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a b s t r a c t

Since leaks in high-pressure pipelines transporting crude oil can cause severe economic losses, a reliable
leak risk assessment can assist in developing an effective pipeline maintenance plan and avoiding un-
expected incidents. The fast and accurate leak detection methods are essential for maintaining pipeline
safety in pipeline reliability engineering. Current oil pipeline leakage signals are insufficient for feature
extraction, while the training time for traditional leakage prediction models is too long. A new leak
detection method is proposed based on time-frequency features and the Genetic Algorithm-Levenberg
Marquardt (GA-LM) classification model for predicting the leakage status of oil pipelines. The signal
that has been processed is transformed to the time and frequency domain, allowing full expression of the
original signal. The traditional Back Propagation (BP) neural network is optimized by the Genetic Al-
gorithm (GA) and Levenberg Marquardt (LM) algorithms. The results show that the recognition effect of a
combined feature parameter is superior to that of a single feature parameter. The Accuracy, Precision,
Recall, and F1score of the GA-LM model is 95%, 93.5%, 96.7%, and 95.1%, respectively, which proves that
the GA-LM model has a good predictive effect and excellent stability for positive and negative samples.
The proposed GA-LM model can obviously reduce training time and improve recognition efficiency. In
addition, considering that a large number of samples are required for model training, a wavelet threshold
method is proposed to generate sample data with higher reliability. The research results can provide an
effective theoretical and technical reference for the leakage risk assessment of the actual oil pipelines.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The pipeline is the most economical and effective way for
transporting oil to the terminal. Mobilization and long-distance
distribution of crude oil resources are primarily realized via the
use of pipelines (Oyedeko and Balogun, 2015; Xu et al., 2010). In
recent years, to ensure the safety of pipeline transportation, the
pipeline risk assessment has attracted more and more attention
(Hu et al., 2014; Zhang et al., 2020b). Many researchers are very
concerned about the remaining life of the pipeline (Chen et al.,
2020), the buckling of the pipeline (Zhao et al., 2010; Li et al.,
2017), corrosion of the pipeline (Mazumder et al., 2021b; Cui
y Elsevier B.V. on behalf of KeAi Co
et al., 2016; Zeng et al., 2014), and the maintenance strategies.
Yet, the risk assessment of pipeline leakage during maintenance
should also be of concern, as leakage can cause not only economic
losses but also the risk of explosion. Oil and gas pipeline leakage is
one of the main causes of resource loss and is also one of the
common types of pipeline accidents (Lu et al., 2020a). The pipeline
leakage can cause serious problems such as explosions, economic
loss, and environmental pollution. For example, in November 2013,
the Donghuang Petroleum Pipeline in Qingdao leaked crude oil into
a municipal drainage culvert, causing an explosion. The accident
caused 62 deaths, 136 injuries, and a direct economic loss of 750
million yuan (Lu et al., 2020b). Therefore, risk assessment of the
maintenance process in the oil pipeline network is crucial to ensure
the safety of the system. In the detection process, not only the ac-
curacy and efficiency of leak detection should be considered, but
also the appropriate method of leak detection should be selected
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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from an economic, environmental protective, and portability
perspective.

The current state-of-the-art leak detection techniques used in
oil and gas pipelines are divided into hardware-based methods and
software-based methods based on the detection technology char-
acteristics (Lu et al., 2020b). The leak detection sensors mainly
include acoustic and vibration. The hydrophone could acquire
excellent measurement results in an environment with a low
signal-to-noise ratio while the vibration sensor obtained a more
significant peak value of correlation coefficient. Pipeline leakage
caused local energy loss and stress waves propagating in the pipe
wall. A leak detection system is proposed based on a negative
pressure wave that used harmonic wavelet analysis to identify the
extracted signal (Hu et al., 2011). According to the results, harmonic
wavelet analysis presented advantages over similar methods in
terms of extracting the weak non-stationary negative pressure
wave signal. A new leak location method is proposed based on the
propagation characteristics of leakage acoustic waves for oil and gas
pipelines. Then, the dominant energy frequency bands of leakage
acoustic waves are obtained based on the wavelet transform
analysis (Liu et al., 2015). Some monitoring systems have been
successfully applied in actual pipe networks (Harmouche and
Narasimhan, 2020). In addition, computational fluid dynamics
(CFD) was used to study the dynamic characteristics of leakage. The
results showed that the pressure change at the leak location was
not obvious but more distinct after the gradient transform (Fu et al.,
2020). The frequency spectrum of pressure fluctuations was
analyzed for indicating that the leakage signals were concentrated
in a 220e500 Hz frequency band (Ben-Mansour et al., 2012). A fast
Fourier transform on the collected signals was performed to un-
derstand the vibration characteristics of leakage signals
(Mostafapour and Davoudi, 2013). The results revealed that the
leakage signal energy was concentrated in a range of 150e300 kHz,
while the theoretical and experimental errors were below 6%.

