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a b s t r a c t

In numerical simulation of wave propagation, both viscoelastic materials and perfectly matched layers
(PMLs) attenuate waves. The wave equations for both the viscoelastic model and the PML contain
convolution operators. However, convolution operator is intractable in finite-difference time-domain
(FDTD) method. A great deal of progress has been made in using time stepping instead of convolution in
FDTD. To incorporate PML into viscoelastic media, more memory variables need to be introduced, which
increases the code complexity and computation costs. By modifying the nonsplitting PML formulation, I
propose a viscoelastic model, which can be used as a viscoelastic material and/or a PML just by adjusting
the parameters. The proposed viscoelastic model is essentially equivalent to a Maxwell model. Compared
with existing PML methods, the proposed method requires less memory and its implementation in
existing finite-difference codes is much easier. The attenuation and phase velocity of P- and S-waves are
frequency independent in the viscoelastic model if the related quality factors (Q) are greater than 10. The
numerical examples show that the method is stable for materials with high absorption (Q ¼ 1), and for
heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

In finite-difference time-domain (FDTD) method, absorbing
boundary conditions (ABCs) are important for simulating waves
propagation in unbounded media using truncated mesh. Consid-
erable efforts have been made to develop various ABCs, see the
reviews in Komatitsch and Martin (2007). The perfectly matched
layer (PML), has proven to be the most robust and efficient tech-
nique for absorbing outgoing waves. The original (or standard) PML
was first introduced by B�erenger (1994) as a material ABC for
electromagnetic waves simulation. Then it was applied to simula-
tions of acoustic and elastic wave propagation problems (Chew and
Liu, 1996; Liu and Tao, 1997; Collino and Tsogka, 2001; Zeng et al.,
2001; Liu and Sinha, 2003). The wave equations for PML can be
formulated with complex stretched coordinates (Chew and
Weedon, 1994). These equations involve convolution operators in
the time domain. The traditional implementation of PML (B�erenger,
1994; Chew and Liu, 1996), which is referred to as SPML, spilts the
fields in PML region to avoid convolutional operations. However,
y Elsevier B.V. on behalf of KeAi Co
two different sets of equations must be solved due to field splitting.
To avoid field splitting, Wang and Tang (2003) proposed a non-
splitting PML method (NPML) by replacing the convolutional in-
tegral with an explicit time-marching scheme based on trapezoidal
integration rule. Ramadan (2003) proposed another unsplit-field
implementation of PML for Maxwell’s equations, which used
auxiliary differential equations (ADE) to update auxiliary memory
variables, namely ADE-PML.

Nevertheless, the standard PML was weakly causal (Teixeira and
Chew, 1999) and ineffective at absorbing evanescent waves
(B�erenger, 1997, 1998, 1999) and grazing-incidence waves
(Komatitsch and Martin, 2007). Kuzuoglu and Mittra (1996) intro-
duced a strictly causal form of the PML by shifting the frequency-
dependent pole off the real axis, which was then referred to as
complex frequency-shifted PML (CFS-PML) (B�erenger, 2002a,
2002b). The CFS-PML originally was implemented in a split-field
form. Three auxiliary memory variables are needed for each de-
rivative. Roden and Gedney (2000) presented an efficient imple-
mentation of CFS-PML for Maxwell’s equations, in which the
convolutional operations were performed recursively using the
recursive convolution method. They called their method as con-
volutional PML (CPML) and applied it to study electromagnetic
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scattering by a highly elongated plate. Then CPML was adapted to
the seismic wave equation (Komatitsch and Martin, 2007; Martin
et al., 2008). The CPML introduced memory variables to avoid
explicitly storing all the past states in convolution operation.
Drossaert and Giannopoulos (2007) introduced a nonsplitting
implementation of standard PML and CFS-PML based on the trap-
ezoidal integration rule. This method was called the recursive
integration PML (RIPML). Martin et al. (2010) and Zhang and Shen
(2010) proposed the ADE-PML implementation for CFS-PML.
Martin et al. (2010) demonstrated that the ADE-PML formulation
can be extended to high-order schemes in time, which implies that
it can be made more accurately. However, for a second-order time
scheme, the time-marching equations of ADE-PML have the same
form as the CPML formulations given by Komatitsch and Martin
(2007).

All the above-mentioned implementations of standard PML and
CFS-PML are developed for elastic materials. Real materials are not
perfectly elastic. Both attenuation and dispersion can be observed
when waves propagate in real materials. These behaviors can be
described by using viscoelastic constitutive equations based on
mechanical models consisting of two basic elements: springs and
dashpots. Theweightless springs represent the elastic solid, and the
dashpots, consisting of loosely fitting pistons in cylinders filled
with a viscous fluid, represent the viscous dissipation. Several
viscoelastic models have been developed. The Maxwell model
(Maxwell, 1867) is a series combination of a spring and a dashpot,
so it is more appropriate for representing a viscoelastic fluid. The
KelvineVoigt model (Kelvin and Thomson, 1875) consists of a
spring and a dashpot connected in parallel. The creep function of
KelvineVoigt model lacks the instantaneous response of real solids.
The Zener model (Zener, 1948) or standard linear solid, which
consists of a series combination of a spring and a KelvineVoigt
model, gives a more realistic representation of real materials.
There is one peak in the dissipation factor versus frequency curve
for Zener model. The Burgers model is formed with a series
connection of a KelvineVoigt element and a Maxwell element
(Carcione, 2015). To broaden the peak of dissipation factor, Liu et al.
(1976) introduced generalized Zener model by combining a finite
number of relaxation mechanisms or a continuous distribution of
relaxation mechanisms. Each relaxation mechanism represents a
single Zener model. The generalized Zener model is equivalent to a
parallel system with many Zener elements connected in parallel.
Extensive reviews on viscoelastic models can be found in Chapter 2
in Carcione (2015).

