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a b s t r a c t

In this research, an integrated classification method based on principal component analysise simulated
annealing genetic algorithmefuzzy cluster means (PCAeSAGAeFCM) was proposed for the unsupervised
classification of tight sandstone reservoirs which lack the prior information and core experiments. A
variety of evaluation parameters were selected, including lithology characteristic parameters, poro-
permeability quality characteristic parameters, engineering quality characteristic parameters, and pore
structure characteristic parameters. The PCA was used to reduce the dimension of the evaluation pa-
rameters, and the low-dimensional data was used as input. The unsupervised reservoir classification of
tight sandstone reservoir was carried out by the SAGA-FCM, the characteristics of reservoir at different
categories were analyzed and compared with the lithological profiles. The analysis results of numerical
simulation and actual logging data show that: 1) compared with FCM algorithm, SAGAeFCM has stronger
stability and higher accuracy; 2) the proposed method can cluster the reservoir flexibly and effectively
according to the degree of membership; 3) the results of reservoir integrated classification match well
with the lithologic profile, which demonstrates the reliability of the classification method.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Tight oil is the oil that exists in the tight sandstone reservoir,
carbonate reservoir, and other reservoirs with air permeability less
than 1 mD and can be used for commercial exploitation through
certain technical measures (National Energy Administration, 2017).
Since the successful exploration and development of tight oil in
some areas of the United States (Bakken tight oil, Eagle ford tight
oil, etc.) in 2008, tight oil has become a hot-spot for oil and gas
exploration as an important force to replace conventional oil and
gas resources (Zou et al., 2018; Sun et al., 2010; Zhang et al., 2015).
Influenced by the development of foreign tight oil and the current
situation of domestic energy supply and demand, China has pro-
moted the exploration and development of tight oil in recent years.
The exploration and development of tight oil in China can be
divided into two stages: the exploration stage before 2014; and the
industrial production stage after 2014 (Zou and Qiu, 2021). By the
).

y Elsevier B.V. on behalf of KeAi Co
end of 2019, the annual production of tight oil in China had reached
2.3 � 106 t (Zou and Qiu, 2021). Nowadays, rich tight oil and gas
resources have been found in many areas in China, such as Ordos
Basin and Songliao Basin (Sun et al., 2019; Xiao, 2015).

As the main reservoir of tight oil, tight sandstone reservoir has
the characteristics of low pore, low permeability, and complex pore
structure (Liu, 2021). The reservoir productivity is closely related to
poro-permeability and pore structure characteristics (Liu, 2021).
The research on integrated classification method of tight sandstone
reservoir is of great significance for the exploration and develop-
ment of oil and gas resources. Zhang et al. (2012) selected oil vis-
cosity, claymineral content, threshold pressure gradient, saturation
of movable fluid, and throat radius to establish the "five factors
integrated classification index", and classified the low-permeability
reservoirs. In the same year, Zhao and Du (2012) evaluated the tight
oil reservoir using "seven properties characteristics": lithology,
poro-permeability property, petroliferous property, electrical
property, source rock characteristics, brittleness, and in-situ stress
anisotropy. Zou et al. (2014) evaluated the "sweet spots" of the
unconventional reservoir using "six properties characteristics": li-
thology, poro-permeability property, petroliferous property,
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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electrical property, brittleness, and in-situ stress anisotropy. Xiao
(2015) established the "seven factors integrated classification in-
dex" by adding the formation pressure coefficient and brittleness
index (BI) on the basis of the "five factors integrated classification
index". Wang et al. (2016) considered the reservoir pressure coef-
ficient and established the "six factors integrated classification in-
dex" based on the "five factors integrated classification index". Hu
(2017) classified the tight oil reservoir using the maximum throat
radius, flow zone index (FZI), porosity, BI, the range of two-phase
seepage zone, and threshold pressure gradient. On the basis of
Zhang et al. (2012) and Xiao (2015), Zhang (2019) established the
"eight factors integrated classification index" to classify the tight oil
reservoir. Wang et al. (2020) evaluated the "sweet spots" of Triassic
Chang 7 Formation in Ordos Basin using fuzzy cluster means and
Bayes discrimination. Wei et al. (2021) evaluated the "sweet spots"
of shale oil using the characterization parameters of petroliferous
sweet spot, mobility sweet spot, poro-permeability sweet spot, and
engineering sweet spot. Wang et al. (2021) classified and evaluated
shale oil reservoir using total organic carbon content (TOC),
porosity, oil content, free hydrocarbon content (S1), oil saturation,
BI, stress difference, and reservoir thickness. Zheng et al. (2021)
used TOC, S1, porosity, oil saturation, BI, and fracture pressure to
establish the integrated evaluation standard of shale oil reservoir,
and determined enriched layer of shale oil. Zhou et al. (2021)
selected burial depth, TOC, brittle mineral content, pressure coef-
ficient, vitrinite reflectance, porosity, and permeability to evaluate
the favorable shale gas exploration areas using multi-parameter
linear regression model. Xie et al. (2022) calculated the reservoir
integrated evaluation factors using NMR T2 distribution, matrix
porosity and permeability, and formation micro-resistivity scan-
ning imaging (FMI) logging data, and evaluated the reservoir
effectiveness of the igneous reservoir. In the same year, Qi et al.
(2022) established the "seven properties characteristics" evalua-
tion model of shale oil reservoir, and evaluated the "sweet spots" of
shale reservoir.

