-supervision acousti
The final dense layer in the data-driven scheme can linearly weight the extracted features to
seismic data from the predicted impedance and input seismic data form the supervisor2 wh
are used to provide high-resolution impedance results and minimize the predictive error, r
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In this case, the BiLSTM neural network plays the role of
approximate inverse operator, which converts the input seismic
data into impedance with higher resolution than the model-based
inversion method. When l equals to zero, only the impedance la-
bels constrain the inversion process. The inversion results depend
heavily on the generalization ability and adaptability of the neural
network. When l is larger than zero, the convolutional forward
model is introduced into the objective function to guarantee the
consistency between the synthetic seismic data of the inverted
impedance and the input raw seismic data. Due to the same for-
ward model and wavelet matrix are used, the introduction of su-
pervisor2 further improves the reliability of the inversion results.
Compared with the model-based impedance inversion method,
this data-driven and model-constrained double-supervision
inversion scheme provides higher resolution inversion results,
which takes fully advantages of the ability of deep learning tech-
niques to characterize nonlinear relationships. The high-frequency
components can be effectively recovered. Different from the pure
data-driven approach, the introduction of model constraints en-
ables the inversion result more reliable and accurate, which further
reduces the multiplicity of the inversion results and the de-
pendency of the neural network. The concise workflow of the data-
driven and model-constrained double-supervision impedance
inversion scheme is summarized in Table 1.

3. Model analysis

3.1. Model-based impedance inversion

In order to test the proposed method, we construct a thin sand
c impedance inversion approach. Six BiLSTM and one dense layer form the supervisor1.
convert them into acoustic impedance and compare with the label data. The synthetic
ere the wavelet matrix is the same as the forward model. Supervisor1 and supervisor2
espectively.



Table 1
The workflow of the data-driven and model-constrained double-supervision acoustic impedance inversion.

impedance inversion.
Input: wavelet matrix W, training data set {d,m}T, validation data set {d,m}V, the regularization
parameter l, the batch size b, the numbers of LSTMs c, the number of neurons for each layers e, the
time step t, learning rate l and the training epochs n.
Output: High-resolution inverted impedance cm.
Stage 1: Prepare training data and normalize data
1: Prepare the training data set {d,m}T and validation data set {d,m}V from the model or field data;
2: Standardize all data and labels by using the Min-Max normalization;
Stage 2: Train the BiLSTM neural network
3: set hyperparameters b, c, e, t, l, n;
4: for i ¼ 1: n
5: Evaluate the data-driven inversion results according to equation (18) and judge whether the hyperparameters
are appropriate;
6: end for
7: Repeat steps 3e6 until the optimal BiLSTM configurations is obtained;
Stage 3: Introduce the model constrain
8: set the weight parameter l;
9: for i ¼ 1: n
10: According to the equation19 to evaluate the effect of model constraint;
11: end for
12: Repeat steps 8e11 until the suitable l is obtained;
Stage 4: Implement impedance inversion using the double-supervision scheme
13: Implement the impedance inversion based on the model or field data;
14: Inverse normalization of the prediction results.

Fig. 5. The model data used to test the validity and performance of the BiLSTM neural network on high-resolution acoustic impedance inversion. (a) Impedance data as training
label and (b) corresponding seismic data convolved with 15Hz Ricker wavelet as training data.
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model (see Fig. 5), which consists of 301 � 501 (seismic
traces� time samples) data points with sampling interval of 0.5ms.
The velocity of the sand is 3800 m/s and is 3600 m/s for the shale.
The time thickness of the horizontal sand is about 5ms and is about
2.5 ms for themiddle thin-layer sand. The synthetic seismic records
is convolved with the 15Hz Ricker wavelet. Due to the severe
interference effects, it is difficult to identify the spatial structure of
the thin-layer sand and characterize the spatial distribution of sand
body based on the seismic records. Therefore, we carry out the log-
constrained acoustic impedance inversion experiment, and further
characterize and illustrate the thin-layer structure based on the
inversion results.