Several studies have applied machine learning to pipeline risk
assessment (Kang et al., 2018; Wang et al., 2022). Eight data-driven
machine learning algorithms are evaluated based on the generated
dataset to identify the best failure prediction model (Mazumder
et al., 2021a). The artificial neural network can learn the fault on-
line and can also adapt to the dynamic background noise envi-
ronment. A neural network was used to predict leakage online
(Waleed et al., 2019). A microphone was installed on a 60-m pipe to
capture the leakage noise signal. The frequency decomposition of
the noise signal was used as the input of the neural network model,
with the output represented by leakage flow rates of 1 mm, 2 mm,
and 3 mm. The model recognition rate reached 100%, except for the
1 mm leakage calibre, indicating that the network model fully
predicted the degree of leakage. A neural network based on a leak
identification framework that could be used to verify the leak
identification efficacy is proposed (Santos et al., 2014). Pressure
data is converted into Markov chains and performed feature
extraction based on statistical indicators, such as variance (Liu et al.,
2019). Furthermore, two decision models were built for long-term
and short-term detection. The short-term detection model used
pressure data which were transformed over a short period to
rapidly determine the pipeline state and detect pipeline abnor-
malities, while the long-term detection model could more accu-
rately identify leak signals. A long-distance pipeline leakage model
was constructed for simulating leakage data, using two support
vector machine (SVM) models to predict the leakage occurrence
and location, respectively (Xie et al., 2019). Various operating
modes in pipeline transportation were considered to establish
various leakage models, effectively reducing the false alarm rate
(Zhou et al., 2019). A new pipeline leak detection technique based
on data field theory was proposed (Liu, 2019). This method not only
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identified the leak but also predicted its location. It could reliably
detect and locate singular oil pipeline leak signals. Moreover, a
transient leak detection method was applied to accurately identify
the leak locations. This method accurately determined the location
of single leaks even in pipe flows (Aamo, 2016). MATLAB software
was used to model and simulate unidirectional flow pipelines and
combined this method with artificial neural networks to identify
leaks (Omojugba et al., 2020). Variational modal decomposition of
the signal was conducted, reconstructing the signal after removing
the noise to extract the leakage characteristics. Finally, leakage
pattern recognition was carried out using SVM (Diao et al., 2020).

Obtaining large amounts of real leak data is difficult. Existing
data could not provide enough effective leakage information to
train high-precision models of leakage prediction. Many data
derivation methods using Generative Adversarial Networks have
been proposed to obtain additional data (Wang et al., 2019; Zhang
et al., 2020a, 2022; Hu et al., 2021). The credibility of the derived
data was high, exhibiting an abundance of data types. Data deri-
vation models based on small samples have been proposed (Gao
et al., 2022). Feature extraction of the signal is crucial for leak
prediction. Time-domain statistical features have been perfectly
combined with neural networks (Lang and Yuan, 2020). The
method of multi-scale analysis was used to extract the leakage
characteristics while using the Gaussian mixed model to detect
pipeline leakage (Rai and Kim, 2021). Spectrum enhancement (SE)
and convolutional neural network (CNN) are combined for pre-
dicting pipeline leakage, and SE was used to enhance the signal
(Ning et al., 2021). The results demonstrated that the recognition
rate of CNN reached 94.3%. The contourlet neural network is opti-
mized by an improved grey optimization algorithm, and the second
curvelet neural network is optimized based on an improved firefly
algorithm to improve prediction precision (Zhao et al., 2019a,
2019b, 2020; Zhao and Song, 2021).

Process monitoring plays an important role in pipeline safety
management and risk assessment. A reliable leakage risk assess-
ment can assist in developing an effective pipeline maintenance
plan and avoiding unexpected incidents. Actual pipeline operating
conditions are complicated. Although several studies have
employed artificial neural networks for pipeline leak identification,
not many leak detection models can guarantee both the accuracy
and efficiency of leak detection. The detection difficulties in the
pipeline operation process can be summarized as three aspects: (1)
The complexity of pipeline operating conditions; (2) The extracted
feature parameters cannot fully represent the original leakage
signal. Leak identification is a classification problem, the leakage
prediction accuracy based on single or few feature parameters is
often low; (3) The actual leaked data is limited, so the number of
samples is not enough to train a reliable prediction model. There-
fore, data derivation is necessary for pipeline leak identification.

Inspired by the above three points, a data-driven detection
method is proposed based on time-frequency feature extraction, BP
neural network optimized by improved algorithm, and data deri-
vation. The contributions of this paper mainly include three as-
pects. Firstly, the feature extraction method based on the time-
frequency feature is applied to detect pipeline leaks. By extracting
the time-frequency feature, the raw pressure data can be effectively
represented. Secondly, the traditional BP neural network optimized
by the GA and the LM algorithm can improve the accuracy and
reduce the training time of the model respectively. The proposed
GA-LM model can solve the contradiction between fast detection
and accurate detection. Finally, a wavelet threshold method is
proposed for data derivation. The proposed model shows high
reliability for the raw and generated data, which can be applied in
pipeline process safety and leakage risk engineering.
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2. Modeling

2.1. GA-LM model

The artificial neural network has beenwidely used in oil fields of
scientific research and engineering applications (Gao et al., 2021;
Heravi and Hodtani, 2018; Nitta and Kuroe, 2018; Yan et al., 2020).
The optimization methods of the BP network are gradually
increasing, such as optimizing the BP training process through a
dynamic learning rate (Zhang et al., 2012). The traditional BP neural
network is used for local search optimization, causing the algo-
rithm to fall into a local extremum while exhibiting low network
convergence speed. To address these challenges, the GA and LM are
combined to optimize the traditional BP neural networkmodel. The
GA is used to adjust the parameters and structure of the neural
network (Yu et al., 2020). The basic elements of the GA algorithm
include chromosome coding, fitness functionality, genetic opera-
tion, and operational parameters (Tao et al., 2021). The genetic
operations include selection, crossover, and mutation operations.

Considering the given N samples (xk, yk) (k ¼ 1, 2, …, N), the
output of the network is yk for a certain xk output. The output of
node i is Oik, and the j-th unit of the t-th layer is examined. At a k-th
sample input, the output of node j is expressed by:

nettjk ¼
X
j

wt
ijO

t�1
jk þ qtj (1)

whereOt�1
jk represents the output of the j-th unit nodewhen the k-

th sample is entered into the t-1 layer. qj is the threshold of the j-th
neuron. The loss function is expressed by:

E¼ 1
N

XN
k¼1

�
yjk � y*jk

�2
(2)

The weight correction reduces E:

W*
ij ¼Wij � h

vE
vWij

(3)

where, (h>0),W*ij is the correction value, and h is the learning rate.
The neural network is trained to find the weight and threshold
when E is the smallest.