For the integrated classification of reservoir, the existing "inte-
grated classification index" mainly reflect the lithologic character-
istics, poro-permeability properties and engineering quality
characteristics, but lack the characteristics of pore structure.
Meanwhile, in the area lacking the prior information or core ex-
periments, the classification standard is difficult to determine, and
the method of "integrated classification index" is not applicable. To
solve the aforementioned problems, based on previous studies, this
paper proposed an integrated classification method of tight sand-
stone reservoir based on principal component analysisesimulated
annealing genetic algorithmefuzzy cluster means
(PCAeSAGAeFCM). A variety of evaluation parameters, i.e., lithol-
ogy characteristic evaluation parameters, poro-permeability qual-
ity characteristic evaluation parameters, engineering quality
characteristic evaluation parameters, and pore structure charac-
teristic evaluation parameters were selected. The unsupervised
classification of tight sandstone reservoir was realized using the
aforementioned evaluation parameters. The analysis results of
numerical simulation and actual logging data verify the effective-
ness of the classification method.

2. Methodology and theory

Fuzzy cluster means (FCM) is an unsupervised and flexible
classification method, and the principles are shown in Appendix A.
Although FCM has the advantages of unsupervised clustering and
fast searching rate. However, FCM is a local search algorithm, and
the selection of the value of the clustering center will affect the
accuracy of the clustering results. If the clustering center value is
input randomly, the clustering result tends to fall into the local
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optimization. In this study, the simulated annealing genetic algo-
rithm (SAGA) (Wu et al., 2021) was selected to combine with the
FCM to improve the global search ability and the stability of clus-
tering results. Because the number of input parameters will affect
the clustering speed, PCA (Appendix B) was used to reduce the
dimension of the data when there are too many input parameters.
The flow chart of PCAeSAGAeFCM is shown in Fig. 1.

1) Input the characteristic parameters, obtain the low dimensional
data using PCA. And then the low dimensional data is used as
the input of SAGAeFCM. In this study, the Ccr was selected to
determine the number of principal components;

2) Initialization of the parameters of SAGA. The number of in-
dividuals in the population was 10. The maximum number of
generations (gmax) was 10. The crossover probability and mu-
tation probability were 0.6 and 0.01 respectively. Tc is the cur-
rent temperature is Tc, T0 is the initial temperature, and Tl is the
minimum temperature. In this paper, T0 and Tl were 100 �C and
1 �C respectively. Gradient of temperature reduction GT was 0.8;

3) Initialization of the parameters of FCM. The number of cate-
gories m was 3 (in this paper, the reservoir was mainly divided
into type I, type II and type III reservoirs). The maximum
number of iterations was 20. The membership weighting factor
b was 3. The minimum value of the change of fitness function
(i.e., convergence accuracy) was 10�6. The fitness function F is
expressed as:

F ¼
Xn
i¼1

Xm
j¼1

uij
bdij

2 (1)
4) Generate the initial population and calculate the F value of in-
dividual. Each individual in the population contains the infor-
mation of randomly generated clustering centers;

5) Initialize the evolution number gen ¼ 1;
6) Complete the evolutionary process using SAGA, output the

global optimal solution, i.e., the membership matrix U and the
information of clustering center. For more details of SAGA, refer
to Wu et al. (2021);

7) Complete the clustering according to the degree of membership.
3. Numerical simulation

In order to verify the stability of SAGA-FCM, 300 data points
(0 < x < 1, 0 < y < 1) were randomly constructed (Fig. 2). The
classification results using FCM and SAGAeFCM for four times were
randomly selected, are shown in Figs. 3 and 4. The triangles in
figures are the center of different categories. The comparison of F
values of different methods in 500 classifications are shown in
Fig. 5.

