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ABSTRACT

This work used organic geochemistry and organic petrology to study the depositional environment,
organic matter characteristics, and thermal maturity of the Cambrian-Ordovician organic-rich marine
shales in the Baltic Basin. The main macerals in Cambrian samples include alginite, bituminite and solid
bitumen, while zooclastic macerals become the major proportion of organic matter in the Ordovician
samples. As the maturity increase, solid bitumen becomes abundant and dispersed. Semifusinite-like
maceral was observed only in Furongian of well DBH15/73, which probably indicates the local intru-
sion of Permo-Carboniferous dolerite dikes. The programmed pyrolysis results show that immature, early
mature, and over-mature samples are developed. However, the data of high-uranium Furongian samples
were greatly altered by igneous intrusives from local dikes. Hl, calculation model is simulated based on
pyrolysis data and fitted according to the least-square fitting method. The simulated fitting Hl,: 400 mg
HC/g TOC (369.5 mg HC/g TOC, 430.5 mg HC/g TOC as 95% confidence bounds) is within the worldwide
marine shale Hl, and indicates a marine anoxia and transgressive sea with shallow water column
(organofacies B).

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Classification of dispersed kerogen (Type I, II, III, and IV) was
based on Van Krevelen's work on coals referring to four ‘end-
member’ compositions of atomic ratios of H/C and O/C. Various
kerogen types show distinctly different evolution patterns during
maturation (Tissot and Welte, 1984). After the introduction of Rock-
Eval pyrolysis (Espitalié et al., 1977), different ranges of the
pyrolysis-derived hydrogen index (HI) have been applied for quick
kerogen type classification in the petroleum industry (Liu et al.,
2022; Pan et al, 2021; Wang et al, 2022; Xu et al., 2022).
Kerogen type reveals significant information about the thermo-
genic petroleum composition, which determines the quality,
quantity, and reaction kinetics of petroleum generation (Cai et al.,
2022; Ding et al,, 2022; Zhu et al,, 2022; Hu et al,, 2018, 2021).
However, there is no discrete and uniform organic matter
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composition in kerogen, hence different organic constituents have
distinct physiochemical evolution pathways during maturation.

The lower Paleozoic shales have atypical hydrocarbon genera-
tion characteristics from the common marine kerogen types
(Horsfield et al., 1992; Zheng et al., 2022). Their organic matter
composition and thermal maturity evolution have aroused great
attention as the lower Paleozoic shales are important source rocks
and unconventional hydrocarbon plays globally (Luo et al., 2020).
Previous works about the lower Paleozoic shales indicated various
kerogen types, ranging from type II to type IIl (Sanei et al., 2014).
These shales have relatively low hydrogen index (HI), high degree
of aromaticity, and gas-prone characteristics (Horsfield et al., 1992;
Sanei et al., 2014), which is atypical for the organic geochemistry of
marine type kerogen. The possible explanations could be uranium
related alteration (Yang et al., 2018; Zheng et al., 2021a), unusual
chemistry of the biota precursor (Sanei et al., 2014), or the contri-
bution of abundant graptolite to the dispersed organic matter (Luo
et al., 2017).

A systematical report of the source rock would be of significant
reference value to hydrocarbon resource assessment of the lower
Paleozoic rocks. In this work, organic geochemistry and petrography
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are applied to determine the organic matter composition of the
Cambrian-Ordovician shales in the Baltic Basin. To understand the
evolution of the source rock and to provide an effective evaluation of
the hydrocarbon generation capacity, a complete organic matter
evolution model along with the maturation process is established.