The log-constrained acoustic impedance inversion method,
which firstly is to establish the initial model by interpolating along
the geological horizons according to the well logging data (Li et al.,
2008; Morozov and Ma, 2009; Kroode et al., 2013). The convolution
algorithm is then used to generate the synthetic seismic records
from the initial model and seismic wavelet. Finally, the error be-
tween the synthetic seismic records and the observed seismic data
is calculated, and the impedance model is continuously corrected
and updated through error back propagation algorithm. When the
error of these two meets the accuracy requirements, we obtain and
output the final result of the acoustic impedance inversion. We
select five impedance traces (cdp 20, 60, 120, 180, 240) from the
geological model as pseudo-logging data for the log-constrained
2814
impedance inversion. First, the geological horizon interpretation
is performed based on seismic data and prior knowledge. Then, we
construct the low-frequency initial model based on the low-pass
filtering of the well log interpolation results. Finally, we construct
the objective function of the log-constrained acoustic impedance
inversion method as shown in Eq. (7), the corresponding inversion
result is obtained according to the inversion algorithm shown in Eq.
(18). In order to make full use of the high-frequency information
provided by the well logging data, we also implement an imped-
ance inversion test based on the full-frequency band initial model,
which directly use the interpolation results of the logging data as
initial model. Fig. 6 shows the inversion initial models and corre-
sponding inversion results, respectively.

The results of these set of the acoustic impedance inversion
experiments based on different initial models show that the
inversion results based on the log-constrained impedance inver-
sion approach are difficult to accurately describe and characterize
the spatial structure characteristics of thin-layer sand bodies.
Regardless of which initial model is used, the inversion results
cannot effectively describe the spatial distributions and super-
position relationships of sand bodies. The resolution of the inver-
sion results is limited by the seismic frequency bandwidth and the
initial model. The log-constrained impedance inversion approach,
which is categorized as linear inversion. The nature of linear
inversion method is that it can only provide frequency components



Fig. 6. The log-constrained acoustic impedance inversion results. (a) The low-frequency initial model and (b) corresponding inversion result. (c) The full-frequency initial model and
(d) corresponding inversion result.
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within the seismic frequency bandwidth (Li et al., 2011; Cooke and
Schneider, 1983; Assis et al., 2019). Due to the difficulty in
enhancing the resolution of the inversion results, the log-
constrained inversion based on the low-frequency initial model is
greatly limited in the characterization of thin-layer structures.
Although the inversion result based on the full-frequency band
initial model has higher resolution intuitively, the inversion result
outside wells is more derived from the interpolation and extrapo-
lation of the initial model, which fails to accurately characterize the
lateral distribution and spatial variation for sand bodies.
3.2. BiLSTM-based impedance inversion

The above test results show that the model-based impedance
inversion method itself cannot recover the high-frequency com-
ponents, and the high-frequency information is completely derived
from the initial model. Therefore, we carry out the data-driven
impedance inversion experiment based on the BiLSTM neural
network. We select five seismic traces (cdp 20, 60, 120, 180, 240)
and corresponding impedance data as input for network training,
which is consistent with the data used to build the initial model in
the model-based impedance inversion. After min-max normaliza-
tion, the data are divided into the training data sets and validation
data sets according to the ratio of 75%: 25%. The training set is used
to train the model and determine the hyperparameters, whereas
the validation set is used to judge whether it is overfitting and to
evaluate the accuracy of the model.

For determining the optimal neural network architectures, we
conduct a series of hyperparameter experiments, the Adam opti-
mization algorithm is used to update the gradients and adjust the
weights and biases of each neurons. The stage1 and stage2 dis-
played in Table 1 illustrate the specific experimental procedure. For
the most important parameters: learning rate l (control the speed
of gradient update) and time step t (the length of the input data),
we set a series values to evaluate the performance of l{0.01, 0.005,
0.0025, 0.001, 0.00025} and t{16, 24, 32, 48, 64} for the network
model. Fig. 7 shows the error of the network on the validation set
with different hyperparameters. The other parameters are
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determined in the sameway. Table 2 gives the parameter values for
the trained BiLSTM neural network model.