Fig. 3 shows that, the classification results using FCM are
affected by the selection of clustering center, and the results of each
classification are different. Fig. 4 shows that, SAGA can effectively
avoid the influence of improper selection of clustering centers on
the classification results of FCM. The classification results using
SAGAeFCM are stable and unchanged. In Fig. 5, the blue line rep-
resents the F value of FCM (FFCM), and the red line represents the F
value of SAGAeFCM (FSF). It can be seen that the value of FFCM os-
cillates violently and is greater than that of FSF. The above analysis
shows that SAGAeFCM has strong stability and high accuracy. The
classification result of FCM is easy to fall into the local optimization,
while SAGAeFCM can effectively overcome this problem and
accurately unsupervised classification.



Fig. 1. Flow chart of the PCA-SAGA-FCM method.

Fig. 2. The data points constructed randomly.
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4. Calculation of evaluation parameters

In this paper, the tight sandstone reservoir section of well D
(XX70eXX60 m), and well F (XX00eXX60 m) of Ordos Basin were
selected. The evaluation parameters were selected from the four
aspects, i.e., lithology characteristic, poro-permeability quality
characteristic, engineering quality characteristic, and pore struc-
ture characteristic, to classify the reservoir without supervision.
The logging data and the experimental results of core samples of
well D and well F are shown in Figs. 6 and 7. Figs. 6 and 7 include:
the depth; lithologic section; caliper (CAL) logs, gamma-ray (GR)
logs, and spontaneous potential (SP) logs; acoustic (AC) logs, den-
sity (DEN) logs, and compensated neutron (CNL) logs; resistivity
(AT10, AT20, AT30, AT60, AT90, RT) logs; NMR echo data; NMR T2
distributions after inversion (Guo et al., 2019); array acoustic logs
(compressional wave time difference (DTc) and shear wave time
difference (DTs)); core porosity (Cpor); core permeability (Cperm);
core oil saturation (CSo); shale content (Vsh); photos of core sam-
ples; thin section images of core samples; scanning electron mi-
croscope (SEM) images of core samples; mercury injection capillary
pressure (MICP) curves of core samples; pore size distribution
(PSD) curves of core samples.



Fig. 3. Classification results of the data points using FCM (results of 4 times).
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The lithology characteristic evaluation parameters include:
reservoir thickness H and Vsh. H is the thickness of the interpreta-
tion reservoir section. Vsh can be calculated using GR logs (Hong,
2008). Since Vsh is negatively correlated with the reservoir qual-
ity, the reciprocal was taken as the input.

The poro-permeability quality characteristic evaluation param-
eters include: porosity 4, permeability k, and oil saturation So. Ac-
cording to the logging data, in this paper, NMR logging data was
used to calculate the 4 and k. The NMR porosity (POR_NMR) can be
effectively calculated using NMR T2 distribution (Dunn and Xie,
2010):

POR NMR¼
XNT2

i¼1

fi (2)

where NT2 is the number of T2 components, fi is the value of the ith
porosity component.

The main models for predicting permeability using NMR data
are the Timur-Coates (TC) model and the Schlumberger Doll
Research Center (SDR) model (Timur, 1969; Coates and Dumanoir,
1973; Kenyon et al., 1988). Since the NMR saturation-
centrifugation experimental data of core samples were not
collected, in this paper, the SDR model was selected to calculate the
permeability kSDR:

kSDR ¼ A14
B1T2lm

C1 (3)

where A1, B1, and C1 are model coefficients, T2lm is T2 geometric
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mean (Eq. (4)) (Wu et al., 2020).

T2lm ¼ 10∧

0
@XNT2

i¼1

fi log
�
T2;i
�,XNT2

i¼1

fi

1
A (4)

The well D selected in this paper mainly presents the lithologic
characteristics of mainly fine sandstone and sand-shale interbed-
ding (Fig. 6). The salinity of formationwater of well D (XX70eXX60
m) was calculated using the SP logs, which is 10650 ppm (Hong,
2008). In this paper, the sedimentary characteristics and the
salinity of formation water were considered, the Indonesian satu-
ration equation (Eq. (5)) was used to calculate the oil saturation (So)
of well D.