Assuming that there are nL nodes in the t-th layer, the loss
function E is expressed by:

EðWÞ¼1
2

XnL

i¼1

e2i ðWÞ ¼ eT ðWÞeðWÞ (4)

The individual contains all the weights and thresholds of the
neural network. The BP neural network is cyclically trained ac-
cording to individual weights and thresholds. The code length S is
expressed by:

S¼n1*mþm*n2 þmþ n2 (5)

where n1 is the number of input layer nodes, m is the number of
hidden layer nodes, and n2 is the number of output layer nodes. Part
of the neural network algorithm is selected as the objective func-
tion of the GA. After the training data is passed through the neural
network to predict the output, the calculation formula of the in-
dividual fitness value f is expressed by:
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f ¼ k

 Xn
i¼1

absðyi � oiÞ
!

(6)

where n is the number of network output nodes. yi is the expected
output of the ith node of the BP neural network. oi is the actual
output of the i-th node, and k is the coefficient.

The selection operator is improved based on the optimal pres-
ervation strategy, which can effectively select the better individuals
in the population. The process of selecting individuals is shown in
Fig. 1. The steps of selecting individuals are as follows: (a) Deter-
mine an initial population and calculate the fitness value of each
individual in the population; (b) Sort the individuals in the popu-
lation according to their fitness from small to large; (c) Divide the
population equally into 3 segments; (d) Each segment is randomly
selected according to the ratio of 0.6, 0.8, and 1; (e) Randomly select
a lost individual from the individuals in the tail segment; (f) Insert
the lost individuals at the end of the proportionally selected pop-
ulation to obtain a new population. After the above operation
process, the better individuals in the population can be selected,
while maintaining the diversity of the population. The average
fitness value of the final population is improved compared to the
initial population.

Assume that the h-th chromosome and the l-th chromosome
intersect at the j-th position.

dhj ¼dhjð1� bÞ þ dljb (7)

dlj ¼dljð1� bÞ þ dhjb (8)

where b is a random number between 0 and 1, dhj is the j-th gene of
the h-th chromosome and dlj is the j-th gene of the l-th chromo-
some after hybridization.

The crossover operation can ensure that the excellent genes of
each evolution are retained, but it is only a selection of the original
result set, and the calculation result is closer to the local optimal
solution, and cannot reach the global optimal solution. To solve this
problem, a mutation operation is introduced as follows.

C¼

8><
>:

k1ðfmax � f Þ
fmax � fa

f � fa

k2 f < fa

(9)

fmax is the maximum value of the fitness of the population, fa is the
average of the fitness of the population, f is the fitness of the in-
dividual, k1 and k2 are random numbers between 0 and 1, and C is
the mutation operator.

The LM algorithm combined the advantages of the Gauss-
Newton and gradient descent methods (Wilamowski and Yu,
2010). The uk factor is added to the Gauss-Newton method. uk is
equivalent to the gradient descent method at a high value and
equates to the Gauss-Newton method at a low value.

Wðkþ1Þ¼WðkÞ � ½G��1JT ðWkÞeðWkÞ (10)

G¼ JT ðWkÞJðWkÞþukI¼H þ ukI

where I is the identity matrix, while the proportional coefficient uk

represents a tiny parameter greater than zero. The ukI term gua-
rantees the reversibility of G, otherwise, JTJ may be irreversible and
cannot be calculated. The LM algorithm can continuously adjust the
model according to the uk parameter changes.

The gradient of E(W) is expressed by:



Fig. 1. Demonstration of selection.
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EðWÞ¼
XnL

i¼1

eiðWÞ veiðWÞ
vW

¼ JTðWÞeðWÞ (11)

where JT(W) is known as the Jacobi matrix.

E2ðWÞkj¼JT ðWÞ
XnL

i¼1

 
ve2i ðWÞ
vW2

j

veiðWÞþveiðWÞ
vWk

veiðWÞ
vWk

!
¼JT ðWÞJðWÞ

þSðWÞ
(12)

where S(W)¼e(W)e2(W) is difficult to calculate, while the LM al-
gorithm disregards it. The LM algorithm displays a second-order
convergence rate and requires a small number of iterations.
Therefore, the convergence speed and stability of the algorithm are
significantly improved, meanwhile, the local minimumvalue can be
avoided.

The flowchart of the GA-LM model is shown in Fig. 2. After
initializing the network, the samples are initially trained with the
GA algorithm to obtain the optimized initial weight and threshold.
If the requirements are satisfied at the end of the cycle, the training
is terminated. Otherwise, the LM algorithm is used to re-correct the
networkweights and thresholds while the training is repeated until
the results meet the requirements.

The algorithmic structure of the GA-LMmodel can be expressed
in Table 1.
2.2. Identification process

Leakage causes local energy loss and produces negative pressure
waves propagating to both sides of the pipeline. Therefore, sensors
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positioned on both sides of the pipe can capture the negative
pressure wave signal. The location of the leak can be determined by
the time taken to detect it, the velocity of the negative pressure
wave, and the length of the pipe. The structure of leak detection is
shown in Fig. 3.

