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a b s t r a c t

The transverse relaxation time (T2) cut-off value plays a crucial role in nuclear magnetic resonance for
identifying movable and immovable boundaries, evaluating permeability, and determining fluid satu-
ration in petrophysical characterization of petroleum reservoirs. This study focuses on the systematic
analysis of T2 spectra and T2 cut-off values in low-permeability reservoir rocks. Analysis of 36 low-
permeability cores revealed a wide distribution of T2 cut-off values, ranging from 7 to 50 ms. Addi-
tionally, the T2 spectra exhibited multimodal characteristics, predominantly displaying unimodal and
bimodal morphologies, with a few trimodal morphologies, which are inherently influenced by different
pore types. Fractal characteristics of pore structure in fully water-saturated cores were captured through
the T2 spectra, which were calculated using generalized fractal and multifractal theories. To augment the
limited dataset of 36 cores, the synthetic minority oversampling technique was employed. Models for
evaluating the T2 cut-off value were separately developed based on the classified T2 spectra, considering
the number of peaks, and utilizing generalized fractal dimensions at the weight <0 and the singular
intensity range. The underlying mechanism is that the singular intensity and generalized fractal di-
mensions at the weight <0 can detect the T2 spectral shift. However, the T2 spectral shift has negligible
effects on multifractal spectrum function difference and generalized fractal dimensions at the weight >0.
The primary objective of this work is to gain insights into the relationship between the kurtosis of the T2
spectrum and pore types, as well as to predict the T2 cut-off value of low-permeability rocks using
machine learning and data augmentation techniques.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Deeply understanding the global pore structure of porous rocks
is the crucial step to addressing microcosmic challenges in petro-
leum science (Dullien, 2012; Gao and Li, 2016; Blunt, 2017). Among
various experimental methods, nuclear magnetic resonance (NMR)
spectra of transverse relaxation time T2 have emerged as a unique
y Elsevier B.V. on behalf of KeAi Co
downhole-calibration technique, offering numerous opportunities
to probe pore structure. This includes studying pore deformation
and evolution, pore types, fluid distribution and migration, capil-
lary pressure curve reconstruction, porosity inversion, as well as
permeability and irreducible water saturation estimations in recent
decades (Yan et al., 2019; Guo et al., 2020; Liu et al., 2020b; Tang
et al., 2022; Zhang et al., 2022). NMR T2 spectra provide rich
quantitative information on pore structure, such as pore size dis-
tribution, porosity, and fluid saturation. This information can be
obtained by combining T2 spectra in fully water-saturated and
centrifuged states (Li et al., 2020a; Wang et al., 2020; Yan et al.,
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2020; Liu et al., 2021b). Compared to other experimental methods
like fluid-intrusion testing (Wang et al., 2019; Jiao et al., 2020; Liu
et al., 2020a) and imaging (Blunt et al., 2013; Bultreys et al., 2016;
Liu et al., 2016; Mehmani et al., 2020), NMR provides unique ad-
vantages in exploring various aspects of pore structure in porous
rocks.

In NMR T2 spectra, the “T2 cut-off value” is a crucial parameter
used to classify pore systems into different pore types (Yao et al.,
2010). It separates pores into two categories: “free fluids” for
pores with T2 values higher than the cut-off value, where fluids can
flow freely, and “bound fluids” for pores with T2 values below the
cut-off value, where fluids are trapped (Morriss et al., 1997). The T2
cut-off value serves as a boundary for estimating permeability and
irreducible water saturation and is determined by comparing the
cumulative curves of NMR T2 spectra in fully water-saturated and
centrifuged states. However, experimental determination of the T2
cut-off value is often challenging and time-consuming. In practical
applications, an empirical T2 cut-off value is commonly assigned to
all samples of a specific lithology. For example, sandstone may be
assigned a T2 cut-off value of 33ms, carbonate 90ms, and limestone
100 ms (Coates et al., 1999; Hidajat et al., 2004). Nevertheless,
increasing experimental evidence suggests that using a fixed T2 cut-
off value is inadequate for estimating reservoir properties, even
within different porous rocks of the same lithology (Wang et al.,
2004; Ge et al., 2011). For instance, the T2 cut-off value ranges for
coal and shale are approximately 2e40 ms and 0.1e3 ms, respec-
tively (Yao et al., 2010; Testamanti and Rezaee, 2017; Li et al.,
2020b).

Various estimation models have been proposed to determine
the T2 cut-off value, considering different factors related to the T2
spectrum. Some models employ simple statistical methods, such as
the weighted sum of T2 amplitudes (Oraby et al., 1997), linear
arithmetic average of T2 cut-off values (Kleinberg and Boyd, 1997),
T2 geometric mean of the last peak (Mai and Kantzas, 2002), and
magnetic susceptibility (Nicot et al., 2016). However, the T2 cut-off
value is influenced by several factors, including lithology (Ge et al.,
2011), pore types (Westphal et al., 2005), wettability, and temper-
ature (Godefroy et al., 2002).

The complete NMR T2 spectrum represents a complex and
highly disordered system with self-similar characteristics (Wang
et al., 2018a). Therefore, it is more appropriate to evaluate the T2
cut-off value based on the distribution characteristics of the entire
T2 spectrum, rather than relying solely on specific morphological
parameters. Fractal theory, including monofractal and multifractal
analysis, has demonstrated the feasibility of NMR T2 spectrum
analysis (Wang et al., 2018b; Guo et al., 2019; Wu et al., 2020; Liu
et al., 2021a). While monofractal analysis has inherent limitations
and cannot fully capture the complex distribution characteristics
across different pore scales (Chen et al., 2017; Fu et al., 2019),
multifractal and generalized fractals provide a hierarchical
approach to determine the multi-scale and heterogeneous pore
characteristics of the target of interest (Zhao et al., 2017, 2019).