After obtaining the optimal network configurations, we perform
the impedance inversion on the entire model data based on the
BiLSTM model. The MSE error is 0.1573 and 0.2635 for the training
set and validation set, respectively, which demonstrates the feasi-
bility and acceptability of the BiLSTM-based impedance inversion
scheme. Fig. 8 shows the predicted impedance. Compared with the
results from the low-frequency model-based impedance inversion,
the data-driven BiLSTM-based inversion approach significantly
improves the resolution of the inversion results. The inversion re-
sults accurately distinguish the superposition relationship of thin
sands, the distribution characteristics of the top and bottom hori-
zontal sands are clear. However, for the lens sandstone between the
top and bottom layered sand, the inversion results cannot accu-
rately describe the lateral distribution ranges and characterize the
lens boundaries as high-frequency model-based inversion result. It
is difficult to evaluate which of these two methods is better and
which is worse. This exposes the inherent flaws of purely data-
driven inversion methods, the weak generalization ability and
adaptability limit the further application and development of the
network model for oil field data. Therefore, we introduce the
convolution constraint into the objective function to improve the
reliability of the data-driven BiLSTM-based inversion results.
3.3. Double-supervision impedance inversion

The convolution constraint is used to control the entire inver-
sion process as supervisor2. Specifically, the predicted impedance
provided by the BiLSTM network model is converted into the
reflectivity series and convolved with the wavelet matrix, and the
resulting synthetic seismic records are compared with the input
seismic data. This process optimizes the supervisor1 and improves
the predictive accuracy of the network. The network architectures
and hyperparameters are the same as the above data-driven
impedance inversion method, where we only add the constraint
term to the loss function and determine the trade-off parameter l
based on the stages3 displayed in Table 1 we set a series of values of



Fig. 7. Train and adjust the hyperparameters of the BiLSTM neural network based on the model data, the MSE on the validation data sets is used to evaluate and determine the (a)
time step and (b) learning rate.

Table 2
Hyperparameter values for the trained BiLSTM neural network model.

Parameter Description Value

b batch_size 128
c the number of hidden layers (LSTM) 6
e the number of neurons for each hidden layer 128 þ 32þ8 þ 8þ32 þ 128
t time step 48
l learning rate 0.001
n training epochs 500

Fig. 8. Acoustic impedance inversion results based on the model data from the (a) data-driven inversion method and (b) model-constrained and data-driven inversion scheme.

Table 3
Comparison of prediction errors for different inversion methods.

Schemes MSE

training validation

data-driven 0.1573 0.2635
model-constrained and data-driven 0.0712 0.1063
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l(0.5, 0.1, 0.05, 0.01, 0.001) to balance the weights of the convolu-
tion constraints. According to the network performance on the
validation data set, we determine the optimal values of l is 0.01 and
conduct the impedance inversion on the entire model data.

The inversion result of double-supervision impedance inver-
sion, which not only retains the high-resolution effect of the data-
drivenmethod, but also ensures the accuracy of the inversion result
under the supervision of convolution constraints (Fig. 8). Specif-
ically, in addition to the clear distribution characteristics of the top
and bottom sandstones, the lateral distribution of the thin sand-
stone and lens sandstone in the middle are accurately described,
the superposition relationship of the sandstone is clearly distin-
guished, sand boundaries are distinctly delineated. Compared with
the data-driven inversion method based on the BiLSTM neural
network, the data-driven inversion with model constraints can
more accurately describe the thin-layer spatial structures. The
predictive error of the model-constrained and data-driven
impedance inversion scheme is 0.0712 and 0.1063 on the training
data set and validation data set displayed in Table 3, respectively.
The relative error amplification on the validation set is 67.5% and
49.3% of the data-driven and double-supervision impedance
inversion schemes. In addition to the training error being signifi-
cantly smaller than that of the pure data-driven inversion method,
the double-supervision inversion approach also further reduces the
2816
error difference between the training set and the validation set,
which demonstrates that the introduction of convolution
constraint alleviates the overfitting problem to some extent. Fig. 9
also illustrates this well, which shows the learning curves of the
training data sets and validation data sets for the double-
supervision impedance inversion scheme. Although the validation
loss is slightly larger than the training error, it decreases steadily
and does not increase over the limited training epochs, which in-
dicates that the BiLSTM neural network model is not overfitted and
the hyperparameter settings is appropriate. This will further
improve and enhance the generalization ability and adaptability of
the proposed BiLSTM neural network in field application.