The pipeline leakage signal identification process is shown in
Fig. 4. Firstly, the raw training and testing data are derived by
wavelet threshold method. Secondly, feature extraction of the data
is performed, and the extracted feature parameters are normalized
to the feature vector matrix of the model. Thirdly, a feature vector
matrix of training data is used to train the model and a data-driven
classifier is obtained to identify pipeline leakage. Finally, the feature
vector matrix of testing sample is input to the classifier for leakage
signal identification. The classifier outputs the final classification
result.
3. Leak identification based on the GA-LM classification
model

3.1. Experiment platform and data acquisition

Because the leakage of water and oil pipelines belongs to pres-
sure pipeline leakage, to reduce the experimental cost, some
scholars have simulated the leakage of oil pipelines through the
leakage of water pipelines. To complete the testing and verification
of the leakage algorithm, Liu et al. have simulated the leakage of oil
pipelines through leakage experiments of water pipelines (Liu et al.,
2019). The experiment platform is shown in Fig. 5. The platform can
also be used to test three flow experiments (Ruiz-C�arcel et al.,
2016). Equipment used in the platform includes dynamic pressure
transducers (DPT), flow valves, flowmeters, pressure gauges, and
pumps. The test loop is 200 m and the internal diameter of the test



Fig. 2. Flow chart of the GA-LM model.

Table 1
GA-LM model for leak risk assessment.

Input: Training set D (input, output).

Output: leak accuracy.

Initializing parameters of weights and thresholds.
for i ¼ 1: population size(x)
individuals (i) ¼ Function Code (x, bound)
x ¼ individuals (i)
individuals fitness(i) ¼ Function error (x, net, input, output)

end for
[best fitness and best index] ¼ min(individuals fitness)
best ¼ individuals (best index)
average fitness ¼ sum(individuals fitness)/x
trace ¼ [average fitness, best fitness]
for num ¼ Maximum iteration(k)
individuals ¼ Function select (individuals, x)
average fitness ¼ sum (individuals fitness)/x
individuals ¼ Function Cross (position, length, individuals, x, bound)
individuals ¼ Function Mutation (position, length, individuals, x, num, k, bound)
for j ¼ 1:x
x ¼ individuals (j)
individuals fitness(j) ¼ Function error (x, net, input, output)

end for
[new best fitness, new best index] ¼ min(individuals fitness)
[max fitness, max index] ¼ max(individuals fitness)
if best fitness > new best fitness
best fitness ¼ new best fitness
best ¼ individuals (new best index)
end for
individuals (max index) ¼ best
individuals fitness (max index) ¼ best fitness
average fitness ¼ sum (individuals fitness)/x
trace ¼ [trace; average fitness; best fitness]

end for
reshape parameters of weights and thresholds
accuracy ¼ Function sim (net, input);
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section is 108.2 mm. A 12.7 mm (1/2 in.) needle valve is used to
simulate leakage. The leakage is simulated by switching on the
needle valve. Two sensors are arranged upstream and downstream
of the pipeline respectively. The leak location is 50m away from the
upstream sensor and 30 m away from the downstream sensor. The
product manufactured by HBM has a pressure range of
0.01e10MPa, an accuracy class of 0.2%, and an output voltage range
of 0e5 V. A data acquisition (DAQ) NI USB6009 is selected to collect
the output of DPT, and the sampling rate is set to 1000 Hz. Data is
recorded and saved by LabVIEW software.
3198
The data comes from experiments and fields. Among them, part
of the data under normal operation comes from the scene. Since the
actual leakage data is very limited and the cost of simulating the
leakage of oil pipelines is very high, the leakage data is obtained by
simulating the leakage of water pipelines, and the operating con-
ditions of field pipelines are used for experimental simulation. A
total of 320 sets of original data are obtained, the number of pos-
itive samples is equal to the number of negative samples, and 80
sets of conditional operating data are also considered positive
sample data. In addition, all data are denoised by the moving



Fig. 3. Structure of leak detection.
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average method.

3.2. Feature extraction

Since the leaked signal is a stationary random signal, the power
spectrum is used in this paper to describe the frequency-domain
characteristics of the signal. The signal after time-domain and
frequency-domain processing is shown in Fig. 6. From Fig. 6, we can
see that the leak signal and the normal signal are different in the
time-domain and frequency-domain. Therefore, the characteristics
of the leakage signal can be well described by extracting the pa-
rameters in the time-domain and frequency-domain.

The process of feature extraction is shown in Fig. 7. Firstly,
wavelet thresholding is performed on the original signal. Secondly,
appropriate samples are selected to extract time-domain features
and frequency-domain features of the data. Then the extracted
Fig. 4. Identification flow chart.
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features are combined as the input vectors of the model.
The signal captured upstream and downstream is shown in

Fig. 8. Due to process loss, the upstream pressure is significantly
greater than the downstream pressure. When the leakage valve is
opened, there will be a certain pressure fluctuation. Therefore, leak
detection can be converted into vibration signal identification. By
collecting vibration signals from upstream and downstream, a
data-driven leak identification model is proposed in this paper.

Signals under different operating conditions are shown in Fig. 9.
Different operating conditions can also cause fluctuation of pres-
sure, which is also one of the reasons for the high false alarm rate of
leakage. Therefore, an efficient and accurate leakage prediction
model is crucial. The length of selected samples will directly affect
the identification effect of leakage. Short samples will decrease the
accuracy of identification, while long samples will increase the time
cost. The identification results of different sample lengths have
been discussed in Section 4.1.1.

3.2.1. Derivation of data
An accurate prediction model requires sufficient data, therefore,

a wavelet threshold method is used to increase the sample size. The
evaluation of derived data is discussed in Section 4.2.2. The wavelet
transform method is widely used in various fields due to its
simplicity, rapid calculations, and excellent denoising ability (Xu
et al., 2021). Wavelet transform uses the Mallat algorithm for
rapid signal decomposition and reconstruction. Here, the
Daubechies-3(db3) wavelet is selected as the wavelet function. The
subsequently introduced smoothing error can be easily dis-
regarded, rendering the signal smoother during the final
reconstruction.