Multifractal parameters play a significant role in determining
the pore size distribution, which in turn is utilized to estimate the
T2 cut-off values in coal and shale reservoirs. Several studies have
been conducted in this area. Ge et al. (2015) proposed a fractal T2
cut-off model using multiple linear regression of generalized fractal
dimensions for sandstones with complex pore structures. Xiao et al.
(2018) developed new normal distribution functions to simulate
fully water-saturated NMR T2 spectra and estimated various T2 cut-
off values. Zheng et al. (2019) developed a newmodel for the T2 cut-
off value, which was tested on 15 samples of bituminous coals and
anthracite coals using multiple linear fitting. Hu et al. (2020)
introduced the flow zonation index into the T2 cut-off fractal
model using multiple linear regression for 10 tight sandstones in
3412
the eastern Ordos Basin. Zhao et al. (2021) tested five predictive
models developed by multiple linear fitting of multifractal pa-
rameters and T2 cut-off values on four types of coal samples. Sun
et al. (2021) found strong positive correlations between general-
ized fractal dimensions, singularity strength, and T2 cut-off values
in three ranks of coals. Liu et al. (2021b) observed a slight negative
correlation between NMR T2 cut-off values and fractal dimensions
calculated from centrifugal T2 spectra in oil shale reservoirs.
Although the aforementioned studies have achieved significant
success in estimating the T2 cut-off value, the relationship between
T2 spectrum kurtosis and pore types remains unclear. Additionally,
previous studies have mainly focused on shale, coal rock, and tight
sandstone (Table 1), with limited attention given to the NMR
morphological features and estimation of T2 cut-off values in low-
permeability sandstones. Due to the high cost of NMR experi-
ments, the number of available samples is often limited (Table 1).
Therefore, the utilization of the latest data augmentation methods
is desirable for estimating NMR T2 cut-off values.

In this study, an experimental investigation was conducted to
analyze the kurtosis characteristics of T2 spectra from 36 low-
permeability cores and examined their relationships with
different pore types. The multifractal characteristics of the T2
spectra were also analyzed. The correlations between the T2 cut-off
value and various petrophysical parameters, geometric morpho-
logical parameters, and multifractal parameters were established.
To enhance the dataset, the synthetic minority oversampling
technique (SMOTE) was employed to augment the multifractal
dataset with measured T2 cut-off values. Subsequently, we
compared and analyzed the performance of three commonly used
machine learning algorithms for predicting the T2 cut-off values.
Furthermore, we employed the SHapley Additive exPlanation
(SHAP) method to identify the main factors influencing the
modeling of T2 cut-off values. Additionally, we discussed the impact
of the T2 spectrum's location relative to the X-axis on multifractal
spectra. The main objective of this study is to gain insights into the
pore types and improve the prediction of T2 cut-off values for low-
permeability rocks by considering T2 spectrum kurtosis and
employing machine learning techniques with data augmentation.
2. Experimental and multifractal analysis

2.1. Theory of NMR, fractal, and multifractal

NMR T2 time of pore fluids in porous media comprises three
components: surface relaxation time T2S, bulk relaxation time T2B,
and diffusion relaxation time T2D, which satisfy the following
relationship (Kleinberg and Boyd, 1997; Coates et al., 1999):

1
T2

¼ 1
T2B

þ 1
T2S

þ 1
T2D

¼ 1
T2B

þ r2

�
S
V

�
þ DðgGTEÞ2

12
(1)

where r2 represents the transverse surface relaxation rate, m/s; S/V
is specific surface area, the ratio of pore surface area and pore
volume; D represents diffusion coefficient, m2/s; g represents the
gyromagnetic ratio, MHz/T; G represents the field intensity
gradient, T/mm; TE is the echo interval, ms. For cores fully saturated
with water, the free relaxation time of hydrogen nuclei in water is
so long that 1

T2B
z0 in the uniform external magnetic field G ¼ 0.

Thus, T2 can be simplified as (Daigle and Johnson, 2016):

1
T2

¼ 1
T2S

¼ r2
S
V

(2)

In the capillary bundle model, the specific surface area of the



Table 1
Summary of predicting NMR T2 cut-off values for different reservoir rocks using fractal and multifractal theory.

Authors Rock type Number of cores Locationa Range of T2 cut-off valueb T2 spectrum kurtosis Methods for T2 cut-
off value models

Westphal
et al. (2005)

Carbonate
Rocks

36 (12-PP; 30-IP;
8-MP; 5-V; 6-FP)

USA; Canada; Abu Dhabi;
Norway.

PP:60.4; IP:64.7; MP:68.7; V:442.9; FP:24.1. N/A N/A

Ge et al.,
(2015)

Siltstone 15 Guantao Formation, China 41.179 (7.243e69.327). Bimodal Multiple linear
regression

Testamanti
and Rezaee
(2017)

Shales 4 Carynginia Formation, PB,
Western Australia

0.24(n ¼ 3); 0.26(n ¼ 1). Trimodal all N/A

Wang et al.,
(2020)

SR, CR 8 (4-SR; 4-CR) Shahejie Formation, BBB SR: 5.61(1.55e9.64); CR: 3.985(5.57e1.86). half of Unimodal, half
of Bimodal.

Multiple linear
regression

Xiao et al.,
(2018)

Tight
sandstones

36 Triassic tight sandstones,
SOB

17.896 (6.31e50.1). Unimodal; Bimodal;
Trimodal.

