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a b s t r a c t

In the past 15 years, the shale gas revolution and large-scale commercial developments in the United
States have driven the exploration and development of shale plays worldwide. Among many factors
affecting shale gas exploration potential, the gas-bearing properties of shale (quantity, storage state,
composition) and their controlling factors are the essential research attracting wide attention in the
academic community. This paper reviews the research progress on the retention mechanism, influencing
factors, and evaluation methods for resource potential of the shale gas system, and proposes further
research directions. Sorption is the main mechanism of gas retention in organic-rich shales; the gas is
mainly stored in nanopores of shale in free and sorption states. The presence of water and non-
hydrocarbon gases in pores can complicate the process and mechanism of methane (CH4) sorption,
and the related theoretical models still need further development. The in-situ gas content and gas-
bearing properties of shale are governed by the geological properties (organic matter abundance,
kerogen type, thermal maturity, mineral composition, diagenesis), the properties of fluids in pores
(water, CH4, non-hydrocarbon gases), and geological conditions (temperature, pressure, preservation
conditions) of the shale itself. For a particular basin or block, it is still challenging to define the main
controlling factors, screen favorable exploration areas, and locate sweet spots. Compared to marine
shales with extensive research and exploration data, lacustrine and marine-continental transitional
shales are a further expanding area of investigation. Various methods have been developed to quanti-
tatively characterize the in-situ gas content of shales, but all these methods have their own limitations,
and more in-depth studies are needed to accurately evaluate and predict the in-situ gas content of shales,
especially shales at deep depth.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The progress of horizontal drilling technology, multistage hy-
draulic fracturing and other engineering techniques has brought
about the successful American shale gas revolution, which has
gradually put America on the road to energy independence. This
has encouraged extensive attention into unconventional resource
exploration worldwide (Soeder and Borglum, 2019; Han et al.,
2021a; Wang et al., 2022). From the exploration and development
achievements of the United States, shale gas has become one of the
.

y Elsevier B.V. on behalf of KeAi Co
realistic replacement resources for conventional petroleum re-
sources. In 2021, shale gas production in the United States exceeded
7.638 � 1011 m3 (Novi Labs, 2022; Zou et al., 2022a); By 2050, it is
expected that more than 92% of dry natural gas production in the
United States will come from tight and shale gas resources, which
can reach 1.11 � 1012 m3 (U.S. Energy Information Administration,
2022). Inspired by the success of shale gas exploitation in the
United States, Canada, Argentina, and China have successively
realized the commercial exploration and development of shale gas
resources (Fig. 1) (Zou et al., 2021). Systematic research and in-
dustrial exploration of shale gas in China started relatively late (Zou
et al., 2010), but considerable shale gas resources have been found
in many petroliferous basins, with about 4.3 � 105 km2 favorable
for exploration (Gao et al., 2021). In particular, exploration break-
throughs in shallow-middle shale gas reservoirs have been
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Fig. 1. Annual production trend of shale gas mining countries (the production data of the United States, China, Canada and Argentina are from Gao et al., 2021; Canada Energy
Regulator, 2022; Novi Labs, 2022; Secretaría de energía, 2022; Zou et al., 2021, 2022a).
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achieved in the Sichuan Basin and its periphery, and the daily shale
gas production can reach 3 � 107 m3 (Ma et al., 2021b). Deep ma-
rine shale reservoirs, marine-terrestrial transitional and continen-
tal shale systems also have notable exploration and development
potential in China where the recoverable resources of continental
shale gas are 3.85 � 1012 m3 (Sun et al., 2021a). The shale gas
resource in marine-terrestrial transitional shale systems could
reach 1.98 � 1013 m3 (Yin et al., 2021). Exploration for deep marine
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shale gas reservoirs (3500e4500 m) is concentrated in and around
the Sichuan Basin (Ma et al., 2021b), and the recoverable reserves
are expected to reach 9 � 1011 m3 (Zou et al., 2021). These new
exploration targets have become new expansion fields for shale gas
(Zou et al., 2021).

Shale gas is extracted directly from organic-rich shale, which
distinguishes it from conventional natural gas (Zou et al., 2010). In
recent years, research on shale gas has become a hot topic in
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petroleum geology, and an increasing number of studies on shales
has been performed in which Chinese researchers have made an
important contribution (Fig. 2). Especially the gas storage mecha-
nism of organic-rich shale (Chalmers and Bustin, 2010; Hao et al.,
2013; Sheng et al., 2014; Wang et al., 2016b; Zhou et al., 2017a,
2017b; Li et al., 2018a; Ju et al., 2019; Tang et al., 2019a; Dang et al.,
2020; Klewiah et al., 2020; Zhu et al., 2020; Hu et al., 2021b; Mu
et al., 2022), the nanosized pore structure characteristics (Loucks
et al., 2012; Rine et al., 2013; Tian et al., 2013; Zolfaghari et al.,
2017; Ji et al., 2019; Borjigin et al., 2021), factors influencing gas
content in shale (Ross and Bustin, 2008; Bustin et al., 2009; Hao
et al., 2013; Xiao et al., 2015; Ma et al., 2018; Yi et al., 2019; Fan
et al., 2020; He et al., 2020; Jiang et al., 2020; Sun et al., 2021b),
and evaluation of in-situ gas-bearing characteristics (Ambrose et al.,
2012; Gasparik et al., 2012; Cerri et al., 2015; Pan et al., 2016; Su
et al., 2017; Dang et al., 2018; Chen et al., 2019a, 2020b; Yao et al.,
2019; Zhou et al., 2022b; Miao et al., 2022) have been the foci of
research. This paper summarizes these theoretical understanding
and technological developments, focusing not only on the relevant
progress, but also suggesting directions for further research, in
order to provide a deeper understanding of shale gas geological
theory for the benefit of further exploration and development.
2. Retention mechanism of gas in shale

2.1. Occurrence state of shale gas

Clay minerals, brittle minerals, and organic matter (OM) in
organic-rich shale contain a variety of nano- and micron-sized
storage spaces: Organic pores, inorganic pores (intergranular
pores and intragranular pores), mixed pores of OM and inorganic
matter, and microfractures (Loucks et al., 2012; Ji et al., 2019;
Borjigin et al., 2021). However, the shale gas reservoir is dominated
by the nanosized pore system, ranging from a few to hundreds of
nanometers (Zou et al., 2012; Tian et al., 2013), furthermore, mi-
cropores (< 2 nm) and mesopores (2e50 nm) are the most devel-
oped in shale (Kuila and Prasad, 2013; Wang et al., 2014). OM pores
are an important shale gas occurrence space, the shapes of pores
being various (from circular to angular) (Borjigin et al., 2021), and
the size is relatively small. For example, the statistical results of
pore size distribution by Rine et al. (2013) show that most organic
pores are less than 100 nm; Bai et al. (2013) observed through SEM
images that the majority of pores in OM were submicron-sized
(5e100 nm); Chen et al. (2013) studied the visualization of micro-
scale pores in kerogens and suggested that the nano-sized pores
with pore size less than 100 nm could reach 92.7% of the total
Fig. 2. Statistical histogram of the literature on shale gas research. The data of Chinese
articles (blue column) come from China National Knowledge Infrastructure (CNKI), the
data of English articles come from ScienceDirect, the red column represents total data,
and the green column represents researchers from Chinese research institutions. The
search methods are all through title, abstract and keywords.
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number of pores; according to the analysis of Kang et al. (2011), OM
pore space is mainly composed of micropores and mesopores, with
an average size below 4e5 nm; Zolfaghari et al. (2017) suggested
that organic pores (with an average pore size of ~3 nm) were
smaller than inorganic pores (~10 nm).

There has been a relatively unified understanding of the
occurrence states of shale gas: it is stored in large pores and/or
microfractures in the free state (Jarvie et al., 2007; Bustin et al.,
2009; Zhu et al., 2021b), adsorbed on the surface of OM and inor-
ganic minerals in the sorption state, and dissolved in kerogen, pore
water, and retained oil (Loucks et al., 2009; Ross and Bustin, 2009;
Hao et al., 2013; Li et al., 2018b; Guo et al., 2020a). Given the low
solubility of methane (CH4) in water (Wang et al., 2011; Zhou et al.,
2022a), and the retained oil in shale is basically cracked in high-
mature to over-mature stages, gas in commercially developed
shale gas reservoirs mainly exists in the free and sorption states
(Curtis, 2002; Ross and Bustin, 2008; Wang et al., 2011). However,
the ratio of adsorbed to free gas varies greatly in different shale gas
plays (Fig. 3), being not only related to gas content of the shale, but
is also controlled by various geological and geochemical factors
(Wang et., 2011; Hao et al., 2013; Zhang et al., 2019).

2.2. Adsorption mechanism of CH4

The adsorption on shale, capillary sealing and low-speed diffu-
sion of shale gas from micro retention are the enrichment mech-
anisms of shale gas (Borjigin et al., 2017). Among them, adsorption
is the most essential mechanism of shale gas retention (Rani et al.,
2019), which makes it different from tight gas. Nano- and micron-
sized pores in shale provide large internal surface area and confined
space, which facilitates gas binding to the pore surface (Klewiah
et al., 2020), so CH4 tends to accumulate near the pore wall (Ju
et al., 2019). Chen et al. (2017) believes that there is a strong
interaction force between CH4 molecules and OM pores because as
the distance between CH4 molecules and the pore walls is less than
2 nm, CH4 molecules are in an adsorption state under the influence
of the interaction force, which can be attributed to the fact that the
heat of adsorption on small pores is higher than that on large pores
(Yang et al., 2018). Compared with mesopores and macropores,
micropores can provide larger surface area and adsorption poten-
tial, thus having stronger CH4 adsorption capacity. The study of Li
et al. (2019a) shows that the proportion of adsorbed gas in pores
less than 1 nm can reach 90%.

The adsorption process of shale gas is accompanied by change of
entropy and enthalpy of the adsorption system, an exothermic
process. Based on the excessively negative adsorption entropy
values observed for Woodford kerogen (Zhang et al., 2012), it is
considered that there may be a small amount of chemical interac-
tion or chemical adsorption between CH4 and kerogen in these
samples. However, it is generally believed that the main adsorption
process of CH4 on shale is physical adsorption, with no obvious
chemical interaction with the solid surface (Xia and Tang, 2012),
and is controlled by the physical bond (van der Waals force) be-
tween gas and solid molecules (Chen et al., 2019c; Jiang et al.,
2021a), the gas-solid interface having low adsorption energy
(8e41 kJ/mol gas) (Ho et al., 2014). In order to clarify the mecha-
nism and adsorption process of CH4 in shale, the thermodynamic
parameters of CH4 adsorption are usually used. The physical (van
der Waals force) bonding properties of CH4 and solid molecules
lead to a negative correlation between isosteric heat of adsorption
and adsorption entropy, with an increase of adsorbate-adsorbent
binding energy (corresponding to DH), which leads to the weak-
ening of the fluidity of the adsorbed phase, and thus a more
negative standard adsorption entropy is obtained (Gasparik et al.,
2014; Li et al., 2018a). This negative correlation is prevalent in



Fig. 3. Shale gas content and proportion of adsorbed gas of typical shale gas reservoirs in China and the United States (data from Curtis, 2002; Jarvie, 2012; Ma et al., 2015; Guo et al.,
2019b; Zhang et al., 2019; Li et al., 2020d; Zhai et al., 2020; Shao et al., 2021; Sun et al., 2021b; Zhang et al., 2021). M, T and C represent marine shale, marine-continental transitional
shale and continental shale, respectively. The solid line shows the shale gas content, m3/t; the dotted line shows the proportion of adsorbed gas, %.
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clay minerals, kerogen and shales (Li et al., 2018a; Chen et al.,
2019c). The relevant data reported at present are summarized in
Fig. 4 (Ji et al., 2012, 2015; Zhang et al., 2012; Gasparik et al., 2014;
Rexer et al., 2014; Yang et al., 2015; Tian et al., 2016, 2017; Zou et al.,
2017; Li et al., 2018a; Shabani et al., 2018; Chen et al., 2019c; Hu and
Mischo, 2020; Qiao et al., 2020; Hu et al., 2021b; Huang et al.,
2022a). Therefore, the adsorption intensity can be measured by
the adsorption heat, and a higher adsorption heat indicates stron-
ger adsorption. Some researchers have pointed out that the
adsorption heat of CH4 on kerogen is greater than that of clay
minerals (Ji et al., 2012), although some studies have pointed out
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that the adsorption heat of some isolated kerogen (8.46e21.90 kJ/
mol) in shale is slightly lower than that of clay minerals
(9.60e16.60 kJ/mol) (Li et al., 2018a). The dissolution of CH4 in OM,
the small pore size and the hydrophobicity of OM may make
organic pores have a stronger gas adsorption capacity than inor-
ganic mineral pores (Ross and Bustin, 2009; Qi et al., 2017; Lawal
et al., 2020). In addition, Yang et al. (2018) noted that the adsorp-
tion performance of shale shows a parabolic-like trend of
decreasing first and then increasing with the evolution of thermal
maturity, which is closely related to the evolution of pores, espe-
cially micropores.
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The critical temperature and pressure of CH4 are 190.4 K and
4.69 MPa, respectively. Shale gas (including adsorbed gas and free
gas) under geological conditions mostly exists as supercritical fluid
(Tang et al., 2019a; Hu et al., 2021b). The adsorption of supercritical
CH4 on organic-rich shale is thermodynamically spontaneous, and
the degree of disorder of CH4 gas at the gas/solid interface de-
creases during the adsorption process. Its physical properties are
very different from subcritical CH4. The adsorption of CH4 shale
under supercritical conditions follows the Gibbs excess adsorption
behavior (Dang et al., 2020). There are many opinions about the
supercritical adsorption behavior of shale gas. Bi et al. (2017)
believed that under actual geological conditions, the adsorption
of shale gas is multi-layer adsorption under the action of inter-
molecular forces. Other researchers have reported that gas can only
adsorb at a single molecular layer under supercritical conditions
(Borjigin et al., 2017; Hu et al., 2021a). Because multi-layer
adsorption can only occur in the case of condensation or liquefac-
tion of adsorbent, multi-layer adsorption does not occur in super-
critical adsorption (Zhou et al., 2017a, 2017b). Sheng et al. (2014)
pointed out that supercritical CH4 is adsorbed in ultra-micropores
of kerogen in the form of micropore filling in the low-pressure
stage, and exists on the surface of kerogen mesopores and clay
mineral macropores in the form of monolayer molecular adsorp-
tion in the high-pressure stage. Zhou et al. (2017b) believed that the
supercritical adsorption mechanism of shale gas should be either
monolayer adsorption or pore filling. Mu et al. (2022) analyzed the
competition between monolayer adsorption and microporous
filling using the composite model, and indicated that increase of
pressure makes monolayer adsorption and microporous filling
appear in turn. Obviously, the subject requires to be further
explored.
2.3. Adsorption mechanism of CH4 under water-containing
conditions