So ¼ 1�
"
Vsh

0:5ð2�VshÞ

ðRsh=RtÞ0:5
þ
�

Rt
aRw*4�m

�0:5
#�2

n

(5)

where a is the lithology coefficient, m and n are cementation index
and saturation index respectively, Rw is the formation water re-
sistivity, Rt is the resistivity of original formation, Rsh is the re-
sistivity of adjacent mudstone. Since the data of rock-electric
experiments were not collected, the regional experienced values
were selected for a, m, and n when calculating the oil saturation
(Huang et al., 2015; Shi, 2012; Xu et al., 2021).

The engineering quality characteristic evaluation parameter is
Brittleness index BI. In this paper, based on the collected array
acoustic logging data, BI was calculated using Young's modulus (E)



Fig. 4. Classification results of the data points using SAGA-FCM (results of 4 times).
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and Poisson's ratio (v) (Eq. (6) - (8)). The larger the E and the smaller
the v, the larger the BI, and the easier it is to form network fractures
after fracturing (Lai et al., 2016).

Es n ¼ Es �minðEsÞ
maxðEsÞ �minðEsÞ (6)
Fig. 5. Comparison of classification results using different methods.
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vs n ¼ vs �minðvsÞ
minðvsÞ �maxðvsÞ (7)

BI ¼ Es n þ vs n

2
� 100% (8)

where Es is the static Young's modulus, vs is the Poisson's ratio, Es_n
and vs_n is the normalized value of Es and vs, respectively.

The dynamic Young's modulus (Ed) and dynamic Poisson's ratio
(vd) were calculated using density logs value (rb), compressional
wave time difference (DTc), and shear wave time difference (DTs)
(Eqs. (9) - (10)) (Lai et al., 2016).

Ed ¼ rb
DT2

s

 
3DT2s � 4DT2

c
DT2s � DT2c

!
(9)

vd ¼ DT2s � 2DT2
c

2
�
DT2s � DT2

c

� (10)

In practical application, the calculation of brittleness index using
array acoustic logging data mainly includes the following steps.
1) Obtain the Es and vs of core samples using rock mechanics
testing;

2) Obtain the rb, DTc, and DTs of core samples;
3) Calculate the Ed and vd of core samples using Eqs. (9) and (10);



Fig. 6. Logging data and experimental results of core samples of well D. The first track is the depth. The second track is lithologic section. The third track includes CAL, GR, and SP
logs. The fourth track includes AC, DEN, and CNL logs. The fifth track includes AT10, AT20, AT30, AT60, AT90, and RT logs. The sixth track is NMR echo data. The seventh track is NMR
T2 distribution. The eighth track includes DTc and DTs logs. The ninth track is Cpor. The tenth track is Cperm. The eleventh track is CSo. The twelfth track is Vsh. The thirteenth track is
the photos of core samples. The fourteenth track is the thin section image. The fifteenth track is the SEM image. The sixteenth track is the MICP curve. The seventeenth track is the
PSD curve.

Fig. 7. Logging data and experimental results of core samples of well F.
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4) Establish the conversion equations of between dynamic pa-
rameters (Ed, vd) and static parameters (Es, vs);

5) Calculate the Ed and vd of the reservoir using well logging data;
6) Calculate the Es and vs of the reservoir using Ed, vd, and the

conversion equations;
7) Calculate the BI of the reservoir using Eqs. (6)e(8).

The pore structure characteristic evaluation parameters mainly
2752
calculated by the NMR T2 distribution, including T2lm and Gaussian
characteristic parameter w2*m2. T2lm represents the overall char-
acteristics of PSD. w2*m2 represents the characteristics of large
pores related to seepage capacity (Xu and Torres-verdín, 2013; Li
et al., 2019).

The Gaussian characteristic parameters can be calculated by
fitting the NMR T2 distribution using Gaussian distribution func-
tion. The Gaussian distribution function GF can be expressed as:



Fig. 8. Flow chart of curve fitting based on MGF.

Fig. 9. Calculation of initial parameters of double Gaussian distribution model.
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GFðx;m;sÞ ¼ 1ffiffiffiffiffiffiffi
2p

p
s
e
�1

2

�
x�m
s

�2

(11)

where m and s are the mean value and standard deviation of
Gaussian distribution, respectively.