The stress-strain relation is usually formulated as convolution
operator in viscoelastic materials (Liu et al., 1976; Kjartansson,
1979). However, this representation is intractable in FDTD.
Considerable efforts have beenmade in the development of various
approaches to incorporate attenuation into FDTD computations of
wave fields in viscoelastic media. Fan et al. (2016) reviewed these
methods and divided them into two categories. In the first category,
the convolution in the time-domain was reformulated in terms of
fractional derivatives, which were computed with Grünwald-Let-
nikov approximation and central-difference approximation
(Carcione et al., 2002; Carcione, 2009; Treeby and Cox, 2010; Zhu
and Carcione, 2014; Zhu and Harris, 2014). In the second cate-
gory, memory variables were introduced, so the convolution was
replaced by a set of coupled first-order linear differential equations
(Day and Minster, 1984; Emmerich and Korn, 1987; Carcione et al.,
1988a, b; Robertsson et al., 1994; Blanch et al., 1995; Fabien-Ouellet
et al., 2017). The differential equation for each memory variable
represents a relaxation mechanism. The frequency dependent
complex moduli, attenuation and phase velocity are determined by
the relaxation times. Then, the desired attenuation property, such
as constant quality factor material (Blanch et al., 1995), can be
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obtained by choosing the number of relaxation mechanism and
their relaxation time. The computational costs and memory re-
quirements depend on the numbers of relaxation mechanism. In
addition to these methods, Dhemaied et al. (2011) proposed the
ADE implementation of FDTD modeling of two-dimensional (2D)
seismic wave propagation in viscoelastic media, similar to the ADE
implementation of the PML proposed by Ramadan (2003). Martin
et al. (2019) made a 3D extension of the ADE implementation
proposed by Dhemaied et al. (2011). When compared with the
memory variable technique, the ADE implementation is more
flexible at the cost of requiring a bit more variables (additional
strain components).

When the standard PML or CFS-PML is applied to viscoelastic
materials, new problems arise. Liu and Tao (1997) applied SPML to
absorptive fluid media. They found that an additional term
involving time-integrated pressure field had to be introduced to
account for the coupling between the loss from the PML and the
material absorption. Martin and Komatitsch (2009) applied CPML
to viscoelastic media. They also found that additional variables and
additional differential equations must be introduced in the
formulation. The number of arrays in the PML regions for a 3D
problem is 19 for elastic material, and 39 for viscoelastic material.
In CPML technique, the requiredmemory for viscoelastic material is
doubled. Liu et al. (2018) followed an approach similar to Martin
and Komatitsch (2009) for simulating seismic wave propagation
in viscoelastic media. Dhemaied et al. (2011) combined the ADE
implementation for viscoelastic media and the CPML technique,
where a total of 16 arrays were required for 2D cases. Martin et al.
(2019) applied the ADE method for both viscoelastic media and
PML. The formulations of their ADE system indicate that they also
need 39 arrays for 3D cases.

Both viscoelastic medium and PML attenuate waves. Komatitsch
andMartin (2007) noted that the idea of using memory variables in
PML was rather similar to that used in numerical modeling of
seismic wave propagation in viscoelastic materials. Carcione and
Kosloff (2013) represented the PML kernels with viscoelastic me-
chanical models. They demonstrated that the SPML method was
based on a Maxwell viscoelastic model, and the CPML method was
based on the Zener viscoelastic model.

Considering that the PML is equivalent to the damping kernel of
viscoelastic model, in this work, based on NPMLmethod (Wang and
Tang, 2003), I propose a set of wave equations that provides a
unified basis for both viscoelastic materials and the PML regions.
The equations are easy to be implemented in existing codes, and
computationally economical and stable. This work is organized as
follow. In the first part of this work I review the NPML method,
introduce a viscoelastic model, and investigate the attenuation and
dispersion in the model. Then I propose a unified set of equations
for viscoelastic materials and PML regions and demonstrate their
implementation in FDTD. In the second part, using numerical ex-
amples, I verify the attenuation in materials with various viscos-
ities, and finally I apply the new method to simulate leaky Lamb
wave propagation in multi-layered structure.

2. Formulations

In this section, I introduce a viscoelastic model by modifying
PML formulation, and illustrate its finite difference implementation
in a 2D Cartesian geometry. The formulations for 3D geometry are
given in the APPENDIX.

2.1. Nonsplitting perfectly matched layer

The NPML simplifies the numerical implementation of the split-
field PML (Chew and Liu, 1996) without sacrificing the accuracy. I
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use 2D Cartesian coordinates to repeat the NPML method for the
convenience of the following discussions. More details can be
found in Wang and Tang (2003).

For the two-dimensional case, the constitutive relations and
motion equations of an isotropic elastic material are

8<
:

vttxx ¼ ðlþ 2mÞvxvx þ lvzvz
vttzz ¼ lvxvx þ ðlþ 2mÞvzvz
vttxz ¼ mðvxvz þ vzvxÞ

; (1)

�
rvtvx ¼ vxtxx þ vztxz
rvtvz ¼ vxtxz þ vztzz

(2)

where vm denotes the spatial derivative along the m-direction,
m ¼ x, z; vx, vz are particle-velocity components; txx, tzz, txz are
stress components; r is the density, l and m are the Lam�e
coefficients.