2. Sample and methods

The Alum Shale Formation (Nielsen and Schovsbo, 2006)
comprised a middle Cambrian (Miaolingian) to the Lower Ordovi-
cian (Tremadocian) marine succession deposited with an overall
transgression of the palaeocontinent Baltica (Fig. 1, Thorslund,
1968; Nielsen and Schovsbo, 2006; Schovsbo et al., 2016). Previ-
ous tectonic evolution research, which focused on southernmost
Sweden, Bornholm, and the Baltic Sea region, proposed that this
area is hosted on a large-scale releasing bend in the dextral strike-
slip system with its resulting pull-apart basins (Erlstrom et al.,
1997). High paleo-productivity and well-anoxic condition resulted
in the deposition of black to dark brown organic-rich shale com-
bined with subordinate fossiliferous bituminous limestone. It ex-
hibits a remarkable uniform lithology (Schulz et al., 2021), and the
organic matter is of algal, bacterial and fauna origin (Petersen et al.,
2013; Sanei et al, 2014). High-resolution biostratigraphy of
Cambrian trilobite and Ordovician graptolite enables detailed
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Fig. 1. Geological setting and locations of studied Baltic samples (Modified from
Schovsbo et al.,, 2018). 1-Klinta, 2-Bjarsjolagard, 3-Kivik, 4-Gislovhammar, 5-@led at
Borggdrd, 6-0lea at Billegrav, 7-0led at Slusegard, 8-Laesa at Vasagard, 9-S.Sandby, 10-
Réverakulan, 11-Ottenby, 12-Gronvik.
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stratigraphic correlation (Fig. 2). Different regional subsidence and
uplift, as well as metamorphism by igneous intrusives (Permo-
Carboniferous), led to a wide range of maturity (Schulz, 2021). In
this work, 187 core samples collected from 6 wells and outcrops are
widely distributed in the Baltic basin (Fig. 1, Table 1).

Bulk pyrolysis geochemistry of the Baltic samples has been
conducted using the HAWK pyrolysis and TOC analyser (Wildcat
Technologies) in the Lithospheric Organic Carbon (LOC) lab,
Department of Geoscience, Aarhus University, Denmark (Zheng
et al., 2021a). Organic parameters such as total organic carbon
(TOC, wt.%), S1 (mg HC/g), S2 (mg HC/g), hydrogen index (HI, mg
HC/g TOC), oxygen index (OI, mg CO,/g TOC), Tmax (°C) are reported
in this paper.

Organic petrology is an effective supplemental method to
provide organic matter assemblage and grade of the evolution of
finely disseminated kerogens visually (Pang et al., 2022). The
identification of organic matter constituent was conducted using
reflected white light and fluorescence-inducing UV light Zeiss
Axio Image II microscope, equipped with Discus-Fossil system
(Hilgers, Konigswinter, Germany) at LOC lab, Aarhus University.
Samples were sieved to 63 um to 1 mm rock chips and embedded
in epoxy with random orientation, then grounded and polished to
obtain a measurable surface suitable for oil immersion. The sys-
tem was calibrated against a standard of Ro: 1.317% (N-LASF). Due
to the absence of vitrinites in the pre-Devonian rocks, the reflec-
tance measurements were carried out on solid bitumen and
graptolite under oil immersion (objective x 50). All the reflec-
tance values were transferred into VRoequv (%) according to
VRoeqv = 0.73 X Ro(graptolite tvitrinite-like) + 0.16 (Petersen et al.,
2013) for graptolite and VRpeqyv = 0.618 x BR, + 0.4 (Jacob, 1989)
for solid bitumen, to provide the data of organic matter maturity.

Uranium concentration was determined using Inductively
Coupled Plasma Mass Spectrometry (ICP-MS) at Acme Laboratory in
Vancouver, Canada. Detailed experimental procedures could be
found in Zheng et al. (2021a).