There is a certain amount of water in the pores of a shale
reservoir. Unlike non-polar CH4 molecules, water molecules attach
more strongly to polar materials (Xia and Tang, 2012). Compared
with CH4, the existence of polar groups and exchangeable cations
means that clay minerals have greater van der Waals and electro-
static forces on water molecules (Li et al., 2019e). When the
coverage of water molecules is less than that of single layer, there is
Fig. 4. A possible linear relationship between the standard entropy (DS0) and isosteric
heat (Qst) of CH4. Circles, squares, and triangles represent shale, clay minerals and
kerogen, respectively.
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fierce competition betweenwater and CH4 for adsorption positions
on the clay surface (Li et al., 2016a). Water molecules can occupy
the adsorption sites provided by clay minerals for CH4 molecules,
resulting in the reduction of adsorption capacity for CH4 (Zhang and
Fu, 2018), which is manifested by coexistence of adsorbed gas, free
gas and water (Zhao et al., 2018) (Fig. 5a). Furthermore, the water
film formed on the pore surface changes the interaction between
CH4 and the pore surface, forming gas-solid interactions, mixed
adsorption of gas-liquid-solid interactions, and solid-liquid-gas
interface interactions. Since the interaction intensity of gas-liquid
is much lower than the force of gas-solid, it would also reduce
the adsorption capacity of shale to CH4 (Li et al., 2016a; Hu et al.,
2018c) (Fig. 5b). With the increase of moisture content, the acces-
sible pores are decomposed into many invalid pores by water
molecules. Water reduces the CH4 adsorption surface area through
multi-layer adsorption, and the high gas-water capillary at the pore
and throat prevents CH4 from entering the pores (Gong et al., 2020;
Han et al., 2021b), mainly showing the adsorption characteristics of
solid-liquid interface (Fig. 5c). However, Gao and Xiong (2021)
suggested that the hydrophilic difference between clay minerals
and OM seems to have a protective effect on OM with adsorption
capacity. Some authors believe that water has no effect on CH4
adsorption of kerogen, for example, Li et al. (2016b) found that due
to the existence of hydrophobic repulsion, water would not
condense in organic pores, and thus its water saturation can be
ignored. In fact, the recognition of water on the surface of kerogen
mainly depends on the composition of its heteroatoms (N, S and O),
although the water adsorption capacity of kerogen will decrease
with increase of maturity (Lawal et al., 2020). Chalmers and Bustin
(2010) suggested that the influence of moisture on CH4 adsorption
capacity may be controlled by hydrophobic and hydrophilic
adsorption sites in pores (Fig. 5d). The existence of different
oxygen-containing functional groups (the order of increasing hy-
drophilicity is carboxyl group > phenolic hydroxyl group > alcohol
hydroxyl group > carbonyl group > ether bond), especially the
eCOOH and eOH functional groups still existing in over-mature
shale, can adsorb water through hydrogen bonding (Dang et al.,
2021). If the content of functional groups in OM is high and/or
the water content is high, water molecules may “cluster” or even
“condense” in the pores of OM (Liu et al., 2017a; Fan et al., 2018),
resulting in the reduction of its adsorption capacity for CH4.

Organo-clay composites exist widely in shale systems. In gen-
eral, clay minerals have the ability to adsorb OM and catalyze hy-
drocarbon generation, and the OM distributed between clay layers
plays a supporting role on protecting primary pores. The pores in
organo-clay composites under the protection of rigid mineral
skeleton are better developed (Chang et al., 2021). Zhu et al. (2020)
believed that clay-organic nanocomposites compared with discrete
OM and clay minerals contain more active adsorbent sites for gas.
The outer surfaces of organo-clay composites or the inner surfaces
of interparticle nanopores can provide sufficient retention space.
Moreover, decrease of CH4 adsorption capacity occurs under higher
water content conditions compared with clay minerals free of OM
(Gao and Xiong, 2021). In addition, Hu et al. (2021b) found that the
organic-inorganic pore surface (trimethylsilane) is hydrophobic,
which is more conducive to the adsorption of CH4 molecules than
the isolated organic pore surface.

It can be seen that the adsorption of shale gas could have gas-
solid two-phase and gas-liquid-solid three-phase interactions un-
der actual geological conditions. The competitive adsorption of
H2OeCH4 is influenced by the water content, mineral composition
(especially clay mineral content), OM content, pore abundance and
pore structure in shale.
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2.4. Competitive adsorption of CH4 and non-hydrocarbon gases

Shale gas contains not only CH4, but also more or less non-
hydrocarbon gases such as carbon dioxide (CO2) and nitrogen
(N2). The existence of these gases will affect the adsorption of CH4.
CO2 has the functions of a screen, replacing CH4, etc. (Wang et al.,
2016b). Isothermal adsorption experiments of CO2 and CH4 on
shale and/or coal samples show that CO2 always has a higher
adsorption capacity than CH4 (Fig. 6a) (Weniger et al., 2010;
Chareonsuppanimit et al., 2012; Heller and Zoback, 2014; Duan
et al., 2016; Hwang et al., 2019), which can be attributed to: (1)
the smaller size of CO2 molecules and the better storage capacity in
micropores (Kang et al., 2011), (2) the higher ionization potential
and polarizability of CO2 molecules (Wang et al., 2016b), (3) the CO2
molecule has a strong permanent quadrupole moment and stron-
ger adsorption capacity/affinity (Ortiz Cancino et al., 2017; Takbiri-
Borujeni et al., 2017). For example, Huang et al. (2018) noted that
the average isosteric heat of CO2 adsorption (26.1e28.7 kJ/mol) is
greater than that of CH4 adsorption (18.5e20.7 kJ/mol). The ther-
modynamic analysis of shale by Lu et al. (2021) shows that the
adsorption surface energy, free energy and adsorption heat of CO2
Fig. 5. Schematic diagram of shale gas occurrence under water bearing conditions. (a) Chang
from Fan et al., 2018); (b) gas-water distribution and interfacial adsorption characteristics
between dry and water-bearing pores (modified from Li et al., 2021b); (d) difference in g
(modified from Chalmers and Bustin, 2010, AAPG©[2010], reprinted by permission of the A
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are higher than those of CH4. The selectivity of shale to binary
mixed gases (CH4 þ CO2) depends on shale composition and/or
pore structure (Sun et al., 2021c). Duan et al. (2016) suggested that
shale with a high clay mineral content and developed microporous
structure may have stronger CO2 selective adsorption. �Rimn�a�cov�a
et al. (2020) pointed out that the adsorption of CO2 preferentially
depends on the porous structure, but has little to do with the
content of OM and clay minerals in shale system.

In contrast, the kinetic diameters of CH4 and N2 molecules are
relatively large and cannot diffuse in ultra-micropores (< 0.6 nm)
(Wang and Tian, 2018). Zhang et al. (2020a) found that CH4 has a
higher adsorption heat than N2 through activated carbon adsorp-
tion experiments, which is attributed to the relatively high polar-
izability of CH4 and the greater van der Waals force between CH4
and the adsorbent surface. More notably, N2 with low affinity can
promote the desorption of CH4 by reducing the partial pressure of
CH4 (Li and Elsworth, 2019).

The total adsorption capacity of shale for a binary mixed gas
(CH4 þ CO2 or CH4 þ N2) is between the adsorption capacity of its
two constituent pure gases, and the increase in proportion of gas
component with stronger adsorption capacity is beneficial to the
es of CH4 and water adsorption in shale pores with increasing water content (modified
in different pores (modified from Li et al., 2020c); (c) differences in CH4 adsorption

as-water adsorption characteristics caused by difference in adsorption site properties
APG whose permission is required for further use).
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increase in the total adsorption capacity (Du et al., 2020; Zhang
et al., 2020a) (Fig. 6b). Current research shows that the adsorp-
tion capacity of CO2, CH4 and N2 in shale is CO2 > CH4 > N2 (Fig. 6a)
(Chareonsuppanimit et al., 2012). Therefore, the presence of CO2
and N2 will not only affect the total gas adsorption capacity in shale,
but also reduce the adsorption capacity of CH4.

3. Controlling factors of gas retention and storage in shale

The gas bearing properties (quantity, composition and occur-
rence state) of shale are influenced by various factors. Previous
workers have done much research on related issues. We can sys-
tematically analyze the influencing factors and restrictive mecha-
nisms of shale gas content from the points of view of geological
properties of shale (such as TOC, mineral composition, pore type),
moisture content, gas occurrence under geological temperature-
pressure conditions, and preservation conditions.

3.1. Influence of shale geological properties on gas bearing
properties

3.1.1. OM abundance and type
OM abundance (generally expressed by TOC) is one of the most

important parameters in shale oil and gas exploration, and its in-
fluence on shale gas is mainly reflected in two aspects: (1) the
amount of natural gas generated; (2) it provides a material basis for
the generation of organic pores. For shales from different sedi-
mentary environments, the influencing factors and effects of OM
abundance are different.

In general, a high OM abundance reflects a great base material
and is favorable for hydrocarbon generation. With increasing
thermal maturation, OM pores are formed while hydrocarbons are
generated. Katz and Arango (2018) proposed that TOC content ex-
erts apparent control over the formation of organic pores. At pre-
sent, the world’s major shale gas producing formations have been
deposited in a marine environment, such as the Middle Devonian
Marcellus Shale widely distributed in North America, and the Up-
per Ordovician Wufeng-Lower Silurian Longmaxi shales in China,
which are in a high mature to over-mature stage, and in them
considerable organic-matter-hosted pores can be observed by SEM
(Wei et al., 2019a; Song and Carr, 2020). OM pores may make a
major contribution to gas content in some shale samples. For
example, Chen et al. (2019b) conducted a quantitative study on the
contribution rate of porosity in the Longmaxi shale, observing OM
Fig. 6. (a) Comparison of adsorption of CO2, N2 and CH4 by shale (Chareonsuppanimit et al.,
of CO2 and CH4 (Duan et al., 2016, reprinted (adapted) with permission from {Duan, S., Gu,
Sichuan Basin shale. Energy & Fuels. 30 (3), 2248e2256}. Copyright {2016} American Chem
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pores contributed nearly half of the porosity in samples with TOC >
4%. With the extensive development of nano pores in OM, there-
fore, the TOC content is usually positively correlated with pore
structure parameters (Fig. 7a and b). Although this correlation may
decrease or even reverse under low maturity conditions, the
dissolution of residual asphaltene compensates for the decrease in
CH4 adsorption capacity (Ma et al., 2021c). Therefore, the shale gas
content is predominately controlled by higher OM abundance, and
TOC often exhibits a growing trend with increase of adsorbed gas
and total gas contents (Fig. 7c and d). Compared with marine-
continental transitional shale and continental shale, marine shale
has a better relationship between TOC content and gas content
(Fig. 7d), and the correlation line has a larger slope, which can be
attributed to its more developed nano-pores and better positive
correlation between pore volume (PV), specific surface area (SSA)
and TOC content (Fig. 7a and b).