Firstly, after the wavelet basis function is shifted t, it does an
inner product with the signal x(t) at different scales a.

WTxða; tÞ¼ 1ffiffiffi
a

p
ðþ∞

�∞

xðtÞjðt� tÞdt (13)

The selection of the threshold requires the estimation of noise
variance s, as shown in Eq. (14).

s¼median
�
wjðkÞ

�
0:6745

(14)

Where wj(k) is the coefficient of the j-th layer wavelet. If the signal
length is L, the threshold l is expressed by:

l¼ s2 log10 L (15)

To combine the advantages of hard and soft threshold functions
in denoising, an improved threshold function is selected to process
the wavelet coefficients. The improved threshold function is
expressed by:

wy ¼

8><
>:

signðwxÞ
�
jwxj �

�
1� 1� e�wx

1þ e�wx

�
l

�
jwxj � l

0 jwxj< l

(16)

wherewy andwx are thewavelet coefficients before and after signal
processing respectively, and l is the threshold value. To evaluate the
similarity between the original sample and the generated sample,
the Pearson correlation coefficient (PCC) is introduced as the index
of similarity evaluation. It is shown in Eq. (17).

rðX;YÞ¼ E
	�
X � x

���
Y � y

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
i¼1
�
xi � x

��2q PL
i¼1
�
yi � y

��2 (17)



Fig. 5. Experiment platform.

Fig. 6. Signal processing.

Fig. 7. Process of feature extraction.
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Usually, the correlation intensity between variables is judged by
the range of PCC. The larger the PCC value, the greater the corre-
lation between samples. As shown in Fig. 10, the values of PCC are
mainly distributed between 0.6e0.8, which proves that the
generated data is strongly correlated with the original data. Set a
lower limit of 0.6 so that generated data with high correlation is
3200
retained.
As shown in Fig. 11, the original data collected under different

working conditions is compared with the generated data, and the
original data can be well simulated by the wavelet threshold
method. In addition, in Section 4.2.2, the GA-LMmodel will be used
to evaluate the reliability of the generated data.



Fig. 8. The signal captured upstream and downstream.

Fig. 9. Signals under different operating conditions.

Fig. 10. PCC of different sample sizes.
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3.2.2. Time-domain
The waveform of the signal in the time-domain can intuitively

analyze some of the leakage signal characteristics. The central
tendency of the signal is described by the Mean and Mean Square
which can detect the energy of the vibration signal when leakage
occurs. Variance represents the dynamic component of signal en-
ergy and reflects the degree of dispersion between the leaked data,
displaying better model prediction and experimental data
description accuracy. Furthermore, the Effective Value described
the energy of the vibration signal, while the Shape Factor is used to
delineate the shape characteristics. The Crest Factor represented
the extreme degree of the peak in the waveform, while the Kurtosis
Factor indicates the smoothness of the leakage waveform and is
used to describe the distribution of variables.

Seven characteristic time-domain parameters are selected to
describe the leakage signal changes. The extracted time-domain
feature parameters and expressions are shown in Eqs. (18)e(24).
Of these, x(n) represents the signal time-domain sequence, n ¼ 1, 2,
…, N, while N denotes the number of sample points.

Mean A1 is expressed by:

A1¼ 1
N

XN

n¼1
xðnÞ (18)

Mean Square A2 is expressed by:

A2¼ 1
N

XN

n¼1
jxðnÞj2 (19)

Variance A3 is expressed by:

A3¼ 1
N � 1

XN

n¼1

"
xðnÞ � 1

N

XN

n¼1
xðnÞ

#2
(20)

Effective Value A4 is expressed by:
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A4¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1
xðnÞ2

r
(21)

Shape Factor A5 is expressed by:

A5¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
PN

n¼1xðnÞ2
q

1
N
PN

n¼1xðnÞ
(22)

Crest Factor A6 is expressed by:

A6¼ maxjxðnÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
PN

n¼1xðnÞ2
q (23)

Kurtosis Factor A7 is expressed by:

A7¼
PN

n¼1

h
xðnÞ � 1

N
PN

n¼1xðnÞ
i4

1
N�1
PN

n¼1

h
xðnÞ � 1

N
PN

n¼1xðnÞ
i4 (24)

3.2.3. Frequency-domain
The power spectrum is commonly used to analyze signal char-

acteristics. The signal energy distribution is distinguishable via
frequency-domain analysis. The characteristic statistical parame-
ters of the frequency-domain are introduced here to describe its
leakage signal properties. The Spectral Mean and Spectrum Root
Mean Square describe its fluctuation, while the Center of Gravity
Frequency represents the entire frequency band. The leakage signal
frequency distributions are described by the Mean Square Fre-
quency and Root Mean Square Frequency.

The specific characteristic frequency-domain parameters and
their formulas are shown in Eqs. (25)e(29). s(k) is the power
spectrum of the time signal x(n), k ¼ 1,2, …, K, K is the number of



Fig. 11. Original data and generated data.
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spectral lines, and fk is the frequency value of the kth spectral line.
Spectral Mean B1 is expressed by:

B1¼ 1
K

XK

k¼1
sðkÞ (25)

Spectrum Root Mean Square B2 is expressed by:

B2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K � 1

XK

k¼1

"
sðkÞ � 1

K

XK

k¼1
sðkÞ

#2vuut (26)

Center of Gravity Frequency B3 is expressed by:

B3¼
PK

k¼1fk,sðkÞPK
k¼1sðkÞ

(27)

Mean Square Frequency B4 is expressed by:

B4¼
PK

k¼1fk
2,sðkÞPK

k¼1sðkÞ
(28)

Root Mean Square Frequency B5 is expressed by:

B5¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1fk
2,sðkÞPK

k¼1sðkÞ

vuut (29)

3.3. Model structure

The extracted feature parameters included seven time-domain
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and five frequency-domain feature parameters. Therefore, the
neural network input layer contained twelve nodes, and the output
layer contained two, while the leakage situation is expressed by [1
0], and the no-leakage situation is expressed by [0 1].