3. Results
3.1. Organic petrology

The microscopically identifiable organic components in the
Baltic lower Paleozoic shales include alginite, liptoderinite, bitu-
minite, solid bitumen, vitrinite-like, graptolite fragments, and
semifusinite-like. Semifusinite belongs to the inertinite maceral
group, which shows intermediate reflectance and preserved plant
cell structures (leaf-, or wood-derived) characterized by paren-
chymatous and xylem tissues of stems. Semifusinite frequently
shows irregular anisotropy and the reflectance of semifusinite in-
creases as the degree of dehydration and oxidation of its precursors’
increase (ICCP, 2001). However, the herbaceous plants and leaves
(composed of cellulose and lignin) are not developed in pre-
Devonian rocks, therefore, we classify this maceral as
semifusinite-like, which are only discovered in the Furongian
samples in well DBH15/73 (Fig. 3a, 3b). Liptinite is dark grey to
black in reflected white light and has yellow to orange fluorescence
under UV light (Fig. 4a, 4b, 4d). Structural alginite is mainly present
as lamalginite and telaginite, while liptoderinite is of small particle
size and may consist of fragments or relicts of the other liptinite
macerals (Fig. 4a, 4d). The most abundant recognizable fluorescing
organic matter is structural alginite in immature samples (e.g.,
Djupvik-2, Core601), however, amorphous organic matter (bitu-
minite) and fluorescent organic-clay mixture become more abun-
dant in the early mature shales (e.g., Ottenby-2 and Hallekis-1,
Fig. 4b, 4c, 4d). Bituminite is characterized by lacking a definite
shape and is developed in perpendicular sections or as a more
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Fig. 2. Lithostratigraphy of the Alum shale and coeval strata in Scandinavia and northern Estonia (after Nielsen and Schovsbo, 2006, Schovsbo et al., 2018, Nielsen et al., 2020).

Table 1
Sample location, depth, formation and sample amount (N).
Outcrop/Well Name Formation Location Depth, m N
Djupvik-2 Tremadoc N. Oland, Sweden 5.5-2.2 13
Core601 Tremadoc Keila, Estonia 47.9—-43.2 15
Hallekis-1 Furongian Vastergotland, Sweden 23.4-34.1 10
Ottenby-2 Miaolingian-Tremadoc S.0land, Sweden 29.7-1.6 50
DBH15/73 Miaolingian-Furongian Vastergotland, Sweden 153.8—128.9 77
Porsgrunn Miaolingian-Furongian Porsgrunn, Norway 309.9-264 22
Roverakulan Up.Silurian: Ludlow Scania, Sweden Outcrop 1
Klinta Up.Silurian: Ludlow Scania, Sweden Outcrop 1
Bjarsjolagard Up.Silurian: Ludlow Scania, Sweden Outcrop 1
@lea at Slusegard Low.Silurian: Wenlock Bornholm, Denmark Outcrop 1
Qlea at Billegrav Low.Silurian: Llandovery Bornholm, Denmark Outcrop 1
Laesa at Vasagard Up.Ordov Bornholm, Denmark Outcrop 1
Kivik Mid.Ordov Scania, Sweden QOutcrop 1
Ottenby Tremadoc Oland, Sweden Outcrop 1
Gislovhammar Tremadoc Scania, Sweden Outcrop 1
S.Sandby Furongian Scania, Sweden Outcrop 1
Gronvik Miaolingian Oland, Sweden Outcrop 1
@lea at Borggard Miaolingian Bornholm, Denmark Outcrop 1

homogeneous, diffused, equidimensional particles in various
shapes in horizontal sections (Pickel et al., 2017; Hackley et al.,
2018). Since bituminite is a product of variable organic matter

undergoing alteration or degradation at different levels, its fluo-
rescence varies widely (Fig. 4b, 4c, Pickel et al., 2017). The fluo-
rescent organic-clay mixture usually shows yellow to brown

2639
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Fig. 3. Photomicrographs of semi-fusinite in Alum shale: (a) sample DBH5069 (upper Cambrian); (b) ‘contemporaneous deformation structure’ of the semi-fusinite in sample