The PML is introduced by a coordinate stretching of spatial co-
ordinates to the complex-variable domain, which in frequency
domain can be expressed as

vm/
1
sm

vm; sm ¼ 1þ Um

iu
ðm ¼ x; zÞ (3)

where Um are chosen as (Chew and Liu, 1996)

UmðmÞ ¼ vPb

L

�
1
4
m
L
þ 3
4

�m
L

�2 �
; m ¼ x; z; (4)

where L is the width of the PML region in meter, vP is the P-wave
velocity of medium in the PML region, and b is a predefined level of
wave absorption.

Assuming the eiut convention, transforming Eqs. (1) and (2) to
the frequency domain, and stretching the spatial coordinates give

8>>>>>>>><
>>>>>>>>:

iuTxx ¼ ðlþ 2mÞ iu
Ux þ iu

vxVx þ l
iu

Uz þ iu
vzVz

iuTzz ¼ l
iu

Ux þ iu
vxVx þ ðlþ 2mÞ iu

Uz þ iu
vzVz

iuTxz ¼ m
iu

Ux þ iu
vxVz þ m

iu
Uz þ iu

vzVx

; (5)

8>>><
>>>:

iurVx ¼ iu
Ux þ iu

vxTxx þ iu
Uz þ iu

vzTxz

iurVz ¼ iu
Ux þ iu

vxTxz þ iu
Uz þ iu

vzTzz

(6)

where Vx, Vz, Txx, Tzz and Txz are the velocity and stress fields in the
frequency domain.

Inversing Fourier transform Eqs. (5) and (6) gives the set of
NPML equations in time domain. By sake of simplicity, I take the
first one in Eq. (6) for example,

rvtvx ¼ð1þjxÞvxtxx þ ð1þjzÞvztxz; (7)

where jm ¼ �Ume�Umt* ðm ¼ x; zÞ are convolutional operators. The
NPML equations reduce automatically to the original wave equa-
tions when Ux and Uz vanish.

The convolution integrals are approximated with the trape-
zoidal rule. By applying second order time update, Eq. (7) can be
written as
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v
nþ1=2
x ¼ v

n�1=2
x þ Dt

r

��
vxt

n
xx þ Pnxx

	þ �
vzt

n
xz þ Pnxz

	

; (8)

where Pnxx; P
n
xz are the memory variables. These memory variables

can be updated in each iteration of the time loop using

Pnxx ¼ e�UxDtPn�1
xx � 1

2
UxDt

�
e�UxDtvxt

n�1
xx þ vxt

n
xx

�
; (9)

Pnxz ¼ e�UzDtPn�1
xz � 1

2
UzDt

�
e�UzDtvzt

n�1
xz þ vzt

n
xz

�
: (10)

The number of memory variables is the same as the number of
the spatial derivatives in Eqs. (5) and (6). A total of 8 memory
variables are needed in the PML regions. In addition to the 5
components of stress and velocity, a total of 13 arrays are required
for 2D cases.

2.2. Viscoelastic model

Both the viscoelastic material and the PML attenuate elastic
waves. P-wave and S-wave may have different attenuations in
viscoelastic material. In PML, the parametersUx andUz characterize
the attenuation of waves propagating along x- and z-direction,
respectively, regardless of the type of waves. I modify the NPML
formula to attenuate elastic waves like a viscoelastic material. I
assume a homogeneous isotropic linear viscoelastic material hav-
ing the following constitutive relations in the frequency domain

8>>>>>>>>><
>>>>>>>>>:

iuTxx ¼ l
iu

Ul þ iu
ðvxVx þ vzVzÞ þ 2m

iu
Um þ iu

vxVx

iuTzz ¼ l
iu

Ul þ iu
ðvxVx þ vzVzÞ þ 2m

iu
Um þ iu

vzVz

iuTxz ¼ m
iu

Um þ iu
ðvxVz þ vzVxÞ

: (11)

where Ul and Um are the dissipation parameters of the viscoelastic
material.

Transforming Eq. (2) to the frequency domain gives

�
iurVx ¼ vxTxx þ vzTxz
iurVz ¼ vxTxz þ vzTzz

(12)

Equations (11) and (12) constitute the set of the wave equations in
the viscoelastic material.

Defining the complex moduli

l
�
¼ l

iu
Ul þ iu

; m
� ¼ m

iu
Um þ iu

: (13)

Equation (13) has the same form as the complex modulus of a
Maxwell model given in equation (2.147) by Carcione (2015). The
dissipation parameters Ul and Um are the reciprocals of relaxation
times of a Maxwell material. Therefore, the proposed viscoelastic
model is equivalent to a Maxwell model.

2.3. Attenuation rate and phase velocity in the viscoelastic model

Using Helmholtz decomposition theorem,

u ¼ V4þ V� j; V,j ¼ 0: (14)

Following the development given by Buchen (1971) and Borcherdt
(1973), Eqs. (11) and (12) then lead to



Fig. 1. Dispersion and attenuation of S-wave in the proposed viscoelastic model. The
horizontal axis is normalized frequency, and the vertical axis is normalized attenuation
rate or phase velocity.