The influence of shale OM abundance in different sedimentary
environments on gas content is various (Fig. 7), which may be
attributed to the different kerogen types formed inmarine, marine-
continental transitional, and lacustrine environments. The degree
of development of organic-matter-hosted pores is in the order type
I> type II > type III of shales with similar thermal maturity (Zhang
et al., 2017a; Zeng et al., 2019; Cao et al., 2021). Marine sedimentary
environment species are mainly algae, which often form sapropelic
kerogen. Humic OM components transformed from higher plants
are very common in marine-terrestrial transitional shale due to the
influence of marine and river geologic agents (Dong et al., 2021),
and type III dominates the kerogen type in marine-terrestrial
transitional shale. The organic-rich lacustrine shales deposited in
more distal settings within lake systems or in special sedimentary
environments (salt lakes, volcanic activities, seawater intrusions,
etc.) are more hydrogen-rich, but these shales as a whole have a
higher input of terrestrial OM (Katz and Lin, 2014; Zou et al., 2019).
At a certain level of maturity, the type of original OM input has a
determining control on the pore difference of shales deposited in
different sedimentary facies (Gou et al., 2021a; Qiu et al., 2021).
Moreover, marine shale has more developed OM pores than that of
transitional shale and continental shale (Fig. 8aef).

Nano pores of various types of macerals/OM in shale develop
differently (Loucks et al., 2012; Ko et al., 2018; Luo et al., 2020;
Chang et al., 2021). Solid bitumen and/or hydrogen-rich kerogen
are the major development sites of organic pores (Curtis et al.,
2012; Borjigin et al., 2021; Luo et al., 2021). Sapropelic matter
(generally type I kerogen) widely developed in marine shale
2012); (b) comparison of adsorption on shale of mixed gases with different proportions
M., Du, X.D. et al., 2016. Adsorption equilibrium of CO2 and CH4 and their mixture on
ical Society).



Fig. 7. Relationship between TOC and (a) PV, (b) SSA (data from Zhang et al., 2018; Guo et al., 2019c; Li et al., 2020b; Chang et al., 2021; Jiang et al., 2021b); (c) CH4 adsorption
capacity (modified from Tang et al., 2021); (d) total gas content (data from Ma et al., 2015; Zhang, 2016; Fan et al., 2020; Li et al., 2020b; Shu et al., 2020; Sun et al., 2020; Zhou et al.,
2020; Ma et al., 2021a; Li et al., 2022b) of organic-rich shale. Circles, squares, and triangles represent marine shale, marine-continental transitional shale, and continental shale,
respectively.
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exhibits a high pore-generation ability (Chen et al., 2015), forming a
large number of nano pores on the surface under sufficient gas-
expansion-force during hydrocarbon generation (e.g.
hydrocarbon-bubble pores, Yang et al., 2016a) (Fig. 8a and d), and
migrated OM, widely distributed in shale, may also have a well-
developed pore system (Ko et al., 2017; Wei et al., 2020a; Zhang
et al., 2020b). In general, the organic devolatilization pores are
not well-developed in humic OM dominated by vitrinite and chi-
tinite during thermal evolution due to its macromolecule cross-
linked structure (Yang et al., 2019). On the contrary, they mainly
form microcracks or shrinkage cracks (Fig. 8b and e, i.e. hydrocar-
bon shrinkage cracks, Yang et al., 2016a). Ardakani et al. (2018)
observed with scanning electron microscopy that OM similar to
type III kerogen has no obvious pores in its structure with
increasing thermal maturity. This is related to the low hydrocarbon
generation capacity, underdeveloped migrated OM and poor
development of OM pores in shales containing this type of kerogen
(Ardakani et al., 2018; Gou et al., 2021a). Continental/marine-
continental transitional shale with type II and/or type III kerogen
is often dominated by inorganic storage space, and OM pores make
little contribution to the total porosity (Gao et al., 2018; Kuang et al.,
2020; Xiao et al., 2021). Furthermore, the pore growth in their OM
is different inmarine, transitional and continental shales, leading to
a certain difference in their CH4 adsorption capacity (Fig. 8g).

3.1.2. Thermal maturity
Maturity not only controls the gas generation, but also changes

the reservoir physical properties of shale, thus affecting the gas
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content. It is generally believed that the process of CH4 generation
from OM in shale ends at approximately vitrinite reflectance
Ro ¼ 3.0% (Chen et al., 2007). With the further increase of maturity,
the onset of hydrocarbon destruction occurs (Burnaman and
Shelton, 2009) and large amounts of non-hydrocarbon gases may
be produced (Krooss et al., 1995; Gai et al., 2020). Obviously, the
production of these non-hydrocarbon gases will affect the accu-
mulation of CH4 in shale. In order to describe the gas generation
characteristics in shales more accurately, Gai et al. (2020) applied
anhydrous pyrolysis experiments and found that the total N2 yields
began to increase rapidly and CH4 began to crack when tempera-
ture reached 650 �C (equivalent vitrinite reflectance
(EqVRo) ¼ 3.4%).

As for the influence of maturity on shale porosity, the general
understanding is that when shale maturity enters the wet gas
generation stage, the porosity evolution in shale increases first and
then decreases (Fig. 9a). There are two main mechanisms that
comprehensively control the changes of shale pores: (1) OM pore
formation and evolution; (2) inorganic mineral pore formation and
destruction. With further increase of maturity, OM generates hy-
drocarbons and begins to form organic pores, accompanied by
dissolution (feldspar and carbonate minerals), and clay mineral
recrystallization (such as montmorillonite transformation into
illite, etc., Loucks et al., 2012; Kuang et al., 2020), effects that are
stronger than the damage to porosity caused by compaction, so
overall, porosity gradually increases with the degree of thermal
evolution. When the shale enters the highly over-mature stage,
carbonization of OM will lead to changes in the OM pore structure



Fig. 8. Comparison of pore development characteristics and adsorption capacity of OM in different types of shale (a-f from Yang et al., 2016a and Gou et al., 2021a, reprinted
(adapted) with permission from {Gou, Q.Y., Xu, S., Hao, F. et al., 2021a. Differences in the nanopore structure of organic-rich shales with distinct sedimentary environments and
mineral compositions. Energy & Fuels. 35 (20), 16562e16577}. Copyright {2021} American Chemical Society; data in (g) from Li et al., 2016c; Dang et al., 2017; Guo et al., 2017b;
Chen et al., 2018; Hu et al., 2018a; Zhang and Fu, 2018; Feng et al., 2019; He et al., 2019; Shi et al., 2019; Yang et al., 2019; Li et al., 2020d; Ma et al., 2020b; Li et al., 2022a). All shale
samples were dry, the adsorption experiment temperature was 30 �C, and TOC standardization was performed on the data to eliminate the influence of OM abundance.
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(Yang et al., 2016b), the increasing compaction will lead to pore
collapse and matrix contraction, which will further destroy the
nano-pores (Wei et al., 2019a), and the decrease of both OM-hosted
pores and porosity could result from the combined effects of these
two mechanisms (Borjigin et al., 2021).

At present, there are still different views on the inflection in the
relationship between thermal maturity and porosity. Xiao et al.
(2015), based on thermal simulation experiments, combined with
geological sample data, proposed that the porosity of marine shale
in China would decrease significantly with the further increase of
maturity with Ro about 3.5%. Chen et al. (2019b) made compre-
hensive statistical analysis on multiple sets of porosity and matu-
rity values for marine and continental shales and suggested that
porosity reversal would occur when EqVRowas 2.5%e3.0% (Fig. 9a).
Wang et al. (2018) studied the marine Longmaxi and Qiongzhusi
shales in the Sichuan Basin (China) and found that OM carboniza-
tion generally occurs when Ro exceeds 3.5%, when organic pores
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and clay mineral intergranular pores were substantially reduced or
had even disappeared (Fig. 9b). Similar to porosity evolution, pore
structure parameters of shale (such as the PV and SSA) are also
significantly related to thermal maturity. Chen and Xiao (2014),
based on thermal simulation analysis, proposed that with
increasing maturity, the micropore PV and SSA in OM-rich shale
gradually increase at Ro values below 3.5% and then subsequently
decrease.

It should be noted that PV in shale decreases with increase of
maturity in the main oil generation stage (Fig. 9c), which may be
related to infilling by the generated and retained oil in pores, and
kerogen swelling behavior (Mastalerz et al., 2013; Han et al., 2017;
Guo et al., 2017a). However, with increase of thermal maturity, the
liquid oil and kerogen are further cracked into gaseous hydrocar-
bons, the asphaltene is ex-solvated, and the large number of OM
pores lead to increasing PV and SSA (Loucks et al., 2012; Chen and
Xiao, 2014; Guo et al., 2017a). In this process, the influence of



Fig. 9. (a) Relationship between shale porosity and maturity (modified from Chen et al., 2019b; data from Tian et al., 2013; Pan et al., 2015; Yang et al., 2016b; Jiang et al., 2017;
Zhang et al., 2017b; Chen et al., 2019b; Liu et al., 2019b); (b) average porosity-Ro correlation in marine organic-rich shales (modified from Wang et al., 2018; data from Jacobi et al.,
2009; Wang et al., 2016c; Wang et al., 2018); (c) schematic diagram showing different types of PV change with maturation in shale (modified from Mastalerz et al., 2013, AAPG©
[2013], reprinted by permission of the AAPG whose permission is required for further use); (d) the effect of maturity on shale adsorption capacity (modified from Li et al., 2018a;
data from Zhang et al., 2012; Gasparik et al., 2014; Rexer et al., 2014; Hu et al., 2015; Yang et al., 2015; Zou et al., 2017; Li et al., 2018a; Shabani et al., 2018).
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hydrocarbon expulsion efficiency cannot be ignored, because as it
increases, the gas yield will be significantly reduced (Tan et al.,
2021), leading to the weakening of OM pore development
(Borjigin et al., 2021).

Corresponding to the evolution of porosity and pore structure,
maturity has an important impact on the adsorption capacity of
shale. After reaching the high over-mature stage, PV and SSA show
a decreasing trend, the degree of aromatic polymerization of
organic compounds increases and standard enthalpy of sorption
has a moderately high value, so its CH4 adsorption capacity is still
higher than that of middle-low maturity shale, as shown in Fig. 9d
(Yang et al., 2018; Alafnan et al., 2020; Klewiah et al., 2020).
Nonetheless, CH4 adsorption capacity decreases to a certain extent
with higher maturity (for example, EqVRo z 4.0%, Li et al., 2017).

3.1.3. Mineral type and content
Shales are mainly comprised felsic, clay and carbonate minerals.

These inorganic components affect shale gas content through their
different contributions to pores. Although quartz and carbonate
minerals themselves may develop some pores, such as intra-
granular pores of biogenic quartz and dissolution pores of car-
bonate minerals, they are mainly skeleton minerals, forming the
intergranular pores, which have become essential gas storage
spaces (mainly free gas), especially providing protection for the
pores of OM and clay minerals. Studies have shown that brittle
minerals can support and protect the pores at the edge of brittle
mineral particles (Chen et al., 2021c). The existence of rigid matrix
skeleton minerals reduces the effective stress on organic particles
and is conducive to protection of the OM pores from collapse
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(Knapp et al., 2020). However, carbonate minerals appear to be less
effective than microcrystalline quartz in maintaining porosity,
which can be attributed to its numerous sources and relative
chemical instability during diagenesis (Knapp et al., 2020), Guo
et al. (2019a) studied the Longmaxi Formation shale in the
Weiyuan area, Sichuan Basin (China), and showed that shale
porosity decreased significantly when the carbonate mineral con-
tent was greater than 10%. In addition, quartz of different origins
may have different effects on the pore evolution of shale. Although
terrigenous quartz can also play a supporting role for pores, it may
not be very conducive to the improvement of shale gas reservoir
performance due to its potential dilution of OM (Sageman et al.,
2003), and occurrences (such as quartz floating in clay skeleton,
Xu et al., 2020c). In contrast to the insignificant contribution or
even destructive effect of quartz overgrowth and clay matrix-
dispersed micro-quartz on shale pores, biogenic quartz plays a
constructive role in the development of microscale pores (Xu et al.,
2021a). Biogenic quartz can form a continuous rigid siliceous ma-
trix framework characterized by point-to-line contact (Xu et al.,
2020c; Li et al., 2021d), which is conducive to hydrocarbon reten-
tion (Milliken et al., 2021), forming organic pores in migrated OM
(Zhao et al., 2017; Dong et al., 2020) and limiting compaction of
pores in ductile OM and clay minerals (Knapp et al., 2020), even
after the shale is deeply buried (Delle Piane et al., 2022). For
example, deep shale gas reservoirs in the Sichuan Basin (China)
have higher surface porosity of organic and inorganic pores than
shallower shale strata (Ma et al., 2021b). Therefore, biogenic quartz
content is often positively correlated with porosity and gas content
(Li et al., 2020d; Guo et al., 2021).



Fig. 10. Relationship between clay mineral content and (a) adsorption capacity (data from Li et al., 2016c; Dang et al., 2017; Chen et al., 2018; Hu et al., 2018a; Zhang and Fu, 2018;
He et al., 2019; Ma et al., 2020b) and (b) total gas content (data from Ma et al., 2015; Li et al., 2018b; Zheng et al., 2019; Deng et al., 2020; Sun et al., 2020; Li et al., 2022b) of Chinese
gas-bearing shale of different sedimentary facies.