For the fitting of the multimodal distribution curve, multiple
Gaussian distribution function (MGF) (Eq. (12)) can be selected. The
cumulative curve of multimodal distribution (Eq. (13)) is
approached by the cumulative curve of MGF (CGF), and the optimal
Gaussian characteristic parameters are obtained when the error
between them is minimized (Fig. 8).

MGFðx;wi;mi; siÞ ¼ w1
1ffiffiffiffiffiffiffi
2p

p
s1

e
�1

2

�
x�m1
s1

�2

þw2
1ffiffiffiffiffiffiffi
2p

p
s2

e
�1

2

�
x�m2
s2

�2

þ/þwi
1ffiffiffiffiffiffiffi
2p

p
si
e
�1

2

�
x�mi
si

�2

þ/

þwn
1ffiffiffiffiffiffiffi
2p

p
sn

e
�1

2

�
x�mn
sn

�2

(12)

CGFðx;wi;mi; siÞ ¼
w1

2

"
1þ 2ffiffiffiffi

p
p

ððx�m1Þffiffi
2

p
s1

0

e�t2dt

#
þw2

2

"
1

þ 2ffiffiffiffi
p

p
ððx�m2Þffiffi
2

p
s2

0

e�t2dt

#
þ/þwi

2

"
1

þ 2ffiffiffiffi
p

p
ððx�miÞffiffi
2

p
si

0

e�t2dt

#
þ/þwn

2

	
1

þ 2ffiffiffiffi
p

p
ððx�mnÞffiffi
2

p
sn

0

e�t2dt



(13)

where wi is the weight coefficient, which conforms to Eq. (14):

Xn
i¼1

wi ¼ 1 0<wi <1 (14)

In this paper, the double Gaussian distribution model was used
to fit the NMR T2 distribution based on the process shown in Fig. 8,
and the Gaussian characteristic parameters were obtained. When
fitting the NMR T2 distribution, Eq. (15) was used for pretreatment:

8>>>><
>>>>:

T2
0 ¼ logðT2Þ

fi
0 ¼ fiPbin

i¼1
fi

(15)

where T2' is the T2 value after pretreatment, fi' is the value of the
normalized porosity component.

T2' was used as the input of Eq. (13), and the optimal Gaussian
distribution parameter was determined by calculating the mini-
mum value of Eq. (16).
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f ðPGÞ ¼
��CGFðPGÞ � CT2dist

��2
2 (16)

where PG is the parameter of double Gaussian distribution model,
includingw1,w2, log(m1), log(m2), log(s1), and log(s2), CGF(PG) is the
cumulative curve of double Gaussian distribution under the current
model parameters, CT2dist is the positive cumulative curve of T2
distribution (i.e., from left to right). The optimal PG (PGO) was
determined when the value of f(PG) reaches Eq. (17).

min
��CGFðPGÞ � CT2dist

��2
2 (17)



Fig. 10. Cumulative contribution rate under different number of principal components.
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Since the calculation accuracy of PGO is affected by the initial
value of PG. In this paper, the segmentation point between large and
small pores (T2sp) was obtained according to the method proposed
by Wu et al. (2021). The initial weight coefficient, mean value and
standard deviation of the large and small pores were calculated
respectively (Eq. (18)), and then they were used as the initial pa-
rameters of Eqs. (12) and (13).

8>>>>>>>>>><
>>>>>>>>>>:

w1 ¼ Cðmin�spÞ
.
Call

w2 ¼ 1�w1

m1 ¼ mean
�
T2ðmin�spÞ

�
m2 ¼ mean

�
T2ðsp�maxÞ

�
s1 ¼ std

�
T2distðmin�spÞ

�
s2 ¼ std

�
T2distðsp�maxÞ

�
(18)

where C(min~sp) is the amplitude value accumulated from the
Fig. 11. Result of reservoir integr
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minimum T2 to T2sp in T2 distribution, Call is the overall cumulative
amplitude value of T2 distribution, T2(min~sp) is the T2 value from the
minimum T2 to T2sp, T2(sp ~ max) is the T2 value from the T2sp to the
maximum T2, T2dist(min~sp) and T2dist(sp ~ max) are the T2 distributions
in different T2 intervals (Fig. 9).

The parameters of the double Gaussian distribution model have
the following poro-permeability implications (Xu and Torres-
verdín, 2013; Li et al., 2019).