In this section, we compare the performance of three different
acoustic impedance inversion methods on model data. The exper-
imental results show that the model-driven impedance inversion



Fig. 9. Learning curves of the training data sets (red) and validation data sets (black)
for the model-constrained and data-driven double-supervision acoustic impedance
inversion method.
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itself cannot recover themissing high-frequency components in the
acquired seismic data, and the inversion results are heavily
dependent on the initial model. The data-driven inversion method
benefits from the powerful nonlinear mapping capabilities of deep
learning techniques, which can greatly improve the resolution of
the inversion results and restore the high-frequency components.
Meanwhile, the proposed BiLSTM-based data-driven acoustic
impedance inversion approach has certain noise resistance and
robustness(Fig. 10). However, such methods generally lack the
measurement and evaluation of the reliability of high-frequency
components. The double-supervised impedance inversion based
on data-driven and model-constrained approach combines the
advantages of both, that is, it significantly improves the charac-
terization and description effect for thin-layer structures while
ensures the accuracy of high-frequency components.
Fig. 10. The noise resistance tests of the proposed data-driven inversion method based on th
its corresponding impedance inversion profile (b). (c)The seismic data (SNR ¼ 5) and (d) co
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4. Field example

In order to further evaluate the transfer and generalization
ability and its applicability and practicality of the proposed method
in oil field data, we conduct a more comprehensive test and anal-
ysis with X oil field data. Fig. 11 displays the tectonic setting of the
study area. The main target layer in this area is the Y Formation,
which is buried to a shallow depth of about 1100e1500 m. The
main oil and gas resources are concentrated in the second member
of the Y Formation. The Y Formation in this area is in awet period in
the early stage, which is the alluvial fans and braided river de-
positions near the provenance. The channel is wide, the sand bodies
are widely distributed with large sedimentary thickness. In the
middle and late stages, meandering river deposits are formed after
entering the dry season. The width of the channel gradually nar-
rows as it moves away from the provenance and the sedimentary
thickness of the sand body decreases. The second member of Y
Formation is dominated by meandering river deposits. The main
controlling factor of lithologic oil and gas reservoirs depends on the
lithology of the reservoir, which is highly heterogeneous. It needs
the suitable depth to form lithologic traps in different depositional
environments. If the deposition depth is too large, the necessary
reservoir formation conditions will be lacking, and if the deposition
depth is too small, the necessary cap rock sealing conditions will be
lacking. The mudstone deposited in the second member of the Y
Formation creates good sealing conditions for the oil and gas
reservoir regions. Therefore, lithologic oil and gas reservoirs
dominated by lithologic pinchouts and sandstone lenses can be
formed.

We adopt the network structure of the model test with fine-
tuned the node weights for acoustic impedance inversion of oil
field seismic data. The area enclosed by the red dotted line is the
target zone with 6 well distributed (Fig. 11), where A-D and F are
used for re-training the proposed neural network model to get the
new weight matrix and bias parameters. The remaining well (E) is
used as a blind well to evaluate and validate the reliability and
practicality of the proposed method. The impedance logs derived
e model data. (a) Synthetic seismic records with a signal-to-noise ratio (SNR) of 10 and
rresponding inversion result.



Fig. 11. The tectonic setting under the study area with the target zone enclosed with red dotted line and six well locations, where A-D and F are used for re-training, E is used as a
blind well to verify the practicability and applicability of the proposed inversion scheme.
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from the sonic- and density-log measurements are resampled to
2ms and fed into the BiLSTM neural network model along with the
well-side seismic records as training data to obtain the appropriate
weights for each neurons. Fig. 12 is the seismic section from the
target zone used to verify the validity and generalization ability of
the double-supervision impedance inversion scheme. The data
consist of 91 seismic traces and 51 time samples with an interval of
2ms. Fig.13 displays the acoustic impedance inversion results of the
log-constrained impedance inversion, the data-driven impedance
inversion and the proposed model-constrained and data-driven
double-supervision impedance inversion scheme. The inserted
impedance log is from the blind well E and is used for intuitively
evaluating the inversion result. Consistent with the conclusions
obtained from the model experiment, the proposed double-
supervision acoustic impedance inversion scheme provides inver-
sion results with higher resolution and better characterization for
thin-layer sand bodies. The lateral distributions and superposition
relationships of sand bodies are clearer and more accurate. The
correlations between the inversion results and the impedance log
of the blindwell are 62.4%, 78.8% and 86.2%, respectively. In order to
illustrate and demonstrate the effectiveness of the proposed
scheme in describing the spatial structure of sand bodies, we
Fig. 12. The oil field seismic section used for verifying the proposed double-driven
acoustic impedance inversion scheme.
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extract the impedance slices of the target layer as shown in Fig. 14.
The outline of the river delineated by the white dotted line fully
illustrates the effectiveness of the proposed method in character-
izing the spatial distribution for the channel sand. The inversion
results of the double-supervision scheme not only greatly improve
the resolution requirements of thin-layer structure characteriza-
tion, but also overcome the weak spatial continuity of log-
constrained acoustic impedance inversion approach, which has
important practical significance and application potential for thin-
layer structure characterization based on seismic data.