Fig. 11. (a) Fluid distribution pattern in over-mature shale without microfractures (modified from Xu et al., 2019). (b) Water occurrence in three types of pores in clay (modified from
Li et al., 2016a). (c) Water distribution in shale pores under different water-bearing conditions (modified from Sang et al., 2019).
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Clay minerals play a leading role in the adsorption capacity of
inorganic minerals (Xiong et al., 2017; Xiao et al., 2021). The global
shale data set suggests that clay may be the main controlling factor
for CH4 adsorption in organic-lean shales with TOC < 2% (Sander
et al., 2018). But different types of clay minerals have various
adsorption capacities, according to the experimental data of Ji et al.
(2012). The gas sorption capacity for clay minerals can be ranked
as: montmorillonite [ illite/smectite mixed layer > kaolinite
> chlorite > illite. However, previous studies have found that the
maximum adsorption capacity of marine shale is often negatively
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correlated with, or is unrelated to clay content (Fig. 10) (Sander et al.,
2018; Chen et al., 2021a; Ekundayo et al., 2021). This can be attrib-
uted to the negative correlation between clay mineral content and
TOC under geological conditions, the advantage of OM in shale
adsorption capacity, and the hydrophilicity and/or porosity reduc-
tion of clay minerals (Chen et al., 2021c; Sun et al., 2021b). Sun et al.
(2020) found that the claymineral content ofmarine Longmaxi shale
in the Xishui block (Guizhou Province, China) showed a measure of
positive correlation with gas-in-place (GIP)/TOC (TOC normalization
of GIP), indicating that the pores of clay minerals have a certain
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contribution to the in-situ gas volume of marine shale.
For continental and transitional facies shales, clay mineral pores

may exert a leading control on porosity, because the nano OMpores
are not well developed (Fig. 10). For example, clay minerals-
associated pores account for nearly 70% of total porosity in the
Lower Jurassic Da'anzhai Member shale (Chen et al., 2019b). Qiao
et al. (2020) studied the marine-continental transitional shale of
the Ordos Basin (China) and showed that clay minerals control
adsorption capacity and porosity, being capable of adsorbing gas on
their surface to more than 80%. In addition, marine-continental
transitional/continental shales both have strong stratigraphic
rhythmicity, and TOC is often proportional to the content of clay
minerals (Ma et al., 2018), which magnifies the importance of clay
minerals for shale gas enrichment.

3.2. Influence of shale pore water on gas bearing property

Shale reservoirs under in-situ gas accumulation conditions are
generally water-bearing and the moisture content is usually
quantified by water saturation. The primary water saturation
ranges in the Sichuan Basin (China), southern China, Canning Basin
(Australia), and Fayetteville Shale (North America) are 25%e75%
(Xu et al., 2020a). The occurrence and distribution of water in shale
pores are influenced by its composition, the type and structure of
pores, and other factors (Zhu et al., 2021a). In the pore system of
shale, the isolated pores away from the affected area of hydrocar-
bon migration are filled with water due to the water displacement
of hydrocarbon generation (Xu et al., 2019) (Fig. 11a). Compared
with pore size, irreducible water is more closely related to surface
chemistry (Seemann et al., 2017), and the existence of clayminerals
will affect the distribution of water in shale (Zolfaghari et al., 2017;
Mu et al., 2021). Hao et al. (2019) held that water in clay pores exists
in the form of a water film or water bridge. Li et al. (2016a),
considering the condensation phenomenon, believed that the wa-
ter in the pores of shale clay occurs in two forms: capillary water in
small pores or throats, and water film in larger pores (Fig. 11b).
Chen et al. (2019e) believed that the water in micropores exists in
the form of volume-filling and surface adsorption, while the water
in mesopores and macropores is mainly adsorbed on the surface
after reaching the critical value. With the increase of water content,
monolayer adsorption occurred, then water molecules adsorbed in
multiple layers on hydrophilic pore walls, and water clusters
formed in the hydrophobic pore spaces. With further increase of
water content, most hydrophilic pores will be gradually filled with
condensed water (Sang et al., 2019; Yang et al., 2020) (Fig. 11c). In
the non-microporous range, the percentage of water decreases
with increase of pore size (Sun et al., 2021b).

Water is distributed differently in assorted pores in shale. Cheng
et al. (2018) studied the equilibrium irreducible water content in
inorganic and organic pores in overmature Lower Paleozoic
organic-rich shale samples from southern China, and found that the
former was about twice as high as the latter. Sun et al. (2021b)
conducted low-pressure N2 and CO2 adsorption experiments on
the Lower Silurian Longmaxi shale obtained from the Xishui area,
and observed that water accounts for an average of 82% and 41% of
the inorganic and organic non-micropore SSAs, and 44% and 18% of
PV of inorganic and organic micropores, respectively. Zhu et al.
(2021a) found that compared with dry samples, PV and SSA in
continental shale samples with 98% relative humiditywere reduced
by a maximum of 1/2 and 2/3, respectively. Sun et al. (2022) using
well-preserved Carboniferous marine-continental transitional
shale samples containing primary water in the Qinshui Basin found
that the average micropore PV and non-micropore SSA of water-
containing samples compared with dry samples were reduced by
50.63% and 70.21%, respectively. The water content of shale is
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generally positively correlated with the content of clay minerals,
but negatively correlated with TOC (Chen et al., 2019e; Sun et al.,
2021b). These studies also seem to confirm that organic and inor-
ganic pores have different water wettability and that organic pores
are relatively hydrophobic. However, some researchers have found
that with increase of TOC content, the equilibrium adsorbed water
volume increased significantly (Cheng et al., 2017; Li et al., 2021a).
This is because the SSA in these researchers’ shale samples is
mainly contributed by OM (Li et al., 2019d), and there are hydro-
philic points on the surface of organic pores (Wang et al., 2020b).
For example, Zhao et al. (2018) showed that kerogen is more in-
clined to adsorb H2O than CH4 through competitive adsorption
simulation (at 20 MPa and 298 K). Although the interaction be-
tween H2O and oxygen-containing functional groups is stronger,
clayminerals may contribute more towater adsorption because the
content of oxygen-containing functional groups is much lower than
that of shale clay minerals (Wang et al., 2020b).

It can be seen that water in shale affects not only free gas con-
tent but also the adsorbed gas content. The influence of water on
free gas is expressed by water saturation in the calculation and is
deducted (Ambrose et al., 2012; Ansari et al., 2019). The effects of
moisture on CH4 adsorption have been studied and explored. Three
methods are commonly adopted: comparative study on adsorption
capacity of as-received and dried shale samples (Fig. 12a and b);
CH4 high-pressure adsorption experiments for moisture-
equilibrated samples and dried samples (Fig. 12c); molecular
simulation calculations (Fig. 12d). A basic understanding is ob-
tained: an increase in the moisture content suggests a decrease in
the adsorption gas capacity (Table 1). Ross and Bustin (2007) did
not find that the adsorption capacity of moisture-equilibrated
samples decreased continuously with increase of moisture, and
suggested that this correlation was masked by the influence of OM
and thermal maturity. However, they pointed out that the presence
of water would greatly reduce the adsorption capacity of gas.
Chalmers and Bustin (2008) found that there seems to be no cor-
relation between water content and CH4 capacity based on
moisture-equilibrated samples, and attributed this to the different
adsorption sites occupied by water and CH4 molecules. Gasparik
et al. (2014) found that the sorption capacity of moisture-
equilibrated samples (at 97% relative humidity (RH)) was 40%e
60% of that of the dry samples. Shale composition makes the
reduction of CH4 adsorption capacity highly variable, mainly due to
the loss of active adsorbent sites on clay minerals, and the sorption
capacity no longer decreases with increase of water content when
the critical moisture content (the critical moisture content is
atz 50%e75% RH) is reached (Merkel et al., 2015, 2016). Yang et al.
(2017) pointed out that the three stages of the adsorption capacity,
namely initial decline, sharp decline and slow decline, are the re-
sults of the occurrence of the competitive adsorption of CH4 and
water by hydrophilic clay minerals, the blockage of pore space by
water molecular clusters and the continuous filling of macropores
by a continuous water phase with rising water content. Fan et al.
(2018) found that the relationship between CH4 adsorption ca-
pacity and water content can be divided into three stages: linear
decline, flat, and convex decline, according to the water content
threshold. The appearance of the flat stage is correlated to the fact
that the hydrophobic water level is not occupied by water
molecules.

3.3. Influence of temperature and pressure on shale gas storage

Overburden stress, as the product of depth, overburden density
and gravitational acceleration (Ferrill et al., 2014), is closely asso-
ciated with the physical properties of shale gas reservoirs, and the
porosity subjected to high stress in shale might slump (Gaus et al.,



Fig. 12. Comparison of adsorption capacity between aqueous and dry shale. (a) Comparison of isothermal adsorption experimental results between as-received containing primary
moisture, and dry marine shale samples (modified from Wang et al., 2020b, reprinted (adapted) with permission from {Wang et al., 2020b. Influences of primary moisture on
methane adsorption within Lower Silurian Longmaxi Shales in the Sichuan Basin, China. Energy & Fuels. 34 (9), 10810e10824}. Copyright {2020} American Chemical Society); (b)
Comparison of isothermal adsorption experimental results between as-received and dry marine-continental transitional shale samples (modified from He et al., 2019); (c) Com-
parison of isothermal adsorption experimental results of equilibrium-moisture shale and dry shale (modified from Whitelaw et al., 2019); (d) Molecular simulation results of the
effect of water content on CH4 adsorption in marine type II kerogen (C175H102O9N4S2) (modified from Zhao et al., 2018).
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2021). The pressure also reduces the adsorption capacity of the
adsorbent as the depth increases according to studies (Hol et al.,
2011; Gaus et al., 2021). Moreover, free gas content makes a
decreasing contribution to GIP when the effect of in-situ stress on
pore structure is taken into account (Miao et al., 2022).

The pore-fluid pressure, that is, the pressure acting on the fluid
in the formation pore space (Dutta, 2002) has the most direct
impact on shale gas accumulation. Thermal simulation experi-
ments show that increased reservoir pressure promotes the
development of micropores and fine mesopores (< 10 nm) (Liu
et al., 2017b). The content of gas in any state of storage, in gen-
eral, rises along with increasing pressure (Nie et al., 2009). The
increase of pressure can effectively reduce the binding energy
required for gas adsorption. Moreover, the increasing rate of gas
adsorption capacity decreases due to intense gas-molecular colli-
sions under high pressure, which may lead to slow gas adsorption
(Rani et al., 2018). The free gas content of shale increases with in-
crease of pore pressure (Zhou et al., 2014; Pan et al., 2016), and the
influence of pore pressure on free gas is greater than that on
adsorbed gas (Wei et al., 2019b). Therefore, high pressure is a more
positive factor in the accumulation of free gas content than
adsorbed gas (Sun et al., 2019). Furthermore, abnormal pressure
developed by oil-gas generation, the self-sealing effect, and non-
equilibrium compaction in the formation with a vast area of
developed shale (Tingay et al., 2013), is beneficial to the preserva-
tion of shale gas, for it can offset the compaction effect of partial
overlying formation pressure on pores (particularly micropores),
and postpone or even alter the decreasing trend of porosity with
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increase in burial depth (Liu et al., 2021a).
Since CH4 adsorption is an exothermic process, the tendency of

molecules to aggregate near the shale surface leads to weaker
physical adsorption at high temperatures. Under the same pressure,
the surface coverage of CH4 on shale decreases with increasing
temperature (Wang et al., 2016a). Chalmers and Bustin (2008)
pointed out that there is a negative exponential relationship be-
tween the CH4 adsorption capacity of shale and temperature, and
higher temperature favors the relative increase of free gas, which is
attributed to the temperature dependence of the Langmuir coeffi-
cient (Tan et al., 2014).

Temperature and pressure, represented by the burial depth of
shale in a comprehensive manner, in general, have an opposite
effect on the CH4 adsorption capacity of shale to some degree (Liu
et al., 2021b). Hao et al. (2013) suggested that adsorbed gas in
shale is dominated by pressure at shallow depths, that is, the
content of adsorbed gas in shale increases with burial depth. By
contrast, the content of adsorbed gas in shale is controlled by
temperature in deeper strata, which declines as burial depth in-
creases. Patterns of CH4 adsorption capacity/GIP and depth were
established by previous authors under a wide range of conditions
(Fig. 13). In general, the increase of fluid overpressure and burial
depth is beneficial for shale gas enrichment, especially free gas
(Fig. 13) (Xiao et al., 2015; Ma et al., 2020a).

3.4. Preservation conditions

The tectonic intensity of shale gas reservoirs in North America is



Table 1
Comparison of adsorption capacity for shale under moisture and dry conditions.