Furthermore, to reduce the training number and improve
training efficiency, it is necessary to normalize the input vector
matrix, as shown in Eq. (30).

xi
* ¼ xi � xmin

xmax � xmin
(30)

where xi* is the normalized value of the i-th feature, xi is the value
of the i-th feature before normalization, xmax is the maximumvalue
of the i-th feature before normalization, and xmin is the minimum
value of the i-th feature before normalization.

The empirical Eq. (31) indicated that the optimal number of
nodes in the hidden layer is 4e13, while the number of hidden layer
neurons is initially set to 8.

h¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ n

p þ a (31)

where h is the number of nodes in the hidden layer, m is the
number of nodes in the input layer, n is the number of nodes in the
output layer, and a is a constant from 1 to 10.

During classification and recognition, the activation function
generally used the non-linear “logsig” and “tansig”. The learning
rate h of the BP neural network is between [0,1], affecting its
learning speed. A lower learning rate is generally selected to ensure
the stability of the system. The initial learning rate is set to 0.04,
while the other parameters are set as follows: the maximum
number of iterations is k ¼ 1000, while the required training



Fig. 12. The prediction results of different activation function combinations.
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precision is e¼ 0.001. The population size is 20, the crossover rate is
0.7, the mutation rate is 0.05, and the maximum number of evo-
lutions is 50. The GA-LM model is constructed based on MATLAB
software. After determining the network structure, 400 sets of
cases are used for network training, while 240 sets are employed as
network tests.

4. Results and discussion

4.1. Parameter sensitivity analysis

The parameter of the model is analyzed to improve the leak
identification reliability. The parameters analyzed mainly include
the length of the sample, input matrices, the number of hidden
layer nodes, and activation functions. The optimal structural pa-
rameters are selected to build the model.

4.1.1. Sample length
The leakage detection of pipelines in actual operation needs

high reliability and low time cost, too low accuracy and long
detection time are meaningless. The leakage signal will continue
after the leakage occurs. In principle, increasing the sample length
will increase the accuracy and time cost of leak identification.
Therefore, the selection of an appropriate sample length is very
important for leak detection. Prediction accuracy (P) and response
time (t) under different sample lengths are shown in Table 2. The
minimum sample length is 40. Considering accuracy and time cost,
a sample length of 300 is selected.

4.1.2. Activation function
Now, the influence of the activation function is explored by

unchanged the other parameters of the previously constructed
model. The activation function between the input and hidden
layers is set to “logsig” and to “tansig” between the hidden and
output layers, which is recorded as a combination of [log-tan]. In
addition, the function “SoftMax” is often used for classification
tasks. Ultimately, there are six combinations, namely [log-log], [log-
tan], [tan-log], [tan-tan], [log-sof] and [tan-sof]. The recognition
rate of the network model constructed using different combina-
tions is shown in Fig. 12. Of these, the [tan-log] combination dis-
played the highest recognition rate. Therefore, the activation
function between the input and hidden layers is set to “tansig” and
“logsig” between the hidden and output layers.

4.1.3. Input matrix
The other parameters of the previously constructed network are

kept unchanged to explore the influence of the different input
matrices. A single feature parameter is used as themodel input. The
model recognition rate of each feature parameter input is shown
separately in Fig. 13. The recognition rate of each parameter
Table 2
Prediction accuracy and response time under different sample lengths.

Sample length 40 60 80

P, % t, s P, % t, s P, % t, s

1 83.3 16.7 86.7 17.9 91.7 18.4
2 84.2 15.3 88.3 16.8 91.7 17.5
3 83.3 16.4 88.3 17.2 92.5 17.9
4 85.8 15.9 87.5 18.3 90.0 18.3
5 81.0 15.1 84.2 17.6 89.2 18.8
6 82.5 16.2 86.7 17.9 91.7 17.5
7 84.2 16.8 85.8 18.5 88.3 17.8
8 81.6 15.2 87.5 18.1 90.0 18.9
Average value 83.1 16.0 86.9 17.8 90.6 18.1
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exceeded 50%, verifying the efficacy of the time-frequency feature
extraction method.

The parameters with a recognition rate of 50% or above include
A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, and B5, which is named
T1 ¼ [ A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, B5]. The parameters
with a recognition rate of above 55% include A1, A2, A3, A4, A5, B1,
B2, B3, B4, and B5, which is named T2 ¼ [ A1, A2, A3, A4, A5, B1, B2,
B3, B4, B5]. The parameters with a recognition rate of above 60%
include A1, A2, A3, A4, A5, B1, and B4, which is named T3 ¼ [ A1, A2,
A3, A4, A5, B1, B4]. The parameters with a recognition rate of above
65% include A1, A2, A3, A4, B1, and B4, which is named T4 ¼ [A1, A2,
A3, A4, B1, B4]. The parameters with a recognition rate of above 70%
include A2 and A3, which is named T5 ¼ [A2, A3].