Compared with the log-constrained acoustic impedance inver-
sion method, the data-driven inversion scheme provides higher
resolution inversion results. The inversion result breaks the limi-
tation of the seismic effective frequency bandwidth, and effectively
recovers the missing high-frequency information, which has
important implications for the characterization of thin-layer spatial
structures. By introducing a convolution-constrained regulariza-
tion term into the BiLSTM-based inversion function, the seismic
records synthesized by the predicted impedance and the observed
seismic traces constitute the error term to constrain the inversion
process, which is used to ensure the reliability and accuracy of the
inversion results. The experimental results show that the intro-
duction of the convolution model alleviates the weak horizontal
continuity of the sand body in the model-based inversion method
to certain extent, which accurately describes the lateral distribution
of the sand body while improving the resolution. The impedance
inversion tests based on field seismic data further illustrates that
the double-supervision acoustic impedance inversion scheme is
more effective and accurate for the characterization and descrip-
tion of channel sand bodies.

5. Conclusions

In this paper, we propose an acoustic impedance inversion
method based on the BiLSTM neural network model. Compared
with the conventional model-based impedance inversion, the data-
driven inversion approach can provide high-resolution inversion
results without solving complex objective function. Seismic traces
are treated as time-series data rather than image-like patches to



Fig. 13. Comparisons between acoustic impedance inversion results from (a) the model-driven inversion approach, (b) data-driven impedance inversion method and (c) the
proposed double-supervision acoustic impedance inversion scheme based on the field seismic data. The inserted impedance log is derived from the sonic- and density-log
measurements, which is used as a blind well to verify the accuracy and reliability of the inversion results.

Fig. 14. Impedance slices for (a) model-driven inversion result, (b) data-driven impedance inversion result and (c) double-driven inversion result. The outline of the river delineated
by the white dotted line further illustrates the effectiveness of the model-constrained and data-driven double-supervision impedance inversion scheme for spatial structure
characterization of sand bodies.
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input the BiLSTM model for training, which preserves the small-
scale structures and reflects the continuous variations of imped-
ance data simultaneously. In addition, we introduce the model
constrains into the loss function to guarantee the accuracy and
reliability of the recovered high-frequency components. When the
wavelet matrix is known, the synthetic seismic data calculated
from the predicted impedance and the input seismic data
2819
constitute the error term that is used to constrain the training
process of the BiLSTM neural network. In this case, the BiLSTM
model is similar to the inverse operator that converts seismic re-
cords into impedance data, which makes the network easier to
understand. The proposed method is tested with model data and
field data and compared with the model-based impedance inver-
sion. The results show that the model-based impedance inversion
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method cannot efficiently recover the high-frequency components
outside the seismic frequency bandwidth, and the inversion results
depend heavily on the initial model. Compared with model-based
impedance inversion, the data-driven inversion algorithm based
on the BiLSTM neural network only relies on the information of
seismic data itself without external intervention, which can provide
inversion results with higher resolution and can deal with the
complex geological zones. Furthermore, the incorporation of the
convolution model in the objective function significantly reduces
the inversion error. The model test results demonstrate the effec-
tiveness of the proposed method for improving the inversion ac-
curacy and reliability. Moreover, inversion results of the field data
further indicate the effectiveness and adaptability of the proposed
model-constrained and data-driven double-supervision impedance
inversion scheme.
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