Research Formation Shale type Method Variation characteristics of adsorption
capacity

Reference

Northeastern British
Columbia

Lower Jurassic
Gordondale Member and
the Poker Chip Shale

Marine shale Moisture equilibrium experiment;
High-pressure CH4 adsorption
experiment

The CH4 capacity for dry shale ¼ The CH4

capacity for moisture-equilibrated
shale � (1 þ 0.30 � moisture content)

Ross and
Bustin
(2007)

Hils syncline in NW
Germany; Southern
Scandinavia; N
Germany and the
Netherlands; US

Mid-Jurassic Posidonia
Shale;
Lower Paleozoic Alum
Shale; Carboniferous
shales; Barnett, Eagle
Ford and Haynesville
shales

Marine shale Moisture equilibrium experiment;
High pressure CH4 adsorption
experiment

Compared with the dry samples, moisture-
equilibrated samples showed a 40-60% lower
adsorption capacity

Gasparik
et al.
(2014)

US Upper Jurassic Bossier
and Haynesville shales

Marine shale Moisture equilibrium experiment;
High pressure CH4 adsorption
experiment

Compared with the dry samples, the
moisture-equilibrated samples (app. 97% RH)
showed a 68% and 78% lower CH4 adsorption
capacity, respectively

Merkel
et al.
(2015)

UK Mississippian Bowland
Shale

Marine shale Moisture equilibrium experiment;
High pressure CH4 adsorption
experiment

The shales upon moisturizing the sample
showed a maximum CH4 adsorption capacity
27% lower than that of the dry sample. The
experiment conditions were then set to
100 �C and 100% RH and the maximum CH4

adsorption capacity was further reduced by
85%

Whitelaw
et al.
(2019)

East of Forth Bridge in
South Queensferry,
Scotland

West Lothian oil-shale
formation

Continental shale Moisture equilibrium experiment;
High pressure CH4 adsorption
experiment

The adsorption capacity of moisture-
equilibrated (97% RH) samples were 20%e80%
of the initial adsorption capacity of the dry
samples

Merkel
et al.
(2016)

Southern Sichuan Basin,
Southwest China

The Lower Silurian
Longmaxi Formation

Marine shale Raw shale samples containing the
primary moisture;
High pressure CH4 adsorption
experiment applied with the Ono-
Kondo lattice equation

The primary moisture (0.64%e0.82%) in the
shale samples resulted in a significant
reduction in the maximum CH4 adsorption
capacity by 12.86%e45.45%

Wang
et al.
(2020b)

The shale system with type II-D (over-mature)
kerogen

Marine shale The molecular dynamics and Monte
Carlo simulation methods

Under variable moist conditions (0.6, 1.2, 1.8,
2.4 and 3.0 wt%), the adsorption capacity of
kerogen decreased by 16%, 30%, 40%, 47% and
55%, respectively

Zhao et al.
(2018)

The shale system with type II-D (over-mature)
kerogen

Marine shale The grand canonical Monte Carlo and
molecular dynamics methods

Under the conditions with P ¼ 30 MPa and
T ¼ 298e358 K, the absolute adsorption
capacity of CH4 decreased from 1.2 mmol/g to
0.6 mmol/g as moisture content increased

Gong et al.
(2020)

Changning area in the
Sichuan Basin,
Southwest China

Upper Ordovician
Wufeng- Lower Silurian
Longmaxi Formations

Marine shale Moisture equilibrium experiment;
High pressure CH4 adsorption
experiment

At a 97% equilibrium relative humidity, the
shales showed a 44%e63% lower CH4

adsorption capacity than the dry shales

Yang et al.
(2017)

Changning-Weiyuan
area in the Sichuan
Basin, Southwest
China

The 1st member of
Longmaxi Formation

Marine shale Moisture equilibrium experiment;
High pressure CH4 adsorption
experiment

When the moisture content was 10%, 20%,
30%, and 40%, the loss of adsorbed gas content
was 23.88%, 37.31%, 41.87%, and 44.59%,
respectively

Hu et al.,
2018c

Northern Yunnan-
Guizhou Depression
in the Upper Yangtze
Platform, China

Upper Permian Longtan
Formation

Marine-continental
transitional shale

Raw shale samples containing the
primary moisture;
High pressure CH4 adsorption
experiment

The CH4 adsorption capacities of the water-
bearing shales were 40%e50% lower than that
of the dry samples

He et al.
(2019)

Qaidam Basin,
Northwest China

Carboniferous System Marine-continental
transitional shale

Reference evaporation experiment
with liquid water, simultaneous
adsorption of water vapor and CH4 and
pure CH4 adsorption onto dry shale

The CH4 adsorption capacity of shale samples
that adsorbed both water vapor and CH4 was
10%e59% lower than the pure CH4 adsorption
capacity of dry shales

Ma and Yu
(2021)

Yangquan block,
Qinshui Basin,
Northern China

Carboniferous System Marine-continental
transitional shale

Raw shale samples containing the
primary moisture;
High pressure CH4 adsorption
experiment

The maximum absolute adsorption capacity
was reduced by 33.05% on average under the
condition of water content at 30 �C

Sun et al.,
2022

Northeast Sichuan
Basin, Southwest
China

Da'anzhai member of
Lower Jurassic Ziliujing
Formation

Continental shale Moisture equilibrium experiment;
High pressure CH4 adsorption
experiment

A 20% increase in relative humidity resulted in
an approx. 10% decrease in the maximum CH4

adsorption capacity of the samples

Chen et al.
(2021b)

Sichuan Basin,
Southwest China

Qiongzhusi, Longmaxi,
Longtan, Xujiahe and
Ziliujing Formations

Marine shale,
marine-continental
transitional shale,
and continental
shale

Moisture equilibrium experiment;
High pressure CH4 adsorption
experiment

Compared with moisture-equilibrated sample
(98% RH), the adsorption capacity of dry shale
dropped to 28% of the former. In addition, the
adsorption capacity of lacustrine shales (such
as Xujiahe Formation and Ziliujing Formation)
decreased most significantly due to the
abundance of clay minerals

Tang et al.
(2021)
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Fig. 13. Geological models of gas content and CH4 adsorption capacity with depth. (a) different TOC contents (modified from Ji et al., 2015); (b) different relative humidity conditions
(modified from Chen et al., 2021b); (c) different hydrostatic pressure gradients (modified from Yang et al., 2015); (d) different ground temperature gradients, ε is the shale
adsorption potential, kJ/mol (modified from Huang et al., 2020); (e) different fluid pressure coefficients (modified from Pan et al., 2016); (f) considering in-situ stress (modified from
Miao et al., 2022).

Fig. 14. Relationship between preservation conditions and shale gas content. (a) Relationship between roof and floor thickness and gas content (modified from Jiang et al., 2020); (b)
relationship between fault distance and shale gas test production (modified from Feng et al., 2021); (c) correlation analysis between desorption gas content and fault distance
(modified from Xu et al., 2021b; Xu et al., 2021c); (d) relationship between gas content of marine shale and uplift time and amplitude in southern China (modified from Jiang et al.,
2020).
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Fig. 15. Structural patterns and gas production of typical shale gas production areas in the Sichuan Basin and its surrounding regions, China (modified from Zhai et al., 2017; Ma,
2018; Wei et al., 2020b; Xu et al., 2021b). In the figure, the black font is the area where the shale gas well is located, the blue font represents the well ID, and unmarked red text in
parentheses represents daily production, � 104 m3/d.
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relatively weak, therefore, the favorable exploration area for shale
gas is widely and continuously distributed, and the gas can be
preserved by the self-imperviousness of the shales. Comparatively,
Chinese marine shale has experienced complex tectonic activity.
There is still a significant difference in gas content despite its
similarity in composition and the presence of organic shale
compared to its North American counterpart, because preservation
conditions are often a key influencing factor.

Roof and floor conditions are the key factors in preventing
vertical migration and dispersion of shale gas. The better the
quality of the roof and floor, the better the microcosmic sealing
capacity (Hu et al., 2014), the shale gas content being positively
correlated with the microcosmic sealing capacity of the roof and
floor (Cui et al., 2020). In addition, the increase of roof and floor
thickness is conducive to improvement of the physical sealing ca-
pacity, and shale gas enrichment (Jiang et al., 2020; Tang et al.,
2020) (Fig. 14a). For example, the Wufeng-Longmaxi and Qiongz-
husi Formations of the Sichuan Basin (China) have similar source
rock conditions, but the former has a better roof-floor sealing ca-
pacity, resulting in higher gas content (> 3 m3/t in the Wufeng-
Longmaxi Formation (Zou et al., 2020). Regional thick-layer
impervious caps are also important for shale gas preservation.
Thick-layer caps are not susceptible to seepage caused by a fracture
(Fu et al., 2018), and help maintain the regional formation pressure
system. For example, the shale gas preservation conditions in the
southeastern margin of Dingshan region of the Sichuan Basin
(China), the Pengshui region outside the basin and the Wufeng-
Longmaxi Formation in the Zhaotong region, which lack a lower-
middle Triassic plaster layer cap, have been damaged, resulting in
2620
a low or undeveloped overpressure (Jin et al., 2018). The develop-
ment of small- and mid-scale fractures in shale systems with good
preservation conditions is favorable for gas concentration and the
formation of high-yielding fracture-type shale gas reservoirs (Hu
et al., 2018b). However, the formation of multi-stage, later and
large-scale fractures causes damage to shale gas reservoirs (Zeng
et al., 2016; Nie et al., 2020), enabling a shale gas escape network
to be formed by interconnected fractures, and thus a reduction in
gas content (Gou et al., 2021b).

Tectonic deformation will affect the occurrence and enrichment
of shale gas. Strong uplift and denudation, high stress and signifi-
cant deformation are often positively correlated, causing develop-
ment of fracture systems closely associated with impairment of the
preservation conditions, atmospheric water infiltration and other
effects, which are reflected in a low formation pressure coefficient
and gas content. However, moderate compression and uplift are
conducive to the development of micro fractures and bedding
fractures in shale, forming shale gas reservoirs with a high pressure
coefficient. Xu et al. (2020b) found that the PV and SSA of low-
yielding silica-rich shale in the anticlines with strong structural
deformation were 34.63% and 22.09% lower than those of high-
yielding silica-rich shale, and they proposed that structural defor-
mationwould lead to the collapse andmerging of organic pores. Hu
et al. (2018b) also observed that the more developed the fracture,
the larger the fault throw, the more complicated the superimpo-
sition relationship along the vertical direction and the shorter the
distance to the major fault lead to poorer preservation conditions
and lower the gas content (Fig. 14b and c). The preservation con-
ditions for shale gas become favorable when the shale gas system



Fig. 16. (a) Distribution of pressure coefficient and gas-bearing characteristics of the Longmaxi Formation in the southeastern Sichuan Basin-western Hunan-Hubei region, China
(modified from Fan et al., 2020); (b) relationship between shale gas production and pressure coefficient in the Sichuan Basin and its surrounding regions (modified from Zhai et al.,
2017; Guo, 2019; Chen et al., 2020a; Zou et al., 2022b).

Y. Feng, X.-M. Xiao, E.-Z. Wang et al. Petroleum Science 20 (2023) 2605e2636
lacks caps in the deep or breakthrough regions of a large fault and
the fault is impervious. For example, the average gas content in the
continental Shahezi Formation and Yingcheng Formation in the
Songliao Basin (NE China) is greater than 4 m3/t due to the favor-
able preservation conditions that prevent shale gas from escaping
in large quantities (Tang et al., 2019b).

The magnitude of tectonic uplift also influences shale gas con-
centration to a large degree because uplift may reduce reservoir
pressure, causing diffusion and loss of shale gas (Katz et al., 2021),
or brittle fracture of the shale gas reservoir and overlying cap
(Nygård et al., 2006), or re-opening of pre-existing fractures (Guo
et al., 2017c), thereby reducing the imperviousness of mud shale
and/or the capacity of the impervious layer. To ensure high gas
content in shale, it is necessary to maintain relatively low shale gas
2621
loss during uplift in sedimentary basins (Li et al., 2019c). The
greater the magnitude of uplift, the larger the thickness of eroded
strata, the more severe the damage to preservation conditions and
the lower shale gas content (Fig. 14d) (Jiang et al., 2020). The micro-
fracture development caused by lateral compression forces in the
uplift process may damage the imperviousness of the cap rocks and
cause deterioration of preservation conditions of the shale gas (Hou
et al., 2021). Studies have reported that moderate uplift (~
3350e3550 m) leads to few fractures generated and the lateral
diffusion of a small amount of gas (~ 0.95e1.72 m3/t), while
tremendous uplift (~ 5350 m) would result in massive fracture
development and considerable gas loss by lateral diffusion and
vertical dissipation (~ 3.22 m3/t) (Feng et al., 2022). Moreover, it
may further complicate the geological structure, and destroy the



Table 2
An overview of determination of lost gas content in shales.