DBH5069.
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Fig. 4. Photomicrographs of macerals in the Alum shale: (a) Sample Dju2014; (b) Sample Ott1027 in Fluorescence light; (c) Sample Ott1027 in white light; (d) Sample 21423 from
Hallekis-1; (e) Sample DBH5140; (f) Sample EST3008. Abbreviation: Te: telaginite; Ld: liptoderintie; AOM: fluorescing amorphous organic matter; Bit: bituminite; SB: solid bitumen;

La: lamalginite; Vp: vitrinite-like particle; G: graptolite.

background fluorescence, as lipid substances interlayered or
adsorbed with clay minerals (Fig. 4d). Vitrinite-like maceral are
organic fragments, which resemble physical and petrographic
similarities to vitrinite, characterized by a smooth polished surface
that reflectance can be measured on (Fig. 4e). Vitrinite-like mac-
erals are widely discovered in the lower Paleozoic sediments
globally (Buchardt and Lewan, 1990; Xiao et al., 2000; Petersen
et al,, 2013), however, the origin or precursor of this maceral is
still unclear. Graptolite can be divided into non-granular and
granular, often characterized by fusellar layers and growth nodes
(Fig. 4f). Graptolite fragments are the predominant maceral in
Ordovician samples (Zheng et al., 2022, Fig. 4f).

The solid bitumen observed in this work is classified as diage-
netic solid bitumen, initial-oil solid bitumen, primary-oil solid
bitumen, and pyrobitumen, according to Sanei's classification
(Sanei, 2020). Diagenetic solid bitumen is an amorphous solid to
semi-solid organic groundmass in dark grey color and is often
malleably deformed by compaction (Fig. 5a, Sanei, 2020). Diage-
netic solid bitumen is not a secondary maceral from kerogen
thermal cracking. It originates from biodegradation and low-
temperature alteration of bituminite or AOM in the immature

2640

stage (Sanei, 2020). Initial-oil solid bitumen is amorphous, grey
color, often non-fluorescing organic matter (Fig. 5b). It is referred to
as a precursor of crude oil and derived from cracking of oil-prone
organic matter and generated as heavy, viscous bitumen.
Primary-oil solid bitumen has a flow and void filling structure
(Fig. 5b), suggesting it is derived from the migration of liquid pe-
troleum. The dispersed and distribution pattern of these bitumen
networks suggested the oil generation stage, but could also be
influenced by the viscosity and pore network size and quality
(Sanei, 2020). Pyrobitumen is a non-generative form of solid
bitumen with high reflectance (Fig. 5c). It is derived from the
intense thermal alteration of previously generated solid bitumens.
Pyrobitumen is widely identified in overmature samples, e.g.,
Porsgrunn samples. Solid bitumen in immature and early mature
samples are mostly diagenetic solid bitumen, while the proportion
of post-oil solid bitumen with higher reflectance, and different
connecting and dispersed level increase as the sample maturity
increase.

VRoeqv data are summarized in Table 2. Alum shale samples have
differing maturity levels, containing immature to early mature
(VRoeqv Of sample Gronvik is 0.39%. VRoeqv range of 0.53—0.66% in
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Fig. 5. Photomicrographs of solid bitumen in the Alum shale: (a) Sample Dju2008; (b) Sample DBH5018; (c) Sample Por4002.
initial-oil solid bitumen; POSB: primary-oil solid bitumen.

Table 2

Mean and data range of TOC, Tax and VRoeqy-
Since Trmax iS not useful in over-mature samples since invalid S2 signal in highly mature source rock, Tmax values given in samples with low S2 values were regarded as not

Petroleum Science 20 (2023) 2637—2647

Abbreviation: DSB: diagenetic solid bitumen; IOSB:

representative.