Different combination parameters (T1~T5) are used as the input
matrix to build the model. The recognition rate of each parameter
combination is shown in Fig.13. The recognition rate of each feature
parameter combination is higher than the recognition rate of a
single feature parameter. The network model constructed by
combining the feature parameters is more reliable. Toomany or not
enough feature parameters could not effectively represent the
leakage signal. Since the overall recognition rate of T3 is the highest,
this parameter combination is selected as the optimal input for
model construction.

4.1.4. Number of hidden layer neurons
The increase in the number of hidden layers leads to a decrease

in model performance for the multi-layer neural network, and the
recognition ability of the one-hidden-layer model is the best
(Zheng et al., 2021). Therefore, the one-hidden-layer model is
considered. To explore the influence of the number of neurons in
100 200 300 400

P, % t, s P, % t, s P, % t, s P, % t, s

93.3 19.7 95.0 20.1 95.8 23.7 95.8 24.2
93.3 18.7 94.2 18.5 95.0 21.1 95.0 25.1
94.2 18.1 95.0 19.3 95.8 19.3 95.8 23.2
92.5 19.3 94.2 20.5 95.0 19.9 95.0 23.6
90.0 18.9 93.3 18.7 94.2 18.9 95.0 24.5
94.2 18.7 95.8 19.6 95.8 19.8 95.8 23.9
91.7 19.6 94.2 20.7 95.0 20.8 95.0 24.5
93.3 17.8 95.0 20.1 95.0 21.4 95.0 25.6
92.8 18.9 94.6 19.7 95.2 20.6 95.3 24.3



Fig. 13. The prediction results of the characteristic parameter.

Fig. 14. The prediction results of different neurons in hidden layers.

Fig. 15. Network training performance.
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the hidden layer on the network, the other parameters of the
previously constructed network are kept unchanged. The optimal
number of nodes calculated via the empirical formula is 4e13.
Therefore, ten network structures are compared to obtain the best
network model. The prediction results of the number of different
hidden nodes are shown in Fig. 14. The model built with a hidden
layer of 9 neurons achieved an overall recognition rate of 95%,
which is optimal for model building.

As shown in Fig. 15(a), after 31 evolutions, the performance
tracking curve has reached stability, and the network has found
better weights and thresholds. After the data in the training set
have been trained 16 times, the Mean Square Error (MSE) of the
model is 0.000335, as shown in Fig. 15(b). The training and pre-
diction errors of the network are relatively small, and the network
does not have overfitting.
4.2. Model evaluation

4.2.1. Evaluation indicators
To represent the performance of models, the model is evaluated

based on the evaluation indicators, such as Accuracy, Precision,
Recall, F1score, MSE, Network training time (NTT), and optimality.
The Confusion Matrix is usually used to express the classification
results of the model. The Classification Matrix is shown in Table 3.
The Accuracy, Precision, Recall, and F1score are important indicators
to measure the effect of model classification (Liu et al., 2019;
Mazumder et al., 2021a).

(1) Accuracy: Representing the proportion of correct data judged
by the model.

Accuracy¼ TP þ TN
TP þ TN þ FP þ FN

(32)
(2) Precision: How many of the positive examples predicted by
the model are correct.

Precision¼ TP
TP þ FP

(33)
(3) Recall: The ratio of positive examples judged by the model to
the total positive examples in the data.

Recall¼ TP
TP þ FN

(34)
(4) F1score: Representing the effect of the classificationmodel to
recognize positive class.

F1score¼2*Precision*Recall
Precisionþ Recall

(35)
4.2.2. Evaluation of generated data
The Confusion Matrix is also used to assess the reliability of
Table 3
Confusion matrix.

Target class 1 Target class 2

Output class 1 True Negative (TN) False Negative (FN)
Output class 2 False Positive (FP) True Positive (TP)
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derived data. The green blocks can show the number of correct
classifications and their ratios in the total data, respectively.
Meanwhile, the pink blocks can present the number of mis-
classifications and their ratios in the total data, respectively. The
correct classification accuracy and false alarm rate can be found in
the dark grey blocks. Different training and testing sets are shown
in Table 4. The raw data and generated data are used for network
training and testing. The number of samples in the training set is
200 and the number of samples in the test set is 120.

Training and testing effects in three cases are shown in Fig. 16.
As shown in Fig. 16(a), (c) and (e), the training accuracy of the
model is 100%, 99% and 98.5% respectively, showing excellent
training effect. However, the testing effect of the model should be
focused, preventing the model from overfitting. As shown in
Fig. 16(b), (d) and (f), the testing accuracy of the model is 95%, 95.8%
and 95% respectively, and the false alarm rate of the model is only
5%, 4.2% and 5% respectively. Therefore, there is no overfitting of the
model. The ratio of the original data to the generated data has little
impact on the network, and the accuracy of all test sets is above
95%, indicating that the generated data is reliable.

4.2.3. Comparison of model
Firstly, a classifier combining wavelet packet decomposition and

Support Vector Machine (SVM) is studied (Qu et al., 2010). Sec-
ondly, traditional BP models based on the training function
“traingd” are compared. In addition, Markov features are used for
feature extraction of the data (Liu et al., 2019), which is abbreviated
as the ‘M-BP’ model. Thirdly, the GA-BP model combined with the
genetic algorithm and the traditional BP model is compared.
Fourthly, a K-Nearest Neighbor (KNN) classifier is studied by
selecting the K known samples that are closest to the unknown
samples for classification (Arian et al., 2020). Fifthly, a Decision Tree
(DT) classifier by partitioning the feature space is investigated
(Sabah et al., 2019). All test models use the same test data, and the
classification results of different models are shown in Fig. 17. The
Accuracy, Precision, Recall and F1score is 95%, 93.5%, 96.7% and
95.1%, respectively. The GA-LM model has a good predictive effect
for positive and negative samples. By observing the Recall, the GA-
LM model has a greater advantage for the prediction of positive
samples. The results also indicated that the classification effect of
the GA-LM model based on time-frequency features is better than
the other models.