Integrate with the
simulated curve

Zheng et al.
(2019)

Coals 15 (5-SJ; 5-NQ; 5-
SQ)

SJB; NQB; SQB SJ:4.396 (0.62e11.11); NQ:4.264 (2.02
e8.24); SQ:7.274 (1.82e12.66).

Trimodal mainly,
Bimodal partly.

Multiple linear
regression

Wang et al.,
(2020)

SR, CR 8 (4-SR; 4-CR) Shahejie Formation, BBB SR: 5.61(1.55e9.64); CR: 3.985(5.57e1.86). Half of Unimodal, half
of Bimodal.

Multiple linear
regression

Hu et al.
(2020)

Sandstone 10 Benxi, Taiyuan and Shanxi
Formations, EOB

21.057 (9.72e35.16). Unimodal mainly,
Bimodal partly.

Multiple linear
regression

Zhao et al.
(2021)

Coals 32 (8-CZ; 8-GD; 8-
GHS; 8-PDS)

CZ, GD, GHS PDS coal mines,
China

CZ: 0.558 (0.37e0.74); GD: 0.51 (0.3e0.6);
GHS: 0.524 (0.39e0.63); PDS: 0.161 (0.13
e0.21).

Trimodal mainly,
Bimodal partly.

Multiple linear
regression

Sun et al.
(2021)

Coals 10- anthracite; Henan, Shanxi, and Inner
Mongolia, China

0.38e0.62, 0.22e0.32, 0.11e0.23. Depends on coal rank BP neural network
10- bitumite
10- lignite

This study Low-
permeability
sandstones

36 cores with 525
augmented
samples

Huangliu, Liushagang
Formations, YSB, QDNB,
BBWB, PRMB

24.08 (7e50). Unimodal and Bimodal
mainly, Trimodal
rarely.

Machine Learning
integrated with
SMOTE

a Note: SJB-Southern Junggar Basin, NQB-Northern Qinshui Basin, SQB-Southern Qinshui Basin, EOB-eastern Ordos Basin, BBB-Bohai Bay Basin, PB-Perth Basin, CZ-
Chengzhuang, GD-Guandi, GHS-Guhanshan, PDS-Pingdingshan, SR-Siliciclastic Rocks, CR-Carbonate Rocks, PP-Primary pores, IP-Intercrystalline pore, MP-Moldic Pore, V-
Vuggy, FP-Infilled pore.

b Average (min-max).
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porous medium is a function of mean pore radius r (Sigal, 2015):

1
T2

¼ r2
Fs
r

(3)

where Fs represents the geometric factor, dimensionless. For cy-
lindrical pores, Fs is equal to 2. Thus, T2 spectrum is a function of
pore radius, reflecting the pore size distribution (Fig. 1) (Yan et al.,
2020). In the NMR experimental results, the T2 spectrum obtained
after porosity correction is a frequency histogram of T2 where the y-
axis is the porosity increment, which can be expressed as:

T2 ¼ f ðrÞ¼ fP2ig (4)

T2 is a discrete variable where P2i represents the porosity
increment at the corresponding time T2i. Thus, the T2 spectrum is a
one-dimensional (1D) mass field of porosity increment. For a 1D
mass field, the box-counting method was used to calculate the
multifractal dimensions (Stanley and Meakin, 1988; Lopes and
Betrouni, 2009). After a viewing scale ε was specified, the fP2ig
was divided into N equal-size interval with a length size of ε. In i-th
interval, the cumulative porosity incrementMiðεÞwas counted. The
mass probability function PiðεÞ of the i-th box can be calculated as:

PiðεÞ¼
MiðεÞ

PNðεÞ
1

MiðεÞ
(5)

For an inhomogeneous 1D mass field satisfying a multifractal,
PiðεÞ satisfies a fractal up-scaling relationship with the box scale ε,
which can be written as:

PiðεÞfε
�ai (6)

where ai represents the Lipschitz-H€older singularity exponent,
3413
characterizing the singularity strength of the data distribution. The
total number of sub-intervals with the same PiðεÞ value was
counted as NaðεÞ. Similarly, NaðεÞ also satisfies the fractal scale law:

NaðεÞfε
�f ðaÞ (7)

where f ðaÞ vs. a is the multifractal spectrum, describing how dense
the distribution is. With the moment method, a partition function,
cqðεÞ, is used:

cqðεÞ¼
XN
i¼1

Pqi ðεÞfε
tðqÞ (8)

where tðqÞ is the quality index, commonly ranging from �10 to 10
to reflect the contributions of PiðεÞ, which will be affected by sub-
intervals with large PiðεÞ at q > 0, and vice versa. tðqÞ can be
calculated by taking the log of Eq. (8) on both sides:

tðqÞ¼ � lim
ε/0

logcðq; εÞ
log ε

¼ � lim
ε/0

PNðεÞ
i¼1

Pqi ε

log ε

(9)

f ðaÞ vs. a can be obtained by Legendre transform as (Chhabra and
Jensen, 1989; Lopes and Betrouni, 2009):

a ¼ dðtðqÞ Þ
dq

¼ d
dq

�
lim
ε/0

logXqðεÞ
log ε

�

f ðaÞ ¼ aq� tðqÞ
(10)

For the mathematically perfect fractal subjects (in 1D, 2D, and
3D), the multifractal spectrum of f ðaÞ vs. a is a symmetric smooth
convex curve. However, for the multifractal subjects, the multi-
fractal spectrum shows a symmetrical characteristic (Cheng, 1999).