Well Name TOC Tmax VRoeqv

Range Mean N Range Mean N Range Mean N
Djupvik-2 1.6—-12 8 13 417—429 422 21 0.53—0.66 0.6 4
Core601 3.1-11.6 9.5 15 410—417 413 15 0.53—0.61 0.59 5
Hallekis-1 8.9-28 16 10 412—421 417 10 0.49—0.56 0.53 2
Ottenby-2 04-13 7 50 388—437 425 79 0.61-0.74 0.68 6
DBH15/73 0.3-15.8 6 77 394-440 420 144 0.53—-1.39 0.93 8
Porsgrunn 0.2-1.9 1.1 22 / / 22 2.1-25 23 2
Réverakulan 0.33 1 456 0.83 1
Klinta 0.36 1 430 0.98 1
Bjarsjolagard 0.43 1 434 0.71 1
@lea atSlusegard 0.93 1 / 1.95 1
@lea at Billegrav 1.26 1 596 1.77 1
Laesd atVasagdrd 2.04 1 595 1.92 1
Kivik 1.22 1 512 1.51 1
Ottenby 8.01 1 437 0.71 1
Gislovhammar 8.42 1 475 1.42 1
S.Sandby 7.14 1 596 1.66 1
Gronvik 8.79 1 418 0.39 1
@lea at Borggard 5.59 1 / 1.70 1

Djupvik-2, 0.53—0.61% in Core601, 0.49—0.56% in Hallekis-1, and
0.61—-0.74% in Ottenby-2), mature (Outcrop sample Roverakulan,
Klinta, Bjdrsjolagard and Ottenby have VRoeqy at 0.83%, 0.98%, 0.71%
and 0.71% respectively), and overmature (VRoeqv Of @lea at Sluse-
gard, @led at Billegrav, Laesa at Vasagdrd, Kivik, Gislovhammar,
S.Sandby and @lea at Borggdrd are 1.95%, 1.77%, 1.92%, 1.51%, 1.42%,
1.66% and 1.70% respectively. VRoeqv range of 2.1-2.5% in Pors-
grunn). DBH15/73 samples have a wide range of VRyeqy from 0.53 to
1.44%, which are measured on the ‘net structure’ semifusinite
(Fig. 3a, 3b) and the wide value range could be attributed to
irregular anisotropy.

3.2. Organic geochemistry

TOC and Tpax data are summarized in Table 2. The results sug-
gest that Baltic shales contain immature samples (Djupvik-2,
Core601, and Hallekis-1), early mature samples (Ottenby-2, DBH15/
73), and over-mature samples (Porsgrunn, Roverakulan, Klinta,
Bjarsjolagard, Gislovhammar, and S.Sandby). It should be noted
that the Tpax values of over-mature samples, e.g., samples from
Porsgrunn, are invalid and are not shown in Table 2. T« of these
overmature samples is from instrument artifacts since invalid low
S2 signal in highly mature source rock (Peters, 1986; Peters and
Cassa, 1994; Song et al., 2022; Xiao et al., 2022).

The composite depth profiles of TOC, S2, HI, Inert carbon, Tpyax,
and U content of Ottenby-2 samples and DBH15/73 samples are
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shown in Figs. 6 and 7. These two wells are selected for detailed
depth profile analysis since their stratigraphical variation.

In Ottenby-2, the TOC value range from 6.9 to 15.3 wt% in the
Miaolingian and Furongian and show an increasing trend strati-
graphically. However, it decreases from 12.43 to 7.33 wt% strati-
graphically in Tremadocian (Fig. 6a). The oil potential data
distribution has a similar trend, with S2 increases from 24.25 to
50.49 mg HC/g stratigraphically in the Furongian while decreases
from 53.89 to 29.67 mg HC/g stratigraphically in Tremadocian
(Fig. 6b). HI averages around 370 mg HC/g TOC in the Furongian,
however, increases to average 430 mg HC/g TOC in the Tremadocian
(Fig. 6¢). Correspondingly, there is a sudden decrease in the inert
carbon content of Tremadocian samples than Furongian samples
(Fig. 6d). Trnax is around 428 °C in Miaolingian while decrease from
430 °C to 420 °C in Furongian and increase gradually strati-
graphically in Tremadocian. Besides, there is a typical ‘mirror effect’
between the depth profile of Tpax and U (Fig. 8e, 8f).