1) Weight coefficient: w1 and w2 represent the volume fraction of
small and large pores respectively. The small pores are mainly
filled with the bound fluid. The large pores aremainly filled with
themovable fluid, which controls the percolation capacity of the
reservoir;

2) Mean value: m1 and m2 represents the mean value of small and
large pores respectively. The values of m1 and m2 increases with
the poro-permeability quality;

3) Standard deviation: s1 and s2 represents the standard deviation
of the pore radius of small and large pores respectively. The
standard deviation characterizes the uniformity of PSD.

Previous studies have indicated that the Gaussian characteristic
parameters of NMR T2 distribution can be used to quantitatively
evaluate the reservoir parameters and characterize the reservoir
pore structure (Li et al., 2019; Ge et al., 2014).
5. Integrated classification and pore structure evaluation

PCA-SAGA-FCM was used for the reservoir integrated classifi-
cation. The H, SH, 4, k, So, BI, T2lm, andw2*m2 were taken as the input
evaluation parameters. The value of Ccr was set to 0.9. The cumu-
lative contribution rate under different number of principal com-
ponents is shown in Fig. 10. Fig. 10 shows that when the number of
principal components is 5, the cumulative contribution rate reaches
0.9. In this paper, the first five principal components were selected
as the input when using the aforementioned parameters for
classification.

The classification results of well D and well F are shown in
Figs. 11 and 12. The first to seventh tracks in Figs. 11 and 12 are the
same as those in Figs. 6 and 7. The eighth to tenth track include the
ated classification of well D.



Fig. 12. Result of reservoir integrated classification of well F.
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porosity, permeability and oil saturation of core samples (Cpor,
Cperm, and CSo), and the calculated porosity, permeability and oil
saturation (POR_NMR, kSDR, and So). The eleventh track is the
reservoir quality index (RQI) (Wu et al., 2021). The twelfth track is
the BI. The thirteenth and fourteenth tracks include T2lm andw2*m2.
The fifteenth to seventeenth tracks represent the degree of mem-
bership of type I reservoir, type II reservoir, and type III reservoir at
each depth point (uI, uII, and uIII). The eighteenth track is the inte-
grated classification results of the reservoir: red represents type I
reservoir, yellow represents type II reservoir, and blue represents
type III reservoir, and gray represents the non-reservoir. The
Fig. 13. Comparison of the degree of membe
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nineteenth track is Vsh. The twentieth and twenty-first tracks
include the thin section image and the SEM image.

The comparison of u1, u2, and u3 are shown in Fig. 13. Figs. 11e13
show：

1) POR_NMR, kSDR, and So matched well with Cpor, Cperm, and CSo,
indicating the reliability of the calculated results of porosity,
permeability, and saturation.

2) The BI is negatively correlated with Vsh.With the increase of Vsh,
the BI decreases.
rship of different types of the reservoir.
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3) T2lm and w2*m2 are positively correlated with permeability. As
the reservoir heterogeneity increases, the permeability, RQI,
T2lm, and w2*m2 decreases.

4) The cluster subsets all correspond well to the degree of mem-
bership. The u1 is the largest in type I reservoir, u2 is the largest
in type II reservoir, and u3 is the largest in type III reservoir.
Flexible clustering of the reservoir can be effectively performed
using the degree of membership (Ge et al., 2022).

5) Since the formation testing data were not collected, the classi-
fication results were comparedwith the lithologic section in this
paper. The result of reservoir classification using
PCAeSAGAeFCM matched well with the lithologic section. In
the type I reservoir, the reservoir thickness is thick, the evalu-
ation parameters are large, and the core descriptions all show
oil-bearing characteristics, for example, XX38eXX57 m of well
D, and XX30eXX36 m of well F. In the type II reservoir, the
reservoir thickness is medium, the evaluation parameters are
medium, and the core descriptions partially show oil-bearing
characteristics, for example, XX92eXX05 m of well D, and
XX12eXX18 m of well F. The type III reservoir is mainly
composed of thin interbeds, with low evaluation parameter
values and no oil-bearing features in core description, for
example, XX27eXX29 m of well D, and XX54eXX55 m of well F.
6. Conclusions

In this paper, an integrated classification method based on
PCAeSAGAeFCM was proposed. The lithology characteristic eval-
uation parameters, poro-permeability quality characteristic evalu-
ation parameters, engineering quality characteristic evaluation
parameters, and pore structure characteristic evaluation parame-
ters were selected as inputs, and the unsupervised classification of
the tight sandstone reservoir was realized. The conclusions of this
paper are as follows.