Fig. 1. Schematic diagram illustrating the conventional and developed methods for determining the T2 cut-off value using the saturated T2 spectrum, including (a) the conventional
centrifugal experimental method with NMR test again; (b) the morphological method combined with the mathematical fitting; (c) fractal and multifractal methods with un-
classified T2 data; (d) the developed method combing multifractal analysis with SMOTE-based machine learning regressions on the classified T2 data by curve kurtosis.
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Generally, the singular intensity range Da (amax � amin) and the
corresponding multifractal spectrum function difference
Df ½¼ f ðaminÞ�f ðamaxÞ� are two key parameters to investigate the
multifractal features, and to characterize the heterogeneity of pore
information reflected by NMR T2 spectrum.

Through the tðqÞ, the generalized fractal spectrum Dq can be
defined as:
3414
Dq ¼ 1
q� 1

lim
ε/0

log
PN
i¼1

Pqi ðεÞ

log ε

¼ tðqÞ
q� 1

ðqs1Þ (11)

where D0 ¼ � lim
ε/0

log NðεÞ
log ε

ðq ¼ 0Þ, known as the capacity dimen-

sion, single fractal dimension; D1 ¼ lim
ε/0

PNðεÞ
i¼1

PiðεÞlog PiðεÞ
log ε

ðq¼ 1Þ;

called as information dimension; D2 ¼ lim
ε/0

PNðεÞ
i¼1

P2
i ðεÞ

log ε
(q ¼ 2), called
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correlation dimension. Similarly, for the mathematically perfect
fractal subjects (in 1D, 2D and 3D), the generalized fractal spectrum
of Dq vs. q is a horizontal line. However, for the multifractal sub-
jects, the generalized fractal spectrum commonly shows an S-
shaped characteristic (Chen et al., 2017; Zhao et al., 2019). Next,
pore system, morphological, and multifractal analysis of the T2
spectrum were performed (Fig. 1).

2.2. Sampling and experiments

A total of 36 low-permeability sandstone cores were collected
from various basins, formations, and wells. The specific sampling
locations are depicted in Fig. 2. These core samples were obtained
from 19 wells with available core data, and they were extracted
from depths ranging from 1200 m to 4000 m. Each core sample has
a diameter and length of 3.5 cm. At the Zhanjiang Experimental
Center of China National Offshore Oil Corporation (CNOOC), all
cores underwent analysis for petrophysical properties, including
porosity and corrected permeability. Additionally, for this analysis,
four conventional reservoir sandstones were selected, with low-
permeability rocks constituting 89% of the samples.

To prevent any water-rock reactions, the cores were fully satu-
rated with brine using a 1% KCl concentration. The saturation
process was conducted at a pressure of 30 MPa for 48 h. The NMR
experiments were carried out at a temperature of 28 �C and a
relative humidity ranging from 50% to 70% RH. The experimental
parameters for NMR included a waiting time of 3000 ms, an echo
interval of 0.2 ms, and a total of 4096 echoes were collected. The T2
spectrum inversionwas performed using the Butler-Reeds-Dawson
algorithm (Butler et al., 1981) based on the measured Carr-Purcell-
Fig. 2. Sampling location map of 36 low permeable cores, (a) Geographical location of the fou
(BBWB), Pearl River Mouth Basin (PRMB); (b) Structural map of Wenchang and Yangjiang Sag
showing the Dongfang Sag of YSB, the Songtao, Yacheng and Lingshui Sags of QDNB.
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Meiboom-Gill echo trains (Ge et al., 2017). During the centrifuga-
tion experiments, the CSC-12 high-speed refrigerated centrifuge
from Shanghai Lu Xiangyi centrifuge instrument Co., Ltd. Was uti-
lized. The cores were subjected to centrifugation at a speed of
8000 rpm for 3 h, generating a centrifugal pressure of 2.425 MPa.
These centrifugation conditions adhere to the guidelines specified
in the National Standard SY/T 6490e2014.

3. Results and discussion

3.1. Characteristics of samples and NMR T2 spectra

The petrophysical properties of the low-permeability rocks
exhibit significant variability. The porosity values determined using
helium-based measurements range from 7.40% to 26.8%, with an
average value of 16.79%. The NMR-based porosity calculations yield
a range of 7.46%e26.60%, with an average value of 16.77%. The scale
factor F for the porosity component falls within the range of 22e24.
The NMR-based porosity is in good agreement with the porosity
measured from the cores (Fig. 3), indicating that all relaxation
signals can be captured within the current echo interval, and the
samples do not contain fast relaxation components (Ge et al., 2021).
The permeability of the low-permeability rocks ranges from 0.02
mD to 30.10 mD, with an average value of 7.38 mD. In contrast, the
permeability of the four conventional sandstones is 93.6 mD,
168.00 mD, 496.00 mD, and 702.00 mD, respectively. The T2 cut-off
values for the low-permeability rocks range from 7 ms to 50 ms,
with an average value of 23.25 ms. For the four conventional cores,
the T2 cut-off values are 20 ms, 30 ms, 30 ms, and 40 ms. Impor-
tantly, the T2 spectra of the low-permeability sandstones exhibit a
r basins sampled: Yinggehai Basin (YSB), Qiongdongnan Basin (QDNB), Beibuwan Basin
s of PRMB; (c) Structural map of Weizhou and Wushi Sags of BBWB; (d) Structural map



Fig. 3. Cross plot of NMR-based porosity and helium-based porosity where the dotted
line is a 1:1 standard line.
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multimodal morphological feature, including unimodal, bimodal,
and trimodal modes, which are rarely observed in other rock types
such as shale and coal (Fig. 4). Specifically, in this dataset, there are
13 samples with unimodal modes, 19 samples with bimodal modes,
and four samples with trimodal modes (Fig. 4).