In DBH15/73, the TOC values gradually increase from averagely
5 wt% in the lower part of Miaolingian section to averagely 8 wt% in
the upper part of the Miaolingian section to an average of 15.64 wt%
in the Furongian samples (Fig. 7a). The oil potentials are averagely
16.70 mg HC/g in the lower part of Miaolingian samples, averagely
35.2 mg HC/g in the upper part of Miaolingian samples, while
averagely 20 mg HC/g in the Furongian samples (Fig. 7b). HI value
shows a gradual decreasing trend stratigraphically, with averagely
373 mg HC/g TOC in the lower Miaolingian samples, to 360 mg HC/g
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Fig. 6. The Miaolingian-Tremadocian depth profiles of total organic carbon (TOC, wt.%), S2 (mg HC/g), hydrogen index (HI, mg HC/g TOC), inert organic carbon (residual carbon or
non-generative organic carbon; wt.%), Tmax (°C), and uranium (U, ppm) for the Ottenby-2 well.

TOC in the upper Miaolingian samples, to 180 mg HC/g TOC in the
Furongian samples (Fig. 7c). The inert carbon content has an
increasing trend stratigraphically from 64% in the lower Miaolin-
gian to 70% in the upper Miaolingian to 86% in the Furongian
(Fig. 7d). Tmax decreases from 433 °C to 403 °C stratigraphically
(Fig. 7e). The U content distribution also has a ‘reverse effect’ to
Tmax profile, in the range of 4—422 ppm (Fig. 7f).

4. Discussion
4.1. Sedimentary environment

The TOC and oil potential profile of Ottenby-2 samples (Fig. 6a,
6b) suggest that there is a gradual increase of the enrichment of
organic matter during Furongian, followed by a gradual decrease in
Tremadocian. The abrupt increase in HI and decrease in inert car-
bon from Furongian to Tremadocian (Fig. 5c) suggest a

2642

predominant OM composition alteration. Such alteration could also
be found in organofacies (S2-TOC) plots (Fig. 9), in which the
Furongian plots and Tremadocian plots have parallel distribution
patterns and regression lines, however, there is a decrease in the X-
axis intercept. This suggests that HI increase in Tremadocian is
mostly attributed to lower initial dead carbon content (wt%) than
Furongian in Ottenby-2. The stable HI values indicate a limited
maturation effect, hence the variation in Ty« profile is probably
attributed to U content variation (Fig. 6e and 6f), and the fluctuation
distribution in the Furongian could be attributed to the overlap
influence of thermal intrusion. Such reverse controlling effect of U
content on Tpax is reported as ‘Trpax suppression’ in other works
(Dahl et al., 1988; Yang and Horsfield, 2020).

In the data profile of DBH15/73, TOC increase stratigraphically
(Fig. 7a). Oil potential and HI profiles suggest that there was an OM
degradation in Furongian, which could probably be attributed to
the high U content (Fig. 7f) and the local thermal intrusion
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Fig. 7. The Miaolingian-Tremadocian depth profiles of total organic carbon (TOC, wt.%), S1 (mg HC/g), S2 (mg HC/g), hydrogen index (HI, mg HC/g TOC), inert organic carbon
(residual carbon or non-generative organic carbon; wt.%), Tmax (°C), and uranium (U, ppm) for the DBH15/73.

(Buchardt and Lewan, 1990a). This is in accordance with the high
inert carbon content in the Furongian (Fig. 7d), which is also shown
in the organofacies (S2-TOC) plots with higher inert carbon in the
Furongian samples (Fig. 10).