Fig. 2. Dispersion and attenuation of P-wave in the proposed viscoelastic model.
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8<
:

V24þ k2P4 ¼ 0

V2jþ k2Sj ¼ 0
(15)

where 4 represents the scalar potential of P-wave, and j represents
the vector potential of S-wave, and the complex wave numbers are
defined by

kP ¼ u=v
�
P ; kS ¼ u=v

�
S; (16)

and the complex velocities are defined by

v
�
P ¼

��
l
�
þ 2m

��.
r
�1

2
; v

�
s ¼ ðm�=rÞ1=2: (17)

The displacement and particle motion of inhomogeneous plane
P-wave and S-wave in viscoelastic medium have been fully dis-
cussed by Buchen (1971) and Borcherdt (1973). I am only interested
in the attenuation rate and phase velocity in the proposed visco-
elastic model. I will begin with S-wave. Let

kP ¼ kRP þ ikIP ; kS ¼ kRS þ ikIS (18)

The second parts of Eqs. (13), (16)e(18) lead to

kRS ¼ u

vuS

�
1
2
þ 1
2

�
1þ �

Um
�
u
	2 �1=2 �1=2

; kIS

¼ �Um

2vuS

�
1
2
þ 1
2

�
1þ �

Um
�
u
	2 �1=2 ��1=2

(19)

where vuS ¼ ðm=rÞ1=2 is the unrelaxed S-wave velocity. Then the
phase velocity of S-wave in the viscoelastic material is

vS ¼
u

kRS
¼ vuS

�
1
2
þ 1
2

�
1þ �

Um
�
u
	2�1=2��1=2

: (20)

Defining the attenuation rate a of a wave by

a ¼ 20
DxðmÞlog10

�
AmplitudeðxÞ

Amplitudeðxþ DxÞ


dB=m: (21)

It follows that

aS ¼ � 20
ln10

kIS ¼
4:343Um

vuS

�
1
2
þ 1
2

�
1þ �

Um
�
u
	2 �1=2 ��1=2

dB=m:

(22)

Both the phase velocity and attenuation rate of S-wave in the
viscoelastic material are frequency dependent. If the attenuation
rate is normalized by 4.343 Um/vsu, and the phase velocity is
normalized by vs

u, the attenuation rate and phase velocity will be
the same function of normalized frequency u/Um. Fig. 1 shows the
normalized dispersion and attenuation of the viscoelastic model.
The curve is the same as that in Fig. 2.4(a) in Carcione (2015) for
phase velocity of Maxwell model. The mismatch of Fig. 1 and 2.4(b)
in Carcione (2015) will be discussed later. When u/Um is greater
than 10, the phase velocity and attenuation rate remain constants.
In other words, the phase velocity and attenuation rate are fre-
quency independent for u/Um>10, then Eq. (22) gives

aSz
4:343Um

vuS
: (23)

The phase velocity and attenuation of P-wave depend on bothUl

and Um. ForUl¼Um, Eqs. (20) and (22) can be applied to the P-wave,
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just by replacing the subscript S with P, and where
vuP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
is the unrelaxed P-wave velocity. For Ul s Um, the

analytical expressions will be very complicated. However, they can
be calculated numerically by combining the first parts of Eqs.
(16)e(18), and

vP ¼ u

kRP
; aP ¼ � 20

ln10
kIP : (24)

I give some numerical examples in Fig. 2 to show that the phase
velocity and attenuation rate for P-wave are very similar to those of
S-wave even for Ul s Um. The density, unrelaxed P-wave velocity
and S-wave velocity are 2000 kg/m3, 4000 m/s, and 2300 m/s,
respectively. The horizontal axis is normalized frequency u/Ul. The
phase velocity is normalized by vP

u, and the attenuation rate is
normalized by 4.343 (Ulþ2Um)/3vPu. All the curves coincide as the
frequency increasing. A conclusion can be obtained from the Fig. 2,
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that is, for u/Ul >10,

aP z
4:343

�
Ul þ 2Um

	
3vuP

¼1:448
�
Ul þ 2Um

	
vuP

: (25)

2.4. Quality factors of the viscoelastic model

Quality factor (Q) is a very commonparameter for characterizing
wave attenuation in viscoelastic material. I use the definition of
quality factor given by Borcherdt (1973), that is, the ratio of the
peak energy density stored per cycle of forced oscillation to the loss
in energy density during the cycle. Following the development
given by Borcherdt (1973) and Carcione et al., (1988b), for homo-
geneous P-wave and S-wave, I have

QP ¼
Re

�
l
�
þ 2m

��

Im
�
l
�
þ 2m

��; QS ¼
Reðm�Þ
Imðm�Þ

: (26)

By introducing an analogous quality factor

Ql ¼
Reð~lÞ
Imð~lÞ

; (27)

after some derivations, Eqs. (13), (25) and (26) give that

Ql ¼
u

Ul
; QS ¼

u

Um
; (28)

and

QP ¼Ql þ
QS � Ql

1þ Qlð1þQ2
S Þ

QSð1þQ2
l Þ

l
2m

: (29)

The quality factor of S-wave QS is a simple linear function of
frequency. Fig. 3 shows the quality factor of P-wave QP versus
normalized frequency for three cases with various Um. It is shown
that QP is also a simple linear function of frequency. The black line
(Ul ¼ Um) also represents the curve of QS versus normalized fre-
quency u/Um. The proposed viscoelastic model is not a constant Q
Fig. 3. Quality factor of P-wave in the proposed viscoelastic model.
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model but a linear Q model. Earth materials have been shown to
have a nearly constant Q over a specified frequency range
(Wuenschel, 1965; Spencer, 1981; Murphy, 1982). The proposed
viscoelastic model can be a good approximation of the real material
within a given narrow frequency band.

For a given material with known quality factor, I use the
following equations to calculate the dissipation parameters Ul and
Um

Ul ¼
u0

Ql
; Um ¼ u0

QS
; (30)

where u0 is the central angular frequency of the source in the
simulation.