3.2. Pore system vs. T2 spectrum kurtosis

The multimodal morphological feature observed in the T2
spectra of low-permeability sandstones is closely related to the
complex pore system present in these rocks. The 2D pore
morphological characteristics were examined using thin sections,
while the 3D pore size distribution characteristics were quantita-
tively analyzed using mercury intrusion capillary pressure (MICP).
The complex diagenesis and deposition processes of low-
permeability sandstones contribute to the presence of various
pore types (Chen et al., 2018; Zhao et al., 2022a). The hybrid pore
system in low-permeability sandstones comprises different pore
types, as illustrated in Fig. 5. These pore types can be classified
based on their origin and include primary, mold, dissolution, frac-
ture, and clay-associated pores (Westphal et al., 2005). Each pore
type exhibits distinct morphological features and size distributions.
Furthermore, the T2 spectrum can be converted into a pore size
distribution, allowing for the identification of different pore types
(Xiao et al., 2018). Based on the peak locations in the T2 spectrum,
pores can be categorized into four types: non-pore, micro-pore,
meso-pore, and macro-pore regions. These regions correspond to
grains and matrix (non-pore), clay-bound water (micro-pore),
capillary-trapped water (meso-pore), and mobile water (macro-
pore) in the NMR signal, respectively (Fig. 5) (Zhong et al., 2020).

The morphology of the T2 spectrum (Fig. 6a) is determined by
the combination of different pore types present in the rock. In the
case of the trimodal type, the T2 spectrum is influenced by the
presence of extra-large dissolution pores along with primary pores
and clay-associated pores, resulting in a trimodal distribution
(Fig. 6c). The dissolution of feldspar grains leads to the precipitation
of kaolinite clay minerals. In the T2 spectrum, the T2 cut-off value
(¼20 ms) is located between the first and second peaks, indicating
that the determination of the T2 cut-off value cannot solely rely on
the positions of the three peaks. MICP analysis provides insights
into the pore types within the rock, revealing an undulating char-
acteristic. Specifically, at a mercury saturation of 36%, mercury fluid
3416
enters the rock from the extra-large dissolution pores and moves
into the primary pores, with a pore-throat radius boundary of
3.66 mm (Fig. 6b). As the mercury saturation increases to 69.5%, the
mercury fluid further penetrates into the clay-associated pores,
which have a smaller pore-throat radius boundary of 0.061 mm. This
demonstrates the presence of different pore types and their con-
nectivity within the rock, contributing to the complex pore struc-
ture observed in the T2 spectrum and the determination of the T2
cut-off value.

In the case of the bimodal mode, the combination of two
different pore types leads to a bimodal T2 spectrum. Two specific
combinations of pore types result in the bimodal mode as observed
in Fig. 6d, 6g. In one case, primary pores are combined with mold
pores, along with clay-associated pores characterized by a pore-
throat boundary of 1.63 mm (Fig. 6e, 6f). In the second case, mod-
erate dissolution pores are combined with micro-fractures and
clay-associated pores, with a pore-throat boundary of 3.64 mm
(Fig. 6h, 6i). Interestingly, in both cases, none of the positions of the
two T2 cut-off values correspond to specific features such as two
peaks ormiddle troughs, indicating that the determination of the T2
cut-off value cannot be solely based on a simple morphological
analysis of the T2 spectrum. For the unimodal mode, which is
commonly associated with clay-associated pores (Fig. 6l), this is
confirmed by the MICP analysis where no fluctuations and pore
boundaries are detected (Fig. 6k). The location of the T2 cut-off
value is found in the vicinity of the peak (Fig. 6j). However, it is
worth noting that three out of the four conventional cores also
exhibit a unimodal mode, where the dominant pore system is
primarily composed of uniform intergranular primary pores.
Therefore, the dominant pore system varies depending on the de-
gree of permeability even in the unimodal mode.

3.3. NMR multifractal characteristics

The fractal analysis of the T2 spectrum began by plotting Tq vs. q,
which helps in detecting the fractal behavior of the 1D NMR T2
distribution. For a 1D dataset with a single fractal distribution, such
as the Cantor Set, the plot of Tq vs. q appears as a straight line.
However, in the case of the tested T2 data, the plots of Tq vs. q
exhibit a curved pattern, indicating the presence of multifractal
characteristics (Fig. 7). Subsequently, the generalized fractal and
multifractal spectra were calculated for all the cores. The calculated
results were categorized into three modes based on the number of
peaks observed: unimodal, bimodal, and trimodal modes. In the
generalized fractal spectra, the fractal dimension at q ¼ �10 is
referred to as Dmax, while the fractal dimension at q¼ 10 is referred
to as Dmin. All the calculated fractal spectra were plotted and pre-
sented in Fig. 8.

Generalized fractal spectra from all cores exhibit an “S” shape
(Fig. 8a, b, c). In these spectra, Dq shows a sharp decrease when q is
less than 0, while it decreases more gradually when q is greater than
0. This pattern is consistent with observations in coal and shale
studies (Testamanti and Rezaee, 2017; Zheng et al., 2019). The
calculated average (min-max) distributions of Dq for different
numbers of peaks are as follows: for the unimodal, Dmin 2.162
(1.530e2.479), D�8 2.115(1.496e2.428), D0 0.989(0.923e1.066), D1
0.905(0.865e0.984), D2 0.876(0.800e0.968), Dmax 0.805
(0.649e0.946); for the bimodal, Dmin 2.009 (1.599e2.339), D�8
1.965(1.564e2.287), D0 1.001(0.884e1.079), D1 0.921(0.815e1.014),
D2 0.892(0.780e0.997), Dmax 0.837(0.697e0.959); for the trimodal,
Dmin 2.067(1.958e2.191), D�8 2.021(1.916e2.141), D0
1.052(1.038e1.066), D1 0.969(0.940e0.995), D2 0.943(0.906e0.986),
Dmax 0.880(0.817e0.966).