1) Compared with FCM algorithm, SAGAeFCM has stronger sta-
bility and higher accuracy. SAGAeFCM can effectively overcome
the problem of falling into local optimization, and can be used
for unsupervised classification accurately.

2) The integrated classification results of the reservoir using
PCAeSAGAeFCM matched well with the lithologic section,
indicating the reliability of the classificationmethod. In practical
applications, accurate reservoir classification lays a foundation
for the subsequent "sweet spots" evaluation.

3) The classification method proposed in this paper does not need
prior information or core experimental data. Compared with the
traditional method using "multi factors integrated classification
index", the method proposed in this paper has certain advan-
tages. In practical applications, the input parameters and the
number of principal components can be determined according
to the actual situation of the study area. The number of cate-
gories can be set in advance or determined according to some
information criteria.
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Appendix A

Principal component analysis (PCA) is the transformation of
linearly correlated data into linearly uncorrelated data using
orthogonal transformation. The dimensionality of the data can be
reduced by extracting the principal components of the original
data. The steps of PCA include.

1) Input the sample dataset X:

X¼

2
664
x11 x12 / x1b
x21 x22 / x2b
« « «

xa1 xa2 / xab

3
775 (A.1)

where a is the number of characteristic parameters in X, b is the
number of samples in X.

2) Centralization of sample data：

X¼X�
2
4 x1 «xa

3
5¼X �

2
66666664

1
b

Xb
k¼1

x1k

«

1
b

Xb
k¼1

xak

3
77777775

(A.2)

where X is dataset after centralization, xa is the average value of
each characteristic parameter.

3) Calculate the covariance (Cov)：

Cov¼1
j
XX

T
(A.3)
4) Calculate the feature value l and the corresponding feature
vector e of Cov:

Cov¼ELE�1 (A.4)

where L a diagonal matrix consisting of l in descending order, E an
orthogonal matrix composed of e: E ¼ [e1, …, ea]T.

5) Select the first p feature values and the corresponding feature
vectors, and reduce the dimensionality of (X)a�b to obtain
(X0)p�b (Eq. (A-5)). The value of p can be set artificially or
calculated according to the cumulative contribution of principal
components (Eq. (A-6)).

X’¼Ep � X (A.5)

where Ep is the orthogonal matrix composed of the selected feature
vectors: Ep ¼ [e1, …, ep]T (p < a).

Ccr ¼
Xp
l¼1

ll

,Xa
l¼1

ll (A.6)

where Ccr the cumulative contribution of principal components,
0 < Ccr < 1. The larger the value of p, the larger the Ccr, the more
information is retained.
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Appendix B

FCM classifies the dataset according to degree of membership u.
Set the dataset Y¼ [y1, y2,…, yi,…, yn] and the number of categories
m (2 � m � n), the dataset of each category is expressed as {A1, A2,
…, Aj, …, Am}, and the clustering center of each category is
expressed as {c1, c2, …, cj, …, cm}. The number of categories can be
set in advance or determined according to some information
criteria, such as Akaike information criterion (AIC) (Ge et al., 2022).
The objective function is expressed as:

min

0
@Xn

i¼1

Xm
j¼1

uij
bdij

2

1
A (B.1)

where dij is the distance from the ith data to the jth clustering
center (Eq. (B-2)), uij is the degree of membership of the ith data to
category Aj (Eq. (B-3)), n is the number of data, b is the membership
weighting factor.

dij ¼
��yi � cj

��
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXg
l¼1

�
yil � cjl

�2vuut (B.2)

where g is the number of characteristic parameters in Y.

uij ¼
dij

� 2
b�1

Pm
l¼1

dil
� 2

b�1

(B.3)

uij should conform to the following equation:

Xm
j¼1

uij ¼1 uij2½0;1� (B.4)

cj can be calculated using uij and yi

cj ¼
Xn
i¼1

uijbPn
i¼1

uijb
yi (B.5)

The steps of FCM algorithm include.

1) Set the number of categories, the membership weighting factor
and other parameters, and randomly initialize the location of
clustering center;

2) Update the membership matrix U using Eqs. (B-2)e(B-4). U is
composed of the degree of membership of each data;

3) Update the location of clustering center using Eq. (B-5);
4) Judge whether the maximum number of iterations or objective

function value is reached, if not, go to step 2);
5) Output the information of clustering center and uij.
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