For materials with small absorption, Eq. (26) reduces to
(Borcherdt, 1973)

Q ¼ � kR

2kI
: (31)

It is the same as the expression obtained by using the definition
of Q given by White (1992), that is, the number of wavelengths a
wave must travel through the material before its amplitude drops
by a factor e-p. Eqs. (21) and (31) lead to

Q ¼4:343u
va

: (32)

The subscripts P or S is omitted in Eqs. (31) and (32) since the
equations are applicable for both P-wave and S-wave. The dissi-
pation factor of Fig. 2.4(b) in Carcione (2015) is defined to be Q�1.
That explains the difference between Fig. 1 and 2.4(b) in Carcione
(2015).
2.5. Unified set of equations for viscoelastic model and PML

For incorporating NPML into the viscoelastic wave equations, I
use Eq. (3) to stretch the spatial coordinates of Eqs. (11) and (12).
Assuming Um/u < 1 (m ¼ P, S, x, z), and omitting the second order
small quantity UmUn/u2 (m ¼ P, S and n ¼ x, z), I have the following
sets of wave equations:

8>>>>>>>>><
>>>>>>>>>:

iuTxx¼l
iu

UlþUxþiu
vxVxþ2m

iu
UmþUxþiu

vxVxþl
iu

UlþUzþiu
vzVz

iuTzz¼l
iu

UlþUxþiu
vxVxþl

iu
UlþUzþiu

vzVzþ2m
iu

UmþUzþiu
vzVz

iuTxz¼m
iu

UmþUxþiu
vxVzþm

iu
UmþUzþiu

vzVx

;

(33)

8>>><
>>>:

iurVx ¼ iu
Ux þ iu

vxTxx þ iu
Uz þ iu

vzTxz

iurVz ¼ iu
Ux þ iu

vxTxz þ iu
Uz þ iu

vzTzz

(34)

where Ul and Um characterize the attenuation due to viscoelastic
absorption, Ux and Uz characterize the attenuation due to PML. The
contribution of viscoelastic absorption and PML absorption can be
simply added up. Eqs. (33) and (34) have the same form as Eqs. (5)
and (6), the NPML equations for elastic media. Therefore, the NPML
technique in subsection 2.1 can be used to process Eqs. (33) and
(34).

Wave equations (33) and (34) reduce automatically to the wave
equations of interior viscoelastic materials when Ux and Uz vanish,
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and reduce automatically to the wave equations for interior elastic
materials when Ux, Uz, Ul and Um vanish. Thus, the proposed
equations provide a unified basis for elastic media, viscoelastic
media and their PML regions.

The approximation in Eqs. (33) and (34), omitting the second
order small quantity, only happens when all the Ux, Uz, Ul and Um

are nonzero, i.e., in the PML region. In the inner region, where
Ux¼Uz¼ 0, Eqs. (33) and (34) are exact. Since thewaves in PMLwill
be attenuated, the error caused by the approximationwill not affect
the inner region. For simplicity, I refer to the new viscoelastic PML
technique as VPML. The FDTD implementation of VPML is the same
as NPML. Therefore, the VPML is easier in implementation in
existing codes (that without PML and viscoelasticity) than SPML
and CPML. All you have to do is adding arrays to store these
memory variables and updating them in time loop.

For 2D cases, VPML (including PML regions) requires a total of 15
arrays, which are a little bit more than that required in the NPML
method for elastic media (13 arrays). The formulations of 3D ge-
ometry are given in the APPENDIX. The VPML technique requires 30
arrays in 3D viscoelastic media. The CPML (Martin and Komatitsch,
2009) and ADE-PML (Martin et al., 2019) requires 39 arrays in 3D
viscoelastic media. The memory storage in VPML is about three-
fourths of that in CPML and ADE-PML.

Comparing Eq. (9) with Eq. (26) of Komatitsch and Martin
(2007), and with Eq. (18) of Martin et al. (2010), one can find that
the time-marching formulations for the memory variables in NPML
and CPML, and for auxiliarymemory variables in ADE-PML, are very
similar to each other (note that U ¼ 1/t).

2.6. Finite difference discretization

The velocity and stress components are discretized to a stag-
gered grid (Virieux, 1986; Levander, 1988) as shown in Fig. 4. Ac-
cording to the elasto-dynamic finite integration technique
(Fellinger et al., 1995), the density at the edges, the viscoelastic
parameters Ul, Um, Ux and Uz at the corners or edges, are set to be
Fig. 4. Elementary cell of staggered grids. Locations where str
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the average of corresponding values of the surrounding cells. The
shear modulus in the corners are set to be the harmonic mean of
shear moduli of the four surrounding cells. The grid has uniform
grid spacings Dx and Dz in the x- and z-directions. The spatial de-
rivatives are approximated by forth order central differences, and
the temporal derivatives are approximated by second order central
differences (Levander, 1988). For the time domain finite difference
implementation of Eqs. (33) and (34), the readers are referred to
Section 2.1 and Wang and Tang (2003).

3. Examples

3.1. Comparison of the numeric results with the analytic results

First, I verify the VPML method by comparing the numerically
simulatedwaveforms and their spectrawith analytical ones. The 2D
model is shown in Fig. 5. The model is filled with homogeneous
viscoelastic material (r¼ 1150 kg/m3, vP ¼ 2260 m/s, vS ¼ 1190 m/s,
QP ¼ 10, QS ¼ 10). Note, QP and QS are the quality factors of P- and S-
wave at the central frequency of source, respectively. The ends of z
direction are PMLs, and the ends of x direction are set to be peri-
odical boundary conditions. A line velocity source parallel to z axis
can vibrate along x direction (z direction), and generate plane P-
wave (S-wave) advancing in x-direction. The velocity source is
added directly on the right sides of Eq. (34). The source function is

gðtÞ¼
�
2u2

0

.
g2

�
t2e�u0t=g sinðu0tÞHðtÞ; (35)

where g ¼ 2 is used to define the band-width of the source spec-
trum, u0 ¼ 2pf0, f0 ¼ 10 kHz the central frequency, and H(t) the
Heaviside step function. Four point receivers are equally spaced
(1 m) along the x direction. The PMLs are 20 cells thick, and b ¼ 8.
The grid spacings Dx and Dz are both 5.88 mm, the time step Dt is
1.5 ms.