Method Calculation formula Parameter meaning Method characteristics Reference

US Bureau of Mines
(USBM) method

VDes ¼ VL þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tDes þ tL

p
VDes is the cumulative desorption
gas volume, m3; VL is the negative
value of lost gas volume, m3; tL is
the lost time; tDes is cumulative
degassing time in minutes; a is a
constant; tEX is the exposed ground
time; tLift is the core lifting time; k is
the formation pressure coefficient;
rwater and rmud are the density of
water and mud filtrate, kg/m3,
respectively

Minimizing the time loss increases
the estimation accuracy. Headspace
can reduce precision. Therefore, the
method may be more suitable for
coal seams. In addition, it assumes
that environmental changes during
coring only have a negligible effect
on degassing characteristics

Diamond
and Schatzel,
1998; Wei
et al. (2015);
Li et al.,
2022b

Modified USBM method
VDes ¼ VL þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tDes þ tEX þ rwaterktLift

rmud

s
The improved method modifies the
calculation of the time loss. The
calculation accuracy of the time loss
during core lifting depends on the
densities of the water and mud
filtrate, as well as the accuracy of the
formation pressure coefficient

Su et al.
(2017)

Polynomial function
method

V ¼ a0 þ a1
ffiffi
t

p þ …þ an�1ð
ffiffi
t

p Þn�1 þ anð
ffiffi
t

p Þn V is the cumulative desorption gas
volume, mL; t is the sum of the
escape time of lost gas and the
measured desorption time; ai is the
polynomial fitting coefficient

In the later stages of non-
equilibrium diffusion, the volume of
gas loss calculated by polynomial
regression is closer to the real value

Liu et al.
(2019a);
Enriquez
et al. (2020)

Amoco curve fitting
method

VD ¼ VLD

h
1 � 6

p2 exp
�
� p2D

r2
t
��

� VL

VD , VLD , VL are the desorption gas
volume, the total adsorbed gas
volume, and the lost gas volume, ml;
t is the time after time zero; D is the
diffusion coefficient; r is the
diffusion length

For samples with a greater time loss,
the calculated value of loss gas is
significantly larger, the assumption
of a single-porosity media in shale
may not hold. The method also
focuses on the decline phase of the
natural gas desorption curve, which
may not be directly related to the
core lifting process for deep shale
gas reservoir

Zhou et al.
(2018);
Mahzari
et al. (2021)

Calculation model based
on instantaneous gas
loss and desorption
rate when drilling the
core during the core-
drilling

VL ¼ Vins þ Vris ¼ PiT0Z0
P0TiZi

Fðrins;∞ÞVpSg þ ðTris þ

TexpÞ qdesm

Vins and Vris are the instantaneous
escape gas volume on ground
conditions and the loss gas volume
during drilling lifting, m3/t; P, T , and
Z are pressure, temperature and CH4

correction factors respectively
(subscript i represents reservoir
conditions, and subscript 0
represents ground conditions); rins
is the minimum capillary radius at
which free gas can escape
instantaneously, m; Fðrins;∞Þ
represents the proportion of pore
volume with pore throat radius
greater than rins , %; Vp is the total PV
of shale, m3/t; Sg is shale gas
saturation, %; m is shale mass, g; Tris
is the drilling lifting time, Texp is the
exposure time, min; qdes is the
desorption rate of shale gas, cm3/
min

The method can effectively enhance
the accuracy of computing the gas
loss and total gas content in shale
gas reservoirs under abnormally
high pressure

Li and Nie
(2019)

Modified Curve Fit (MCF)
method based on the
bidisperse diffusion
model

QdðtÞ ¼ Qt

8>><>>:
�
1� 6

p2 exp

 
� p2tD

0
a

R2a

!#

1þ b

3a

þ

b

3a

"
1� 6

p2 exp

 
� p2a

tD0
i

R2i

!#

1þ b

3a

9>>=>>;� Ql

QdðtÞ is the desorbed gas content at
time t, Qt is the sum of loss gas and
desorption gas content, Ql is the loss
gas content, mL/g rock; D0

a and D0
i is

the effective macropore diffusivity
and the effective micropore
diffusivity, respectively, cm2/s; Ra
and Ri are the macrosphere and
microsphere radii in cm,
respectively; a and b are
dimensionless parameters,
a ¼ DiR2a=DaR2i ,
b ¼ ½3ð�εaÞεi =εa�DiR2a=DaR2i (εa and
εi are the macropore and micropore
void fractions, respectively)

The method is theoretically based
on a dual-porosity gas diffusion
model that is suitable for obtaining
the shale gas desorption data over
the entire time range, but the model
does not fully consider the
geological factors that can affect the
shale gas diffusion characteristics.
And it enjoys a wide range of
applications under ratios of free gas
versus total gas that are greater than
approximately 75%

Dang et al.
(2018)

FM (a,b) model
QL ¼ abðPs � PÞ

ð1þ bPsÞð1þ bPÞþ�Ps
Zs

�
�
�
P
Z

�
�Ps
Zs

� �
VcoreFSg

Tsc
Psc

Ps
ZsTs

� 4:2225 �

10�5
bM

rsBg

�
GsLP
P þ PL

��
� QM

QL is gas loss volume, and QM is the
volume of natural gas measured
after the core is filled on the ground,
mL; a and b are constants related to
the physical properties and
temperature of the adsorbed gas,
respectively, mL and MPa�1; Ps , P
and Psc are saturated pressure, the

The model boasts wide applicability
and does not require back-
calculation of the desorption
amount

He et al.
(2021)
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Table 2 (continued )

Method Calculation formula Parameter meaning Method characteristics Reference

current core pressure and the
ground standard atmospheric
pressure, respectively, MPa; Ts and
Tsc are the formation temperature
and the standard temperature,
respectively, K; Vcore is the core
volume, mL; Sg is gas saturation in
the core; F is porosity; Zs is
deviation coefficient under a
saturated pressure condition, while
Z is under current condition; Bg is
gas volume coefficients under

current pressure condition; bM is the
apparent molecular weight of
natural gas, g/mol; rs is the
adsorption-phase density, g/mL; GsL

is the Langmuir storage capacity,
mL; PL is the Langmuir pressure,
MPa

Carbon isotope
fractionation (CIF)
model

8>><>>:
QfracðtiÞ ¼

�
Pðti�1Þ
zi�1

� PðtiÞ
zi

�
VfVm

RT

Q*
fracðtiÞ ¼

�
P*ðti�1Þ
zi�1

� P*ðtiÞ
zi

�
VfVm

RT8>>>>>>>>>>><>>>>>>>>>>>:

Qmatrix�free�12CðtiÞ ¼ Hrock�Z x¼rrock

x¼0
2pxF

�
pðx; t0Þ

zðx; t0ÞRT
� pðx; tiÞ
zðx; tiÞRT

�
dx� Vm

Qmatrix�free�13CðtiÞ ¼ Hrock�Z x¼rrock

x¼0
2pxF

�
p*ðx; t0Þ
zðx; t0ÞRT

� p*ðx; tiÞ
zðx; tiÞRT

�
dx� Vm8>>>>>>>>>><>>>>>>>>>>:

Qmatrix�ads�12CðtiÞ ¼ Hrock�Z x¼rrock

x¼0
2pxð1� FÞ½qðx; t0Þ � qðx; tiÞ�dx� rrock � VL

Qmatrix�free�13CðtiÞ ¼ Hrock�Z x¼rrock

x¼0
2pxð1� FÞ½q*ðx; t0Þ � q*ðx; tiÞ�dx� rrock � VL8>>>>>>>>>><>>>>>>>>>>:

Qk�C12
ðtiÞ ¼ Sk�Z x¼Hk

x¼0
½Ck0 � Ckðx; tiÞ �dx� Vm

Qk�C13
ðtiÞ ¼ Sk�Z x¼Hk

x¼0

�
C*
k0 � C*

kðx; tiÞ
	
dx� Vm8>>>>>>>>>>><>>>>>>>>>>>:

Qcal�12CðtiÞ ¼ QfracðtiÞ þ Qmatrix�free�12C ðtiÞ
þQmatrix�ads�12CðtiÞ þ Qk�12C ðtiÞ

Qcal�13C ðtiÞ ¼ Q*
fracðtiÞ þ Qmatrix�free�13CðtiÞ

þQmatrix�ads�13CðtiÞ þ Qk�13C ðtiÞ
QcalðtiÞ ¼ Qcal�12C ðtiÞ þ Qcal�13C ðtiÞ

QfracðtiÞ is the amount of free gas
degassing from fractures at time i, L;
Pðti�1Þ and PðtiÞ are the partial
pressure of free gas in the fractures
at time i� 1 and i, respectively, Pa;
zi�1 and zi are the gas
compressibility coefficients for time
i� 1 and i, respectively; F is the
effective porosity, %; Vf is fracture
volume, m3; Vm is molar gas
volume, 22.4 L/mol; R is molar gas
constant, 8.314 J/(mol$K); T is
temperature, K; x is the distance
from the boundary, m; Hrock is the
height of a cylindrical rock sample; q
is the coverage of adsorbed gas, %;
rrock is apparent rock density, g/
cm3; VL is Langmuir volume, cm3/g;
Ck is the gas concentration inside
kerogen structural pores, mol/m3;
Sk is active open area of kerogen
simplified as plane slice. Asterisked
parameters indicate 13CH4, while
parameters not marked with an
asterisk represent 12CH4.

The method considers multiple gas
flow mechanisms in pores of
different scales. Because the
boundary conditions can be varied
to reflect actual changes in the
environment during coring, the CIF
model is highly applicable to
describing the whole degassing
process and evaluating several key
parameters, including the GIP, gas
adsorption ratio, and in situ
Langmuir parameters

Li et al.
(2021c); Li
et al., 2022b
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continuity of the existing fluid pressure system and shale gas
reservoir (He et al., 2020). Exploration practices for shale gas reveal
that uplift time is associated with loss of shale gas, and the later the
uplift time, the more favorable it is for the preservation of shale gas
(Fig. 14d) (Yi et al., 2019; He et al., 2020). Although, it should be
noted that recent studies have shown that the effect of uplift time
on shale gas loss may not be as great as that of intensity of late
tectonism (Feng et al., 2022). Additionally, the rapid uplift of shale
gas reservoir is unfavorable for the preservation of shale gas, while
slow uplift process may not lead to suddenly release of formation
fluid (Yang et al., 2021). For example, compared with Sichuan Basin,
Western Hubei has the characteristics of rapid uplift rate, and its
gas-bearing property is generally poor (Xu et al., 2021b).

Therefore, the coupling of self-sealing ability, physical proper-
ties of the roof and floor, reconstruction time, rate and intensity
2623
under tectonic action is a significant factor affecting the preserva-
tion conditions of shale gas. Fig. 15 shows the structural style and
gas production of typical shale gas producing areas in the Sichuan
Basin and surrounding areas in China. Different tectonic styles
affect the preservation of shale gas, resulting in significantly
different shale production. Comparatively, regions with wide and
slow, continuously sealed, gradually lifting structures with an
appropriate distance from fault zones and/or denudation areas are
more ideal for the preservation, accumulation and high yield of
shale gas.

The pressure coefficient is a comprehensive index of shale
reservoir preservation conditions. The majority of productive
shales in the United States are in a closed or semi-closed system
during/after peak gas generation and remain in a state of over-
pressure (Bruns et al., 2016). The normal-pressure shale gas



Fig. 17. (a) Comparison between conventional coring, pressure-maintaining coring and subsequent operation (modified from Mahzari et al., 2021); (b) schematic diagram of testing
equipment and test procedure for pressure-holding coring of gas shale (modified from Zhou et al., 2022b).
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reservoirs and high- and over-pressure shale gas reservoirs share
similar sedimentary backgrounds to the Sichuan Basin and its pe-
ripheral region in China, but different tectonic reworking in later
stages has caused an apparent difference in gas content (Guo et al.,
2020c). In the Sichuan Basin, the preservation conditions are
generally good, and shale reservoirs generally are in overpressure.
The fluid pressure coefficient ranges from 1.2 to 1.6 (Guo et al.,
2020b), and in some regions (such as the Luzhou block) can be as
high as 2.0 (Ma et al., 2021b). In blocks outside the Sichuan Basin,
the preservation conditions are poor due to strong uplift and
developed folds/faults, in which the pressure system is normal, or
even negative. For example, the fluid pressure coefficient of the
Wufeng-Longmaxi Formation of well PYA in the Pengshui area
outside the Sichuan Basin is 0.8e1.1 (Wang et al., 2020c) (Fig. 16a).
The exploration practices for Longmaxi shale gas show that over-
pressure indicates high gas content and initial production (Fig.16b),
determining the economy of shale gas development to a great
extent.
4. Evaluation method of retained gas in shale

4.1. Field desorption method

GIP evaluation based on analysis data of shale gas basically
follows the field test method for coal-bed CH4. The drilling core is
placed into desorption devices as soon as possible, and analytical
gas content is obtained through reservoir temperature analysis.
Then, the residual gas content is measured by crushing and
analyzing the sample. After that, based on the desorption data, the
lost gas content is estimated by using different fitting methods. The
total gas content consists of desorbed gas, lost gas, and residual gas
(Shtepani et al., 2010). For its simple operation and the established
specifications in sample collection, handling, and process control
(Shi et al., 2019), the desorption method is now the most widely
used method in shale gas exploration and development.