The HI versus Trhax plot (Fig. 8a) of all the Baltic samples shows
that Djupvik-2, Core601, and Hallekis-1 are distributed in the
immature phase. While Ottenby-2 and DBH15/73 are partly on the
oil zone threshold, suggesting marginal mature. However, it is
interesting to find that almost all of the samples have Ty« lower
than 430 °C although the highest VRyeqv 0f DBH15/73 samples is as
high as 1.39% and the average VRgeqy is 0.93%. Few works have re-
ported the Tnax of samples affected by abnormal maturation from
intrusion. However, considering the high uranium content of the
Furongian section in DBH15/73 samples, the low Tpax of these
samples could also be partly attributed to Tpax Suppression
resulting from uranium enrichment (Dahl et al., 1988; Yang and
Horsfield, 2020).

4.2. Organic matter characteristics

Liptinite and their degraded products are the predominant OM
fraction in immature Cambrian samples in Baltic shales (Hallekis-
land Miaolingian of DBH15/73). While, the zooclasts fraction,
especially graptolite, becomes the major fraction of the OM in
Ordovician shales (Djupvik-2, Core601, and the Ordovician section
of Ottenby-2). The semifusinite-like macerals identified in the
Furongian DBH15/73 samples (Fig. 3a, 3b) are probably derived
from quickly matured algal mat. The ‘surrounding structure’ of the
semifusinite-like net around the grain suggests a ‘contempora-
neous deformation structure’ after sedimentation (Fig. 3b). Hence,
this in-situ structure probably reveals a quick abnormal maturation
process, rather than late-oil solid bitumen, a secondary organic
matter generated after expulsion and migration. As semifusinite-
like are only developed in the Furongian DBH15/73 samples,
which corresponds to the wide reflectance value range, it probably
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sion line and x-axis indicates the initial inert carbon content according to Cornford
(1998) and Cornford et al. (1998).

indicates a thermal intrusion effect. This is in agreement with a
previous report about the local thermal maturation of the kerogen
to semi-anthracitic grades resulting from the intrusion of Permo-
Carboniferous dolerite dikes in south Sweden (Buchardt et al.,
1986).

The maceral observation results of this work, apart from the
Furongian DBH15/73 samples, are consistent with previous works.
It is also reported that the organic composition of the Scandinavian
Alum shale is mainly algal-derived liptinite macerals (fluorescing
AOM, lamalginite, telaginite and liptoderinite), graptolite, vitrinite-
like particles, and solid bitumen (Petersen et al., 2013; Sanei et al.,
2014). The fluorescent organic-clay mixture of natural macerals in
Ottenby-2 samples has VRoeqv from 0.61 to 0.74% (mean 0.68%).
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4.3. Hydrocarbon generation potential

The pseudo van Krevelen plots (Fig. 8b) of all the Baltic samples
could be classified into two groups. One group plotted along the Y-
axis, suggesting extremely low OI values. These groups are all
Cambrian samples. Such hydrogen-rich characteristics are in
accordance with the organic petrology observation of predomi-
nantly marine algal-related OM composition in the Cambrian
samples. However, samples in other groups are relatively widely
distributed and are ranging from type II-oil prone organic matter
to type II/Ill-oil/gas prone organic matter (Fig. 11). Therefore, the
distinction between the immature samples suggests that organic
matter composition change from Cambrian to Ordovician, which
could partly be explained by the kerogen type change from
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autochthonous refractory organic carbon dilution of zooclast par-
ticles (Zheng et al., 2021b).

4.4. Hydrocarbon generation model and organofacies

At present time, the measured HI does not reflect the kerogen
type due to the thermal maturity and hydrocarbon conversion and
expulsion from the initial kerogen (Jones, 1987). Therefore, deter-
mining the initial HI (HI,) is an important challenge for the mature
and overmature source rocks, and reflects the original organofacies
(Jarvie et al., 2007; Chen and Jiang, 2015). The HI restoration for-
mula with Rock-Eval data (Chen and Jiang, 2015) was applied in this
work to HI, as below:

)}

lexp{(

where HI,, $, and # are unknown parameters specific to kerogen
kinetics, of which HI, characterizes the hydrocarbon generation
history, § represents the temperature threshold for massive hy-
drocarbon generation, while ¢ represents the oil window, and c is a
constant reflecting the measured HI error in high Tpax (Chen and
Jiang, 2015). By fitting Eq. (1) through the plotting data of Tpyax Vs.
HI, the most suitable model could be estimated, which has the
optimal HI,, §, 6, and c to reflect the general hydrocarbon genera-
tion process covering the data set.