The analytical solutions of plane wave in the unbounded ho-
mogeneous viscoelastic material will be
esses, velocities and viscoelastic parameters are defined.



Fig. 5. 2D finite-difference model of plane P-wave and S-wave propagation in un-
bounded homogeneous viscoelastic material.
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vxðx; tÞ ¼ 1
2p

ðþ∞

�∞

GðuÞeiðut�kPxÞdu; (36)

vzðx; tÞ ¼ 1
2p

ðþ∞

�∞

GðuÞeiðut�kSxÞdu; (37)

where, GðuÞ is the Fourier transform of source function gðtÞ, and kP ;
kS are complex wave numbers defined in Eq. (16).

The comparisons of numeric and analytic results are shown in
Fig. 6. The agreement of both waveforms and spectra is very good.
Only small mismatch present at low frequency. The comparisons
for various quality factor are performed. The higher the quality
factor, the better the agreement. For Q > 50, agreement between
numeric and analytic results is perfect. For Q < 4, the numerical
solution starts to deviate from the analytical solution.

3.2. Attenuation in material with low viscosity

Then, I investigate the attenuation of P-wave and S-wave in
Fig. 6. The comparison of numerical and analytic waveforms and their spectra for plane P-
QS ¼ 10. Left panel: particle velocity vx, for plane P-wave. Right panel: particle velocity vz for p
waveform is amplified.
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unbounded homogeneous viscoelastic solid (r ¼ 1600 kg/m3,
vP ¼ 2800 m/s, vS ¼ 1600 m/s). The 2D model of this example is
shown in Fig. 7. The left top corner of the interior region is defined
as the origin of coordinate system. The interior region (the dashed
rectangle, 20 cm by 10 cm) is surrounded by PMLs. The PMLs are
15 cells thick, and b ¼ 10. The grid spacings Dx and Dz are both
0.5 mm, ensuring that at least 13 cells per wavelength are used. The
time step Dt is 0.1 ms. A point force source vibrating along a di-
rection of 45� to the x-direction, is located at (5,5) cm. The source
signal is

gðtÞ¼ð1þcosð2pðt�tc=2Þ=tcÞÞcosðu0ðt�tc=2ÞÞðHðtÞ�Hðt�tcÞÞ;
(38)

where u0 ¼ 2pf0, f0 ¼ 250 kHz the central frequency. tc ¼ 3/f0 the
duration of source impulse. Both P-wave and S-wave can be excited
simultaneously in the material. There are two point receivers with
5 cm spacing. The near one R1 is 10 cm from the source. The x- and
z-component of particle velocity are recorded by the receivers.

First, the model is filled with purely elastic solid, QP ¼ ∞ and
QS ¼ ∞, that is Ul ¼ 0, and Um ¼ 0. Fig. 8 shows the simulated
waveforms, their Fourier amplitude spectra, and attenuation in
frequency domain. P-wave is dominant in the waveforms of vx
component. A 20 ms-width rectangular window is applied to the
waveform of vx to exclude S-wave. The Fourier transformation of
the signal in the rectangular window gives the Fourier amplitude
spectra of P-wave. The attenuation in frequency domain is
computed by comparing the Fourier amplitude spectra of the near
and far receivers using Eq. (21). This method is also used for S-wave
extraction from vz component.

There is no material attenuation in elastic material. The atten-
uation is caused by geometric spread. The geometric spreading of
wave excited by a point source in 2D plane is proportional to the
reciprocal of the square root of the distance from the source. The
amplitude ratio of R1 and R2 is (3/2)1/2. Using Eq. (21), the theo-
retical geometric spread attenuation from R1 to R2 will be
0.3522 dB/cm. Fig. 6 gives that the numerical geometric spread
attenuation of P-wave and S-wave are 0.3536 dB/cm and 0.3543 dB/
cm, respectively. The error between numerical values and the
wave and S-wave propagating in unbounded homogeneous elastic solid with QP ¼ 10,
lane S-wave. The numbers listed on the left side of waveform are the multiples that the



Fig. 7. 2D finite-difference model of wave propagation in unbounded homogeneous
viscoelastic material.
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theoretical values are negligible.
Then, the model is filled with viscoelastic solid with Ql ¼ 40,

QS¼ 30. Equation (29) gives thatQP¼ 32.85. Note that the proposed
viscoelastic model is not a constant Q model. Ql and QS are used to
calculate Ul and Um by Eq. (30). Then the default material attenu-
ations can be obtained using Eqs. (23) and (25), which are
aP ¼ 0.7446 dB/cm, and aS ¼ 1.421 dB/cm. The waveforms, ampli-
tude spectra and attenuation are shown in Fig. 9. The total atten-
uation is caused by geometric spreading and viscoelastic
absorption.Figs. 8 and 9 have the same model geometry. It follows
that the geometric spreading attenuation will be the same value.
Deducting the geometric spreading attenuation (0.3536 dB/cm)
from the total attenuation (1.0931 dB/cm), gives the numerical
material attenuation of P-wave 0.7395 dB/cm, which has a negli-
gible error (0.7%) from the default material attenuation of P-wave.
Similar analysis gives the numerical material attenuation of S-wave
is 1.4187 dB/cm, which has a very small deviation (0.16%) from the
default value 1.421 dB/cm.