From the above Dq distributions, compared with the unimodal
mode, the bimodal mode has a larger mean value and awider range



Fig. 4. Using saturated and centrifugal T2 spectra to obtain T2 cut-off value, typical experimental results of three types of saturated NMR T2 spectra, including (a) unimodal mode of
samples #WS22-2, #DF13-1, and #WZ10-1; (b) bimodal mode samples #WZ12-3, #WZ11-1, and #WS1-1; (c) trimodel mode samples #WZ11-2, #WS17-4, and #DF13-4. The
permeability and porosity values of each type of NMR data vary greatly, indicating that physical properties are not the factor affecting the number of peaks of saturated T2 spectrum.
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of Dq (Fig. 8a, 8b). The maximum value of Dmin in bimodal modes
reaches as high as 2.479 but that of unimodal mode is only 2.339.
This can be attributed to the greater variability and volatility in the
morphology of the T2 spectrum in the bimodal mode compared to
the unimodal mode. However, the trimodal mode in this analysis
does not follow this trend (Fig. 8c). This may be due to the relatively
weaker fluctuation in the T2 spectrum of the trimodal mode
compared to the bimodal mode. Additionally, the limited number of
samples (n ¼ 4) in this study may not fully represent the range of
the trimodal mode. Furthermore, the value of Dq (q< 0Þ is more
sensitive to the shape of the T2 spectrum and exhibits a wider range
(1.5e2.5). In contrast, the variation range of Dq ðq >0Þ is very nar-
row (0.65e0.95). Therefore, Dq (q<0Þ rather than Dq (q> 0Þ is
expected to have more superior performance when examining the
differences in T2 cut-off values.

Multifractal spectra of a� f ðaÞ from all cores show a left-hook
asymmetric bell-shaped characteristic, indicating a predominance
of a high probability subset (Fig. 8d-f). The calculated ‘average
(min-max)’ distributions of Da andDf follows: for the unimodal,Da
1.597(0.890e2.063), Df 0.445(0.060e0.802); for the bimodal, Da
1.395(0.971e1.821), Df 0.543(0.103e0.831); for the trimodal, Da
3417
1.432(1.350e1.643); Df 0.560(0.379e0.832). Compared with the
unimodal mode, the bimodal mode has a relatively smaller mean
value and a narrower range of Da (Fig. 8e). The reason is attributed
to the T2 distribution in the unimodal mode having a more signif-
icant polarization. However, the bimodal mode has a slightly larger
mean value of Df . All Df values are positive, indicating that the high
probability subset is dominant, which is consistent with the
generalized fractal analysis. The trimodal mode was not analyzed
for comparison owing to the number of samples (Fig. 8f).

The T2 cut-off value cannot be estimated by morphological pa-
rameters for low-permeability sandstones. The plots displaying the
relationship between morphological parameters and T2 cut-off
value are presented in Fig. 9, where no significant correlations
were observed. Notably, the geometric mean T2 exhibits a higher
correlation coefficient (¼0.6903) compared to the arithmetic mean
(Fig. 9a). This can be attributed to the fact that the T2 cut-off value
relies on the entire T2 spectrum rather than a single peak or average
value of the T2 data. The morphological parameters fail to capture
the full-size distribution characteristics of the T2 spectrum.
Consequently, obtaining the T2 cut-off value cannot be obtained
from the morphological parameters after curve normalization.



Fig. 5. NMR Data processing workflow and pore type classification according to pore size, the pore type in low permeable media classified according to the inherent genesis of
pores, (a) Measured echo train data; (b) inverted T2 spectrumwhere pore size type is classified according to the trough of T2 spectrum in conventional method; (c) (d) (e) (f) the four
common pore types classified according to their origins: primary pores, mold pores, dissolution pores, fracture and clay-associated pores.
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3.4. SMOTE oversampling

Due to the substantial cost and resource-intensive nature of
NMR experiments, the number of rock cores available for NMR
testing is typically severely limited (e.g., Table 1). Consequently, this
often leads to constraints on the quality of core-based NMR T2
spectra. Specifically, the sample size is undersampled and insuffi-
cient for statistical analysis. In logistic regression analysis, a widely
3418
advocated minimum standard for sample size consideration is ten
events per variable (EPV) (Peduzzi et al., 1996). When the total
number of samples is less than ten times the number of feature
vectors, overfitting becomes more likely during regression and
classification using multiple or machine learning models. Super-
vised learning to underlying physical mechanisms from imbalanced
datasets poses a challenging task (Camacho et al., 2022).

To mitigate the issue of overfitting with small NMR



Fig. 6. The response relationship between the number of peaks in the saturated T2 spectrum and the pore system or pore types where system are reflected by MICP in 3D space and
by thin section in 2D plane, (a) (d) (g) (j) the tested NMR T2 spectra in the saturated and centrifugal states from samples #WS17-3, #LS13-2, #WS11-1, #WZ12-1; (b) (e) (h) (k) the
MICP tested results of four samples from (a) (d) (g) (j); (c) (f) (i) (l) 2D thin section for showing different pore types if four samples from (a) (d) (g) (j).
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experimental datasets and develop a more robust prediction model
for the T2 cut-off value, data augmentation is introduced. This
technique reliably expands the training datasets, enabling the
prediction model to focus on deeper and more essential features,
3419
thereby enhancing the model's robustness and generalization. Data
augmentation, similar to actual oversampling, does not directly
replicate observations, but instead introduces small perturbations
to replicated data points (Douzas et al., 2018). For 2D or 3D image