The MSE, NTT, and Optimality are important indicators for
evaluating model performance. The results of different models are
shown in Table 5. Comparing GA-BP and M-BP the genetic algo-
rithm makes the network performance more excellent. Comparing
GA-LM and GA-BP the LM algorithm increases the convergence
speed of the network and obtains the global optimal solution. The
GA-LM model exhibited a small classification error. The MSE
showed that the performance of the GA-LMmodel is relatively high
in medium-sample prediction. The NTT is relatively short.
Compared with the traditional BP and GA-BP model, the optimized
model significantly reduced the NTT. It greatly improves the effi-
ciency of leak identification. The traditional BP algorithm easily
obtained the local optimal solution, while the GA-LM model
employed the LM algorithm to acquire the global optimal solution.

In addition, the data collected randomly during different periods
are used to verify the adaptability of themodel. As shown in Table 6,
160 raw data are collected in the field and 320 data are generated
by the derivative algorithm. The types of raw data include normal
running samples, leak running samples, and conditional running
samples.

Firstly, the performance of the leak detection method is tested
using 160 raw data. To ensure the fairness of the test results, 100
test samples are randomly selected from 160 raw data. In particular,



Table 4
Different training and test sets.

Training Testing

Raw data number Generated data number Raw data number Generated data number

Case 1 150 50 40 80
Case 2 50 150 80 40
Case 3 100 100 60 60

Fig. 16. Training and testing effects in different cases.
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each of the eight tests is completed independently. The results are
shown in Table 7. In the eight tests, the maximum detection error is
4% for all 100 samples. It shows that the model has a good pre-
diction effect for raw data collected during different periods.

Secondly, the performance of the leak detection method is
tested using 320 generated data. To ensure the fairness of the test
results, 100 test samples are randomly selected from 320 generated
data. In particular, each of the eight tests is completed indepen-
dently. The results are shown in Table 8. In the eight tests, the
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lowest recognition rate of the model is 96%. It shows that the
generated data can replace the raw data as a part of the sample
database.

Finally, 100 raw data and 100 generated data are randomly
selected each time to test the performance of different models. The
recognition results of six models are shown in Fig. 18. The recog-
nition effect of the unoptimized BP neural network is theworst, and
the average accuracy is below 80%. The GA-LM model shows
excellent stability and the average accuracy of the GA-LM model



Fig. 17. Results of different models.

Table 5
Evaluation indicators of different models.

SVM M-BP GA-BP GA-LM

MSE 2.5% 47.5% 3.05% 0.033%
NTT 6.1s 65.5s 54.2s 5.4s
Optimality Global Local Local Global

Table 6
Data collected during different periods.

Sample Type Raw
data

Generated
data

Length Acquisition
time

Normal running samples 40 80 300 10:05:24
Leak running samples 80 160 300 11:32:53
Conditional running

samples
40 80 300 14:20:41

Table 7
Experiments test under raw data.

Test number 1 2 3 4 5 6 7 8

False alarm times 3 4 2 3 2 4 3 4
False alarm rate 3% 4% 2% 3% 2% 4% 3% 4%

Table 8
Experiments test under generated data.

Test number 1 2 3 4 5 6 7 8

True alarm times 97 96 97 99 96 96 98 97
True alarm rate 97% 96% 97% 99% 96% 97% 98% 97%

Fig. 18. Accuracy of different models.
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can be reached to 96%, which can greatly improve the recognition
accuracy of the traditional BP network optimized by the proposed
optimization algorithm. The recognition effect of the GA-LMmodel
exceed that of the other models. It can be seen that the GA-LM
model based on time-frequency features has excellent perfor-
mance for actual pipeline leak detection.

5. Conclusions

This paper considers the actual oil pipeline leakage problem as
the starting point to examine the characterization method for
pipeline leakage signals. In addition, the BP network is optimized
3207
by the GA and LM. A classification model for pipeline leakage pre-
diction is constructed with the main conclusions as follows:

(1) Twelve feature parameters are extracted by the time-
frequency feature method to characterize the leakage
signal. The recognition rate of each parameter exceeds 50%,
verifying the efficacy of the time-frequency feature extrac-
tion method. The combined feature parameters are superior
to single feature parameters for classification. Finally, seven
parameters, namely the Mean, Mean Square, Variance,
Effective Value, Shape factor, Spectral Mean, and Mean
Square Frequency, are selected as the optimal input matrix of
the model.

(2) The traditional BP neural network is optimized by combining
the GA and LM algorithms, while a GA-LM classification
model is constructed for oil pipeline leakage detection. The
Accuracy, Precision, Recall and F1score is 95%, 93.5%, 96.7% and
95.1%, respectively. The average Accuracy of the GA-LM
model reached 96%, showing high robustness. The recogni-
tion effect of the GA-LM model exceeded that of the other
models. Compared with the traditional BP model, the GA-LM
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model significantly reduced the NTT. It greatly improves the
efficiency of leak identification.

(3) Considering that a large number of samples are required for
model training, a wavelet threshold method is proposed to
generate sample data with higher reliability. The ratio of the
original data to the generated data has little impact on the
network, and the accuracy of all test sets is above 95%,
indicating that the generated data is reliable.

In this paper, due to the limited experimental conditions, a large
amount of operating condition data cannot be obtained to establish
a reliable model, and the operating condition recognition of pipe-
line is not conducted. In the future, the sample database should be
enriched based on different operating condition and the operating
condition recognition should be focused.
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