Above numerical examples demonstrate that P-wave and S-
Fig. 8. The simulated waveforms of particle velocity, Fourier amplitude spectra and attenuati
(a) x-component of particle velocity vx, and (b) z-component of particle velocity vz.
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wave in the proposed viscoelastic model have constant attenuation
for in low attenuative material. The material attenuation can be
exactly defined by quality factors of P-wave and S-wave.

3.3. Attenuation in material with high viscosity

Most of the known viscoelastic models in finite difference
techniques are designed to treat materials with low absorption, but
fail to produce accurate or even physically meaningful results for
highly attenuative materials (Asvadurov et al., 2003). I will
demonstrate that the proposed viscoelastic model works well for
highly attenuative materials.

The model is the same as that shown in Fig. 7. However, the
point force source is located at (3,5) cm. There are seven point re-
ceivers in straight line along x-direction with 1 cm spacing. The
nearest one R1 is 1 cm from the source. The model is filled with
highly attenuative solid (QP ¼ 3.294, Ql ¼ 4, QS ¼ 3). Since QP < 10
and QS < 10, the attenuation rate of P-wave and S-wave are not
constants but frequency dependent functions. The theoretical
attenuation rate of S-wave can be obtained directly from Eq. (22).
The theoretical attenuation rate of P-wave can be calculated
numerically by using Eq. (24). Fig.10 shows thewaveforms of x- and
z-component of particle velocity recorded by receivers R6 and R7,
their amplitude spectra, numerical and theoretical attenuation rate.
In Fig. 10(b), both P-wave and S-wave appear in z-component of
particle velocity. The P-wave is excluded by a 20 ms-width rectan-
gular window to obtain the attenuation of S-wave. The geometric
spreading attenuation is deducted from the total attenuation. The
numerical material attenuations of both P-wave and S-wave have a
good agreement with the theoretical material attenuation in the
effective frequency band of the source.

One interesting phenomenon in Fig. 10(b) is that P-wave ap-
pears at a very strong amplitude in the particle-velocity component
perpendicular to the direction of wave propagation, that is very
on in frequency domain, in unbounded homogeneous elastic solid with QP ¼∞, QS ¼∞.



Fig. 9. Same as Fig. 8 except for QP ¼ 32.85, QS ¼ 30.

Fig. 10. Same as Fig. 8 except for QP ¼ 3.294, QS ¼ 3. The geometric spread attenuation has been deducted from the total attenuation.
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different from the waveform in purely elastic material shown in
Fig. 8(b). It is because that, in a viscoelastic material, the inhomo-
geneous P-wave or S-wave have elliptical particle motion, and the
direction of maximum energy flow is not the direction of phase
propagation (Buchen, 1971; Borcherdt, 1973).
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Next, the model is filled with solid of very high viscosity
(Ql ¼ 1.2, QS ¼ 1, and hence QP ¼ 1.07). The simulated waveforms
are shown in Fig. 11. PMLs are unnecessary because the waves
disappear before they strike the model boundaries. The waves
attenuate so rapidly that the waveforms recorded by the far



Fig. 11. The simulated waveforms of particle velocity in homogeneous viscoelastic solid with QP ¼ 1.07, QS ¼ 1. (a) x-component of particle velocity, and (b) z-component of particle
velocity. The number listed above each waveform is the multiple that the waveform is amplified.

Fig. 12. Reflections at the interface of two viscoelastic material with different viscosity. (a) Finite-difference model. The quality factors are QP ¼ 43, QS ¼ 40 for upper layer, and
QP ¼ 4.3, QS ¼ 4 for the lower layer. (b) Snapshot of x-component of particle velocity at 40 ms. (c) Snapshot of z-component of particle velocity at 40 ms.
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receivers have to be amplified in order to be plotted in one panel.
The numbers listed in Fig.11 are howmany times the amplitude has
been amplified. There are no longer distinct wave packets of P-wave
and S-wave. Only low frequency components of the original wave
packet survive after propagating 6 cm (from R1 to R7). Their am-
plitudes drop to several millionths. The computation is stable for
highly attenuative material.
Fig. 13. Finite-difference model of leaky Lamb wave in layered viscoelastic materials.
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3.4. Reflection due to inhomogeneity of viscosity

Example shown in Fig. 12 illustrates the reflection due to in-
homogeneity of viscosity. The interior region of the model is a
20 cm by 20 cm square, which is divided into two layers. The upper
layer has quality factors Ql ¼ 50 (QP ¼ 43), QS ¼ 40, and the lower
layer has quality factors Ql ¼ 5 (QP ¼ 4.3), QS ¼ 4. Both layers have
the same density, P- and S-wave velocities. A point force source
vibrating along z-direction is located at the center of the square
(10,10) cm. The interface is located at z ¼ 14 cm. Fig. 12 (b) and (c)
are the snapshots of vx and vz component at 40ms. There are re-
flected P-wave and S-wave while P-wave or S-wave strikes on the
interface. The vx component is antisymmetric across the interface at
z ¼ 14 cm, and the vz component is symmetric across the interface.
More examples show that the reflection coefficient is proportional
to the viscosity contrasts between the two layers. This phenome-
non is caused by the reflection of inhomogeneous waves and is
consistent with the prediction by Borcherdt (1982). Therefore, the



Table 1
Acoustic parameters of finite difference model.