As constraint data played a significant role in determining the
fitting regression line, wuranium-rich Furongian samples
(100—300 ppm) were removed from the data set Fig. 12. Because
their Tmax and HI values had been greatly affected by dike intrusion
in the bulk geochemistry and were not suitable to be applied as
immature lower Paleozoic benchmarks. Besides, some mature
Alum shale samples from published data (Kosakowski et al., 2016)
were applied in this model. This mathematical model was calcu-
lated with Matlab with ‘non-linear least squares’ as the fitting op-
tion. The fitting result and coefficient of 95% confidence limits are
HlI,: 400 mg HC/g TOC (369.5 mg HC/g TOC, 430.5 mg HC/g TOC), f:
441,9°C(436.2 °C,447.5°C), §: 29.48 (—48.51, —10.46) and ‘c’ equals
to 0. The best-fitting line and prediction intervals of 90%, 60%, and
30% are also shown in Fig. 12. The HI values of immature samples
sitting in a relatively wide range from 320 to 520 mg HC/g TOC

Tmax

HI = HI, 3

+c (1)
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Fig. 12. HI versus Tnax and fitted non-linear regression model based on Eq (1), the
fitting line is calculated with Matlab with ‘non-linear least squares’ as the fitting option
and coefficient of 95% confidence limits are Hl,: 420 mg HC/g TOC.

could be attributed to organic matter composition heterogeneous.
Generally, these values are very close to the P90 (340 mg HC/g TOC)
to P50 (475 mg HC/g TOC) value range of the HI, calculated from a
worldwide marine shale database (Jarvie, 2012).

This HI range of immature shales and the Hlycajculated Of 400 mg
HC/g TOC from the mature and over mature samples suggest that
the sample set could be categorized mainly into organofacies B and
minor into organofacies BC based on the organic facies classifica-
tion (Jones, 1987). Both organic facies B and BC suggest anoxic-
dysoxic facies, according to Jone's organic facies concept. Jones
(1987) proposed that organic facies BC represents sediments with
arelatively high phytoclast input, e.g., terrestrial and reworked OM,
while organic facies B has relatively low phytoclast input (Jones,
1987). However, in this work, the organic facies BC classified from
lower HI, could be attributed to abundant zooclastic fragments. It is
also reported that the enrichment of non-generative organic
carbon-rich graptolite cuticle leading to autochthonous refractory
organic carbon dilution, causing marine type Il kerogen to shift
towards type II+IIl kerogen, and measured HI underestimation
(Zheng et al., 2021b).

5. Conclusions

This study investigates the organic matter composition and
thermal maturity distribution of the Cambrian-Ordovician shale
samples from the Baltic Basin in Scandinavia. These samples have a
wide maturity range from immature to overmature. The organic
petrology results show that Cambrian shales are mainly composed
of alginite, AOM, bituminite and solid bitumen, while, there is an
increase of the zooclast constituents in the Ordovician source rocks.
As the maturity increases, post-oil solid bitumen becomes the
dominant OM constituent. HI, calculation model: HI = HI, [1—exp
{—(Tmax/B)*0 }]+c is simulated based on pyrolysis data and fitted
according to the least-square fitting method, with restored HI, of
400 mg HC/g TOC (369.5 mg HC/g TOC to 430.5 mg HC/g TOC as 95%
coefficient confidence bounds). The restored HI, and present HI of
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immature samples show that all the samples represent orga-
nofacies B, which is the most widespread type of organic facies in
most of the world's source rock and indicates a marine anoxia and
transgressive sea with the shallow water column.
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