The desorbed and residual shale gas contents are both directly
measured from experimental data with little error (Li and Nie,
2019), but the calculation of lost gas content is the key (Enriquez
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et al., 2020), and its accuracy is often questioned (Zhou et al.,
2022a). That is because differing from coal gas, the shale gas also
consists of free gas and desolated gas and the majority of shale gas
is often lost before the desorption test. According to measurements
of Chinese researchers, the lost gas content accounts for 40e80% of
the total gas content (Wang et al., 2020a). Although multiple
mathematical models have been developed to calculate the lost gas
content of shale (Table 2), the problem is far from being solved,
especially when the shale reservoir is relatively deep. For example,
it takes 6e10 h to recover drill core if the shale gas reservoir is in the
range from 3000 to 6000 m (Xiong et al., 2020), significantly
reducing the accuracy of estimation of dissipated gas (Enriquez
et al., 2020; Xiong et al., 2020; Jing et al., 2021; Mahzari et al., 2021).

Due to depressurization of the core during underground trans-
portation and ground processing, the pressure-maintaining coring
technology has become a development trend. Cerri et al. (2015)
employed controllable pressure coring technology to measure to-
tal gas directly. They believed that this eliminated gases and/or
liquids lost in traditional coring techniques. Mahzari et al. (2021)
reported that the shale gas volume of pressure coring is nearly
five times that of conventional desorption methods, and thus lost
gas during the core lifting can be obtainedmore directly, which is of
great significance for deep shale gas reservoirs (Fig. 17a). In recent
years, Chinese researchers have also been developing pressure-
preserving core technology and have conducted a series of tests
(Wang et al., 2020a). For example, according to the field test data of
Zhou et al. (2022b) in the Zhaotong area, southern Sichuan Basin
(China) (Fig. 17b shows the test equipment and process), the
average gas content in the pressure-holding coring section can be
2.3 times higher than that of shale in the same layer of an adjacent
well obtained by conventional coring.
4.2. Adsorption experiment method

Since the GIP obtained by the field desorption method is influ-
enced by factors such as sampling and testing conditions,
manpower, and cost, a high-pressure gas sorption experiment on
representative shale samples to calculate the amount of CH4



Table 3
Summary of adsorption gas calculation models and methods.

Model Calculation formula Parameter meaning Method characteristics Reference

Langmuir and
improved
models

nexcessads ¼ nL
P

P þ PL

�
1 � rgas

rads

�
nexcessads is excess adsorption amount
at pressure p; nL is the maximum
Langmuir capacity, mmol/g; PL is
Langmuir pressure, MPa; rgas and
rads are the bulk gas phase density
and the adsorbed phase density,
respectively, kg/m3

The model's assumptions of a
homogeneous pore structure,
monolayer adsorption, and lack of
interaction between gas molecules
demonstrate its limited applicability
to deep shale gas

Gasparik et al.
(2012); Pan et al.
(2016)

Dual-site
Langmuir
equation

neðP;TÞ ¼ ðnmax � VmaxrgÞh
ð1 � aÞ

� K1ðTÞP
1þ K1ðTÞP

�
þ a

� K2ðTÞP
1þ K2ðTÞP

�� Vmax is the volume of the adsorbed
phase at maximum adsorption
capacity; nmax is the maximum
adsorption capacity; rg is the bulk
gas phase density, kg/m3; KðTÞ (¼
A0 exp

�
� E0

RT

�
) is temperature-

dependent equilibrium constant, E0,
A0 and R are adsorption energy, the
pre-exponential coefficient and ideal
gas content, respectively; a is the
fraction of the second type of site
(0< a <1)

The model supports the inference of
adsorption isotherms beyond test
data and accurate estimation of the
real shale gas volume and relative
amount of adsorbed CH4 under deep
geological conditions

Tang et al. (2016);
Meng et al. (2020)

Multi-site
adsorption
model

nab ¼ nmax
Pi¼n

i¼1aðiÞ
P

P þ PLðiÞ

nex ¼ nmax (1� rg
rl

� elðT�TbÞ)

Pi¼n
i¼1aðiÞ

P

P þ P0 exp
�
� DEðiÞ

RT
� DS0m

R

!

nab , nmax and nex are the adsorption
amount, the maximum adsorption
capacity and the excess adsorption
amount respectively, mol/g; P, P0

and PLðiÞ are the equilibrium
pressure, the gas pressure at a
reference state (0.1 MPa), the
Langmuir constant for each type of
adsorption site, MPa; n is the types
of the adsorption sites; aðiÞ is the
fraction for each type of adsorption
site, %; rg is the bulk gas phase
density, and rl is the liquid density
at boiling point, rl ¼ 422.36 kg/m3

for CH4, g/cm3; DEðiÞ is the binding
energy for each adsorption site, kJ/
mol; Tb is the boiling temperature,
Tb ¼ 111.66 K for CH4, T is
temperature, K; DS0m is an apparent
entropy for adsorption; R is the gas
constant, J/mol/K; l is the coefficient
of thermal expansion, distributed
from ~1.5 � 10�3 K�1 to
~2.5 � 10�3 K�1

The distribution of adsorption
energy in this model is directly
related to the pore size distribution
of the samples, and the gas resources
in a single pore and total gas for a
whole shale gas reservoir can be
evaluated

Li et al. (2019a)

simplified
local-density
(SLD) model

nEX ¼ A
2

Z Right side to slit

Left side to slit
½rðzÞ � rbulk�dZ

nEX is the excess adsorption amount,
mmol/g; A is SSA; rðzÞ is the density
profile in the slit and rbulk is the bulk
phase density

The model assumes that the
adsorbent comprises rectangular
slits. It also considers the changes in
the fluid phase and shale
petrophysical properties. The model
can characterize the original
occurrence state of gas in shale

Chareonsuppanimit
et al. (2012); Miao
et al. (2022)

variable
density
adsorption
(VD) model

nex ¼ rabsVa � rgVa ¼ ½rf lnðdpg þ 1Þ � rg �Va nex is the excess adsorption; rabs , rf
and rg are the average adsorbed
phase density, a parameter related
to the adsorbed phase density, and
bulk gas density, mg/cm3; d is
proportional to rabs; Va is the bulk
gas density, cm3/g

The model features easy operation
and few unknown parameters. It
only requires a single fitting to
obtain reasonable adsorption
parameters

Kong et al. (2021)

SDR model

nHex ¼ nHo exp


� D

�
ln
�

rHad

r
ðH;T ;yÞ
b

1ARðTo þ HTgÞ
1A2�

 
1� r

ðH;T ;yÞ
b

rHad

!

nHab ¼ nHexr
H
ad

rHad � r
ðH;T;yÞ
b

nHex , n
H
o , n

H
ab are the excess

adsorption, the maximum absolute
adsorption and the absolute
adsorbed gas at a burial depth H,
respectively; rHad is the density of
adsorbed phase at a burial depth H;
D is a constant related to the pore
structure; R is ideal gas content; T is
the absolute temperature, K; rðH;T ;yÞb
is the bulk gas density at
temperature (To þ HTg) and pressure
(0:01 � y � H), H, Tg , To and y are
burial depth (m), geothermal
gradient (K/m), surface temperature
(K) and pressure coefficient,
respectively

Compared with Langmuir model,
density of adsorbed CH4 resulting
from the parameter fit of the SDR-
based excess adsorption model is
more reasonable that is lower than
that of liquid CH4. In contrast with
the DR model (i.e., low-pressure gas
adsorption), this model can
characterize the high-pressure CH4

adsorption of shale

Rexer et al. (2013);
Pan et al. (2016);
Tian et al. (2016)

(continued on next page)
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Table 3 (continued )

Model Calculation formula Parameter meaning Method characteristics Reference

L-SDR model

Vabs ¼

8>>>>>>>>>>>><>>>>>>>>>>>>:

V0
b1rgas

1þ b1rgas
; P < Pt

a1V0
b2rgas

1þ b2rgas
þ

a2Vm exp

(
� D

�
ln
�
rads
rgas

�
RT
�2)

; P > Pt

Vabs , V0 and Vm are the absolute
adsorption volume, the maximum
absolute adsorption volume for
Langmuir and the maximum
absolute adsorption volume for SDR,
respectively; b is Langmuir constant;
Pt is threshold pressure, P is
pressure; D is a constant related to
pore structure; rgas is the bulk gas
density, rads is the adsorbed phase
density, g/cm3; a1 is the fraction of
the Langmuir adsorption volume,
and a2 is the fraction of the SDR
adsorption volume; R is universal
gas constant; T is temperature, K

The model can describe the
supercritical CH4 adsorption process
in shale at different temperatures
effectively and accurately

Song et al. (2018)

Improved
supercritical
D-A
adsorption
model

nex ¼ no exp
n
� D

h
ln
� RTra
16ðP � PwÞ

��k
� am

o
�
1�16ðP � PwÞ

RTra

�
nex and no are the excess adsorption
and the maximum adsorption
amount, respectively, mmol/g; D is
the pore structure parameter; P is
test gas pressure and Pw is water
vapor pressure, MPa; R is ideal gas
content; T is the absolute
temperature, K; ra is the CH4

adsorbed phase density, g/cm3; a is
the attenuation index of adsorption
capacity, dimensionless; m is the
moisture content, %

The model corrects the actual gas
pressure for CH4 adsorption in the
system and reflects the effect of
moisture on the adsorbed gas

Li et al. (2020a)

Ono-Kondo
model nabs ¼ no

2rf
h
1� exp

�
εs

k � T
�i

rf rad
rad � rf

þ rad exp
�

εs

k � T
� rf and rad are molar density of free

CH4, molar density of maximum CH4

adsorption, respectively; εs
represents the energy of the CH4-
pore interaction; n0 is the saturated
adsorption capacity of the
monolayer, and nabs is total CH4

adsorption capacity; k is the
Boltzmann's constant,
1.38 � 10�23 J/K; T is the absolute
temperature, K

The model can be derived by strict
statistical or thermodynamic
methods. Each parameter has a clear
physical meaning. It is applicable to
subcritical and supercritical
adsorption

Bi et al. (2017); Hu
et al. (2021a)

Models based
on machine
learning

(Black-box techniques) The machine learning process begins with data collection and
processing, followed by dividing the data into training and test datasets. Then, the training set
is used for cross-validation and grid search of hyperparameters, the model is trained with the
optimized hyperparameters, and a learning curve is generated. The test dataset is evaluated
by various machine learning algorithms, including extreme gradient boosting (XGBoost),
artificial neural network (ANN), random forest (RF), support vector machine (SVM), and the
optimal algorithm is identified, and finally tested

This method has applicability
outside laboratory tests. Rolling data
collection allows for continuous
refinement of the model, which can
significantly reduce time-consuming
and labor-intensive work. However,
the accuracy and reliability of the
data need to be verified. Any
extrapolation also needs to be
verified when the dataset is rather
small. Expanding machine learning
data sets or using semi-supervised
machine learning can help improve
prediction performance

Meng et al. (2020);
Huang et al., 2022b

(White-box supervised intelligent systems) Machine learning can be used with the shale gas
database to establish a rigorous and reliable correlation between the amount of adsorbed gas
and variables such as temperature, pressure, moisture and TOC based on the gene expression
programming (GEP) and group method of data handling (GMDH) methods

This method provides accurate and
reliable explicit mathematical
expressions for predicting CH4

adsorption. However, inputting
values and operating conditions
outside the applicable range may
result in inaccurate predictions

Nait Amar et al.
(2022)
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adsorption has become awidely used alternative method (Liu et al.,
2019c). Theoretically, the total gas content of shale can be deter-
mined by adding the contents of adsorbed gas, free gas and dis-
solved gas. Due to the lowcontent of dissolved gas, it can be ignored
in practice (Dang et al., 2018; Babatunde et al., 2022; Zhou et al.,
2022a). Basically, CH4 volume density multiplied by effective pore
volume (effective pore volume ¼ total pore volume-pore volume
occupied by water-adsorbed phase volume) is adopted to evaluate
the free gas content (Ambrose et al., 2010, 2012). The properties of
adsorbed gas are markedly different from that of free gas, so the
traditional equation of state modeling is not suitable for use (Pang
et al., 2019). Accurate calculation of adsorbed gas has become a hot
2626
spot for research. Many models based on adsorption potential
theory, single molecule and multi-molecule adsorption have been
developed to characterize the CH4 adsorption in shales, and these
methods exhibit distinct characteristics (Table 3). However, the
specific application of these models needs to be further verified.
Recently, researchers have used machine learning to predict CH4
adsorption capacity, because machine learning can provide unbi-
ased, automatic, and complete results, and can significantly accel-
erate the prediction process of shale gas adsorption capacity under
extensive storage conditions (Huang et al., 2022b). Nevertheless,
due to the limited number of samples in actual operation, some
defects in typical models, the typical models may not be able to play



Fig. 18. (a) Relationship between water saturation and maximum excess adsorption capacity (modified from Hu et al., 2018c); (b) relationship between the ratio of methane
adsorption and pressure at 30 �C (modified from Huang et al., 2022a); (c) comparison of total gas content under water-bearing and dry conditions (data from Pan et al., 2016). The
solid and dotted lines represent the total gas content of dry samples and samples containing water, respectively.
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their own advantages and obtain accurate CH4 adsorption predic-
tion results. Fortunately, the meta-heuristics (e.g., grey wolf opti-
mizer, Syah et al., 2022) can improve the accuracy and effectiveness
of typical models. Furthermore, Liu et al. (2022) reported that the
ensemble-learning model is expected to solve these problems and
obtain reliable prediction results due to its strong generalization
ability, which provides a new perspective for CH4 adsorption
prediction.