Fig. 7. The plots of quality index vs. q for all cores where the quality index between
cores vary obviously at q < 0.
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sets, data augmentation methods primarily involve geometric
transformations such as rotation, flip, color transformation, crop-
ping, scaling, translation, and noise, in order to generate similar yet
distinct image sets. In the petroleum industry, image data
augmentation is frequently employed for the transforming reser-
voir rocks images, including CT images, cast thin sections and
scanning electron microscope (Karimpouli and Tahmasebi, 2019;
Saxena et al., 2021; Chen et al., 2022). Among the algorithms used
for data augmentation in 1D high-dimensional sample spaces (e.g.,
fractal parameter sets), SMOTE currently holds the most influence
and serves as the established framework for most subsequent
oversampling work. It effectively mitigates the risk of overfitting
Fig. 8. Fractal spectra with q ranging from �10 to 10 of three types of T2 spectral data (unim
(e) (f) multifractal spectra.
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associated with random oversampling (Douzas and Bacao, 2019;
Douzas et al., 2021).

SMOTE performs data augmentation by generating synthetic
data points based on existing raw data points, representing an
advanced form of oversampling and a specific algorithm for data
augmentation (Chawla et al., 2002). SMOTE consists of two main
components: 1) selection rules for minority class instances, and 2)
the mechanism for generating data after selecting these samples.
Specifically, in the selection stage, different classes have been
manually labeled. Regarding data generation, SMOTE follows these
three steps to synthesize samples (Fig. 11):

(1) For each sample vector a! in each mode of the NMR T2
spectra, calculate its distance to the nearest
k ð ¼ sample numberÞ points samples in the same mode
using the Euclidean distance.

(2) Determine the sampling ratio N (¼2) based on the sample
imbalance ratio. For each minority class sample vector a!,
randomly select several samples from its k-nearest neigh-

bors, assuming the selected neighbors are b
!
.

(3) For each randomly selected neighbor vector b
!
, generate a

new sample vector x! using the original sample vector a!
according to the following equation:

x!¼ a!þw�
�
b
!� a!

�
; w ¼ randð0;1Þ (12)

where wð¼ 0:8Þ is a randomly generated weight from the range of
0e1. By employing SMOTE, the sample size of the multifractal
parameter set with T2 cut-off value increased from 36 to 561,
resulting in new sample sizes of 172, 361, and 28 for the unimodal,
bimodal, and trimodal distributions, respectively. The high-
dimensional data was then visualized in 2D using the principal
component analysis (PCA) method (Fig. 12). As depicted, SMOTE
odal, bimodal, trimodel modes), including (a) (b) (c) generalized fractal spectra, and (d)



Fig. 9. Cross-plots of T2 cut-off values versus geometric morphological parameters, including (a) geometric mean T2 value; (b) Immobile water saturation; (c) Arithmetic mean T2
value; (d) maximum porosity increment.

Fig. 10. Cross-plots of T2 cut-off values versus multifractal parameters, including Dq with q < 0, Dq with q > 0, Da, Df , and T2 cut-off value distribution for the classified T2 spectra
including unimodal, and bimodal types.
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enhances the sampling density of the dataset without altering the
original mapping relationships between features and target vari-
ables. What needs to be explained here is the following: (1) The
NMR data set used in this study is not divided into small sample
sets separately. Therefore, by applying SMOTE, three types of NMR
datasets, including unimodal, bimodal, and trimodal samples, were
3421
simultaneously augmented. Typically, SMOTE does not alter the
correlations between the original feature variables and the target
variables. For a sample set that lacks intrinsic functional correla-
tion, the sample sets after data augmentation by SMOTE will still
lack intrinsic correlations. However, for a sample set that has an
intrinsic functional correlation, it enhances the internal



Fig. 11. Schematic diagram of the principle of generating new samples based on the original samples in the SMOTE oversampling method, where the nearest neighbor k ¼ 4, and the
weight w ¼ 0.8.
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correlations through data augmentation, making it detectable by
themachine learningmodels. (2) If the newly generated data points
in a specific sample set are scattered among other sample sets,
those data points can be considered as noise, which can interfere
with the identification of the above correlations (Douzas et al.,
2018). To detect whether the generated data points are noise
data, high-dimensional feature variables can be transformed into
2D variables using techniques such as PCA or t-SNE (t-distributed
stochastic neighbor embedding). The result of this analysis is pre-
sented in Fig. 12. By employing SMOTE on this sample set, the
newly generated data are valid data.

3.5. Machine learning for T2 cut-off values

Machine learning allows for the discovery of implicit correla-
tions between multiple variables and the target variable that
cannot be captured by multiple linear regression. To assess the
potential of machine learning in predicting the T2 cut-off value,
supervised machine learning regression was conducted using the
augmented dataset. The samples were divided into two datasets for
training purposes: 1) All samples (N ¼ 561), and 2) The unimodal
samples (N ¼ 172) and the bimodal samples (N ¼ 361), respectively.
For each model training, the dataset was split into an 80% training
set and a 20% test set.

Compared with morphological parameters, numerous multi-
fractal parameters (Da; Dq (q<0)) exhibited strong correlations
with the T2 cut-off values (Fig. 10). However, no significant corre-
lations were observed for Df and Dq (q>0), (Fig. 10), which aligns
with the Tq vs. q plots. The multifractal behaviors of cores varied
significantly for q <0 (Fig. 8). Additionally, the correlations differed
between the unimodal and bimodal samples (Fig. 10). Notably, no
significant correlations were observed for the trimodal mode,
which is distinct from coal and shale reservoirs. Da and Dq (q< 0)
proved to be more sensitive to the morphological characteristics of
the T2 distribution compared to Df and Dq (q>0) (Fig. 10). Conse-
quently, six sensitive parameters (D�10, D�8, D�6, D�4, D�2, Da)
were used as input variables (Fig. 12). To conduct the prediction of
T2 cut-off values, three commonly used regression models were
employed: k-nearest neighbor (KNN), extreme gradient boosting
(XGBoost), and gradient boosting decision tree (GBDT). Detailed
methodology can be found in previous publications (Zhang and
Zhou, 2007; Cai et al., 2020; Zhao et al., 2022b). Finally, the T2
3422
cut-off values, including both the unclassified dataset and the
classified dataset by kurtosis, were compared with the measured
results as shown in Fig. 13.