Layer Thickness, cm r, kg/m3 vP, m/s vS, m/s Ql QS QP

Water 3.2 1000 1500 e 100 e 100
Steel 0.8 7800 5930 3250 1000 1000 1000
Cement 4 1150 2260 1190 18 15 15.9
Formation 2 2180 3960 2350 30 25 26.5
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parameters in PML regions have to be gradual to minimize the
reflection due to inhomogeneous viscosity.
3.5. Leaky lamb wave in multi-layered structure

In this example, leaky Lamb waves in layered viscoelastic
materials are simulated. The background is about the cement
bond evaluation (Al-Suwaidi et al., 2009). The model is shown in
Fig. 14. The simulated waveforms (a) and snapshots of stress component txx (b)
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Fig. 13. It is a 4-layered model used to approximate a cased well
filled with cement between the steel casing and the formation.
The transmitter is simulated by point sources arranged in a 2 cm
line. To generate and receive Lamb wave, the inclination angle of
transmitter and receiver is 36�. The coordinates of the transmitter
center are (3 cm, 1 cm). There are two line-receivers, 10 cm apart.
The distance between the transmitter and the first receiver R1 is
30 cm. The recorded waveform is the mean value across the line-
receiver. The material parameters are listed in Table 1. Fig. 14
shows the simulated waveforms and snapshots of stress compo-
nent txx. For comparison, Fig. 15 shows the same results for purely
elastic materials, which are obtained just by setting the visco-
elastic parameters Ul and Um of all layers to be zero. The first
arrival is zero-order symmetric mode (S0) of Lamb wave in the
steel plate, which is suppressed by the special tilt angle of trans-
mitter and receivers. The second arrival is zero-order anti-sym-
metric mode (A0) of Lamb wave, which is also called as the leaky
of the model shown in Fig. 13. The model parameters are shown in Table 1.



Fig. 15. Same as Fig. 14 except for that all the materials are purely elastic.
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Lamb wave, or flexural wave. The flexural wave radiates into the
cement in the form of P-wave and S-wave, which can be reflected
by the third interface (cement-formation interface). These re-
flections (PP, PS/SP, SS), also known as the third interface echo
(TIE). The time difference between TIEs and primary A0 depends
on the thickness and wave velocity of cement annulus. Therefore,
TIEs can be used to image cement annulus geometry (Al-Suwaidi
et al., 2009). The amplitude of TIEs depends on the cement vis-
cosity and the roughness of third interface. Light cement usually
has high absorption. The use of light cement in well completion
will bring additional difficulty to the geometric imaging of cement
annulus.
4. Conclusions

By modifying the NPML formula, I develop the VPML method to
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simulate the wave propagation in viscoelastic materials and their
PMLs. The VPML method, which provides a unified basis for elastic
media, viscoelastic media, and their PML regions, is easier in
implementation in existing FDTD codes than existing PML tech-
niques. The memory storage required in VPML is about three-
fourths of that required in CPML. Another advantage of VPML
method is that it is stable in simulating waves in highly attenuative
materials (Q ¼ 1).

The proposed viscoelastic model is equivalent to Maxwell
model. The relations between dissipation parameters Ul, Um and
quality factors QP and QS are established. For viscosity material with
Q > 10, which covers most of the real material, the viscoelastic
model has frequency independent attenuation and phase veloc-
ities. For material of high viscosity (Q < 10), both the attenuation
and phase velocities depend on frequency. Numerical examples
show that the dissipation parameters can accurately characterize
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the attenuation of P-wave and S-wave. The contrasts in viscosity at
boundaries give rise to reflected waves. The example about leaky
Lambwaves inmulti-layered structure demonstrates that the VPML
method is also stable for heterogeneous media with high acoustic
impedance contrast and viscosity contrast.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix. Formulations for 3D cases

The set of wave equations of VPML method for 3D cases can be
easily extended from the formulations for 2D casing.
8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

iuTxx ¼ l
iu

Ul þ Ux þ iu
vxVx þ l

iu
Ul þ Uy þ iu

vyVy þ l
iu

Ul þ Uz þ iu
vzVz þ 2m

iu
Um þ Ux þ iu

vxVx

iuTyy ¼ l
iu

Ul þ Ux þ iu
vxVx þ l

iu
Ul þ Uy þ iu

vyVy þ l
iu

Ul þ Uz þ iu
vzVz þ 2m

iu
Um þ Uy þ iu

vyVy

iuTzz ¼ l
iu

Ul þ Uz þ iu
vxVx þ l

iu
Ul þ Uy þ iu

vyVy þ l
iu

Ul þ Ux þ iu
vzVz þ 2m

iu
Um þ Uz þ iu

vzVz

iuTxy ¼ m
iu

Um þ Ux þ iu
vxVy þ m

iu
Um þ Uy þ iu

vyVx

iuTxz ¼ m
iu

Um þ Ux þ iu
vxVz þ m

iu
Um þ Uz þ iu

vzVx

iuTyz ¼ m
iu

Um þ Uy þ iu
vyVz þ m

iu
Um þ Uz þ iu

vzVy

: (A1)
8>>>>>>>>><
>>>>>>>>>:

iurVx ¼ iu
Ux þ iu

vxTxx þ iu
Uy þ iu

vyTxy þ iu
Uz þ iu

vzTxz

iurVy ¼ iu
Ux þ iu

vxTxy þ iu
Uy þ iu

vyTyy þ iu
Uz þ iu

vzTyz

iurVz ¼ iu
Ux þ iu

vxTxz þ iu
Uy þ iu

vyTyz þ iu
Uz þ iu

vzTzz

: (A2)

where Vx, Vy, Vz, Txx, Tyy, Tzz, Txy, Txz and Tyz are the velocity and stress
fields in the frequency domain. Ul and Um characterize the atten-
uation due to viscoelastic absorption. Ux, Uy and Uz characterize the
attenuation due to PML absorption. A total of 30 variables are
required. Nine of them are the velocity and stress fields, and 21 of
them are memory variables.
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