CH4 adsorption experiments for shales are generally based on
crushed or powdered dried samples under unconstrained condi-
tions (Gaus et al., 2021). Since the shale under geological conditions
is water-bearing, this overestimates the adsorbed gas content to
some extent. However, how to evaluate the amount of adsorbed gas
in geological conditions has always been a challenge (Liu et al.,
2019b; Pathi et al., 2022). The first problem is how to obtain and
maintain the water-bearing shale under geological conditions,
because factors like drilling fluid pollution, water loss or intrusion
during sampling, storage and experimental processes can all
change the quantity and occurrence of water in shale (Handwerger
et al., 2011). The second problem is how to test the adsorbed gas
content of water-bearing shale, for although relevant test data have
been reported in the literature (Ross and Bustin, 2007; Gasparik
et al., 2014; Merkel et al., 2015, 2016; Yang et al., 2017; He et al.,
2019; Hu et al., 2018c; Whitelaw et al., 2019; Wang et al., 2020b;
Chen et al., 2021b; Ma and Yu, 2021; Tang et al., 2021), they basi-
cally avoid one of the most basic problems, that is, the loss of water
in the vacuum and heating process of the crushed sample. It is even
more difficult to simulate the adsorption under high-temperature
reservoir conditions.

Li et al. (2017) proposed a simple method, that is, assuming that
water in gas-bearing shale exists only in mineral pores, the OM
adsorption can be adopted as the lowest adsorbed gas content in
2627
shales. In addition, some researchers have proposed that the
adsorption capacity of water-bearing shale and dry shale has a
linear relationship, which can be calculated by an empirical value:
Ross and Bustin (2007) suggested that the degree of influence of
moisture on CH4 adsorption is taken as 0.3, whereas Yu et al. (2016)
concluded that adsorption capacity of water-bearing shale is about
50% of that of dry shale based on previous data, and recommended
the use of 50% as the discount factor to obtain the adsorption ca-
pacity of shale under actual burial conditions. Additionally, there is
an exponential function relationship between the adsorption ca-
pacity and water content; the attenuation index of adsorption ca-
pacity (l) can be fitted by experimental data, and adsorption
capacity in a realistic shale is equal to the product of e�l*equilibrium
moisture content and the adsorption capacity of dry shale (Qi et al.,
2018).

It is worth further discussing the degree of influence of water on
adsorbed gas. Hu et al. (2018c) indicated that with increase of water
saturation, its influence on the maximum excess adsorption
amount decreased (Fig.18a). In addition to the amount of water and
the properties of the shale itself, the incidence is also affected by
the depth of burial (temperature and pressure), as the effect of
water on CH4 weakens with increasing temperature, while
increasing pressure reduces the negative influence of water and
temperature on CH4 adsorption (Fig. 18b) (Han et al., 2021b; Huang
et al., 2022a). For instance, according to the data of Pan et al. (2016),
if the adsorption capacity of water-bearing samples is 50% of that of
dry samples, the impact on the total gas content decreases with
increase of burial depth, and the reduction of total gas content is
mainly distributed in 2.1e12.9% between 2000 and 4000 m
(Fig.18c). It can be seen that for shalewith lowwater saturation, the
total gas content calculated by using the adsorbed gas of dry
samples is only slightly larger.



Table 4
Summary of other evaluation methods for shale gas content.

Method Theory principle Primary parameters Advantages Limitation Reference

Multivariate
linear
regression
analysis
method

A regression statistical model can
be established according to the
relationship between shale gas
content and TOC, porosity and
other control factors

Internal factors (TOC, porosity,
mineral composition, etc.) for
shale gas accumulation

The gas-bearing prediction can be
carried out by the predecessor
model for a single study area, and
the main controlling factors of the
gas-bearing capacity can be
revealed at the same time

The accuracy of the model
depends on the various geological
parameters used to build it. Fewer
parameters reduce the accuracy
and applicability of the model

Nie and
Zhang
(2012)

Numerical
model for the
dynamic
enrichment
and evolution
process of
shale gas

Total shale gas and gas in different
occurrence states will change
dynamically with the coupling of
multiple control factors, which can
be characterized by numerical
simulation

Burial depth, temperature,
formation hydrostatic pressure,
maturity, hydrocarbon generating
quantity, reservoir porosity,
overpressure hydrocarbon
expulsion conditions, pore water
content and formation water
salinity, formation pressure and
temperature, TOC, mineral
components, other calculation
parameters (such as gas solubility,
free water volume fraction, etc.)

This model can calculate the shale
gas content in the geological
history period, obtain the GIP and
gas content in different occurrence
states

The application of this model
needs to meet certain
preconditions, including
generation products,
overpressure and other
conditions. At present, it has
better applicability for shale
systems with type III kerogen

Zhou
et al.,
2022a

Seismic
multiple-
attributes
analysis
method
based on
neural
networks of
AI

Gas bearing properties have good
correlation with seismic attributes.
Parameters such as gas content
and attributes are obtained
according to logging and seismic
data processing. The optimal
combination of seismic attributes
and the relationship between gas
content and each attribute are
determined through single
attribute and multi-attribute
neural network analyses. Based on
the optimal attribute number and
type, the gas content of the whole
three-dimensional data volume is
calculated by using the
relationship derived from neural
network, so as to predict the
spatial distribution of gas content.

Well log data (density, P-velocity,
S-velocity, gamma ray) and
parameters derived from log
interpretation (e.g. porosity, TOC
content, total gas content,
brittleness index, Young's
modulus and Poisson's ratio), and
seismic elastic parameters

The application of artificial
intelligence to determine the
optimal combination of elastic
parameters and seismic attributes
provides a new insight for
predicting shale gas content,
reveals the main controlling
factors of gas content
characteristics in a specific study
area, and can effectively identify
high-quality gas rich reservoirs as
well as spatial distribution and
variation in the gas content of
shale reservoirs

The model accuracy depends on
the various geological
parameters. The gas-bearing
properties for this method are
primarily obtained from logging
data, from which mainly gas
content evaluation depends on
the accuracy of logging data
processing results

Chen
et al.
(2019d)

Nuclear
magnetic
resonance
(NMR)
method

Mobile hydrogen nucleus or
proton in CH4 can be identified. By
measuring NMR T2 relaxation
signal of shale sample, CH4 in
different occurrence states
(adsorbed and free) can be
determined

T2free (NMR T2 relaxation signal
corresponding to free gas) and T2ad
(NMR T2 relaxation signal
corresponding to adsorbed gas)

CH4 gas in different occurrence
states is obtained by NMR test, so
as to more directly measure
absolute and relative amounts of
the adsorbed and free CH4 in shale

This method has certain
requirements for core samples,
preferably pressure coring
samples. For conventional coring
samples, NMR experiments need
to be carried out at the reservoir
pressure and temperature in
order to obtain maximum
adsorbed gas content. The free
gas content can be estimated
from the relationship between
them

Yao et al.
(2019)

Logging
calculation
method

The clay minerals, OM content and
free gas content in the shale are
clarified by logging data, and the
total porosity, adsorbed gas and
irreducible water porosity can be
calculated, from which the total
gas content in the shale can be
obtained

Adsorbed gas content, irreducible
water saturation (Swb), clay
mineral content (Vclay), TOC
content, and logging data for
porosity calculation, etc.

The data for this method are easy
to obtain from continuous gas
content analysis data. Moreover,
the model for this method is easy
to apply and has good applicability
for marine shale with stable
deposition and good preservation
conditions

The data quality is potentially
affected by the model's
dependence on samples, as well
as the applicability of the logging
prediction model

Li et al.
(2019b)

Isotopic method The phenomenon of gas carbon
isotope inversion is closely related
to the magnitude of secondary
cracking of retained oil and wet
gases, so d13Cmethaneed13Cethane

can be used to evaluate the degree
of secondary cracking, and then to
obtain the gas-bearing properties
of shale

d13Cmethane, d13Cethane The gas content in shale is
calculated from the perspective of
geochemistry, which provides a
new idea and perspective for a
shale gas bearing property test

Test indicators are rather
expensive to obtain, and they are
more fitly applicable to highly
mature shale. Because of the
difference in the content of
retained hydrocarbons and other
factors, the correlation between
d13Cmethaneed

13Cethane and gas
content in shale may become
relatively poor

Chen
et al.
(2020b)

Basin Modeling
method

Shale gas accumulation is not only
controlled by factors such as TOC
content, thermal evolution degree
and mineral content, but also by
the tectonic-thermal evolution
history. Based on petroleum
system modeling (e.g., PetroMod),

Stratigraphic data (lithology,
thickness, age), tectonic events
(unconformity, denudation,
sedimentary discontinuity time),
tectonic-thermal evolution
restoration boundary conditions
(palaeoheat flow, paleowater

This method is easy to operate, and
the experimental results are easy
to obtain, the coupling
relationship among shale
structure-thermal evolution, oil
and gas composition change and
adsorption process can be

The method needs many input
parameters and depends on
matching the built-in model of
the software to actual geological
conditions

Chen
et al.
(2019a)
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Table 4 (continued )

Method Theory principle Primary parameters Advantages Limitation Reference

the tectonic-thermal evolution
history, oil and gas composition
change and adsorption process can
be simulated, so as to clarify the
gas content of the target interval

depth, water-rock interface
temperature, etc.), isothermal
adsorption data (VL, PL, etc.) and
geochemical characteristics of
source rocks (TOC, hydrogen
index, hydrocarbon generation
kinetic model)

determined, and the dynamic
changes of shale adsorption
capacity and gas content in
different geological periods can be
obtained
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4.3. Other methods

With the exception of the two commonly used methods intro-
duced above, qualitative methods such as gas logging and water
immersion test are often used to evaluate gas content in shale gas
exploration and development. In particular, in recent years, Chinese
researchers have also explored some new assessment methods for
shale gas content. Table 4 summarizes the theory principle, primary
parameters, practicability and existing problems of these methods.
Obviously, there is still a long way to go before these methods can
be applied to shale gas evaluation under geological conditions.
5. Summary and further research directions

Gas is stored mainly in free and sorption states in the nanoscale
pores of OM-rich shale, which makes it different from coalbed CH4
and tight gas. The sorption mechanisms of shale under real
geological conditions should be highly complex due to the presence
of pore water and non-hydrocarbon gases. Many factors and pro-
cesses influence the CH4 sorption ability of shale, such as the
variation of pore types, the sorption mechanism of supercritical
CH4 under water-bearing conditions, and the competitive sorption
processes of CH4 with water molecules, heavy hydrocarbon gases
and non-hydrocarbon gases. All of these factors will affect the
adsorption capacity and gas-bearing capacity of shale, especially
the competitive adsorption mechanism and influence of water and
N2, and require further attention and research.

The gas content of shale is controlled by a combination of its
geological properties (OM abundance, kerogen type, thermal
maturity, mineral composition, diagenesis), pore fluid properties
(water, CH4, non-hydrocarbon gases), and geological conditions
(temperature, pressure, preservation conditions). The influence of
their coupling on shale gas enrichment is still the focus of research.
In particular, the differences in mineral composition and OM
properties of shales from various depositional environments may
lead to significant differences in the influencing factors and con-
straining mechanisms of gas-bearing properties. Under the broad
prospect of green and low-carbon energy, shale gas will make a
crucial contribution to meeting clean energy demand, which is
particularly significant for China's energy supply and trans-
formation. The fundamental research on deep and ultra-deep ma-
rine, marine-continental transitional, and lacustrine shale gas
reservoirs needs to be further investigated, and they will be
important targets for future expanding exploration and
development.

Various methods have been developed for qualitative and
quantitative evaluation of shale gas content, with the most
commonly used methods being the field desorption method and
adsorption experimental methods. Although the field desorption
method can directly obtain specific data of gas content in shale, the
calculation of lost gas still faces challenges in many aspects, and the
reliability of the data has been questioned for shale from deeper
burial. The adsorption experimental method is simple and easy to
implement, but the available theoretical models should be carefully
2629
reviewed for their suitability for specific geological applications,
and the calculation results often require validation by shale gas
field or development data. Fortunately, the development and
application of confinement/pressure-holding coring technology
not only allows for the acquisition of realistic shale gas content, but
also allows for corrections to existing gas loss calculation models
and developing new calculation models. Meanwhile, the
improvement of artificial intelligence and data processing tech-
nologies will also provide a new means for shale gas evaluation.
Combined with geochemical data, the application of geophysical
data to regional shale gas content assessment will become the di-
rection of shale gas resource potential evaluation.
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