The correlation coefficients of the classified dataset (around 0.98
for unimodal, bimodal) were higher than that of the full-size un-
classified dataset (approximately 0.89) (Fig. 13). Notably, all pre-
dicted data points closely align with the 1:1 line, indicating
excellent agreement between the T2 cut-off values calculated by
machine learning regressions and those obtained from the centri-
fugation experiments with NMR tests. Among the three types of
machine learning algorithms, XGBoost is the recommended model
(Fig. 13). Besides, It is important to highlight that for T2 cut-off
values larger than 30 ms, the prediction results become more
scattered, particularly for bimodal samples (Fig. 13). Additionally,
special attention is required when dealing with trimodal mode in
sandstones.

An error factor of ±5 ms can serve as a reasonable standard for
low-permeability sandstones (Fig. 13), The combination of multi-
fractal analysis with machine learning data augmentation through
SMOTE proves to be an effective approach for determining the T2
cut-off value in cases with limited NMR data. This method holds
significant potential for T2 NMR logging applications in low-
permeability oil and gas reservoirs. It should be noted that the T2
spectrum of low-permeability sandstone typically exhibits a single-
peak or double-peak distribution, differs significantly from the
typical three-peak distribution observed in coals and shales.
Therefore, it is necessary to consider the kurtosis of the T2 spec-
trum, augment the original sample size through data augmenta-
tion, and test various machine learning models.

There is no direct correlation between the T2 cut-off value and
the movable water saturation (Fig. 9b), since the fully-saturated T2
spectrum is required. However, by combining the measured and
predicted T2 cut-off values with the fully-saturated T2 spectrum,
movable water saturation can be estimated. As demonstrated in
Fig. 14, movable water saturation was reliably estimated using
acceptable T2 cut-off values. It is important to note that there is an
error factor of 7% in the estimated water saturation due to linear
interpolation of cumulative porosity at a specific T2 time. Further-
more, although the trimodal T2 cut-off values were not accurately
estimated, they did not significantly impact the prediction of mo-
bile water saturation. This may be attributed to the lower sensi-
tivity of the T2 cut-off value to saturation in trimodal samples



Fig. 12. Samples generated through oversampling multifractal dataset using SMOTE method.

Fig. 13. Cross-plots of measured and predicted T2 cut-off values by multifractal analysis with three machine learning models from (a) all samples; (b) the unimodal samples; (c)
bimodal samples.

Fig. 14. Comparisons of measured and predicted movable water saturation by the
measured and predicted T2 cut-off values combined the full-size T2 spectra at fully
water-saturated sate from 36 cores.
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compared to unimodal and bimodal samples.
SHAP (SHapley Additive exPlanation) was employed to address

the interpretability of the XGBoost model. Derived from game
theory, SHAP quantifies the importance of each feature by
3423
calculating the contribution of each feature to the target prediction
based on the Shapley value (Shapley, 1953; Meng et al., 2022). The
sum of the Shapley values for all features corresponds to the pre-
diction output of the final model. The distribution of the global
SHAP values for the six input features over the unimodal sample set
was calculated (Fig. 15). In Fig. 15, the dotted line represents the
base value, while the solid line represents the final output of the
model. Among the features, Da exhibit the most importance, fol-
lowed by D-2, D-10. Notably, Da provides a negative contribution
approximately half of the samples. In addition, the SHAP method
provides more detailed insights into the influence of specific fea-
tures compared to the importance ranking map. Taking Da as an
example, this parameter exerted the most significant influence on
the XGBoost model. When the value of Da is smaller, it contributed
negatively, resulting in a smaller model output, and vice versa
(Fig. 16).

3.6. Effects of T2 spectrum position on multifractal analysis

Using the SHAPmethod, the importance of the eigenvectors was
ranked. Among them, Da and Dq (q < 0) were found to play a
relatively significant role in predicting the T2 cut-off values. The
underlying mechanism was analyzed through multifractal theory.
As known, the fractals and multifractals describe the structure,
singularity, scale independence, order, self-similarity, vergence,
anisotropy, self-organization, randomness, and criticality of objects
of interest (Cheng, 1999). However, different fractal parameters
exhibit different preferences in detecting these fractal features. In



Fig. 15. The heatmap for a global interpretation by the SHAP value to all samples in
predicting T2 cut-off values.
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cases where two T2 spectra have the same shape but different po-
sitions relative to the X-axis, their T2 cut-off values will differ
significantly (Fig. 17a, d, g). However, if all the fractal parameters of
these two T2 spectra are equal, the robustness of multifractal pa-
rameters in predicting the T2 cut-off value for a wide range of
porous media diminishes (Hu et al., 2020). To illustrate this, the
original T2 spectrumwas translated to generate two T2 spectra with
the same shape but different positions relative to the X-axis. The
generalized fractal dimensions and multifractal dimensions are
depicted in Fig. 17. The results demonstrate that Da undergoes
significant changes (increases), whereas Df changes very little, for
both unimodal (Fig. 17h) and bimodal (Fig. 17e) distributions, and
even in the case of trimodal distributions (Fig. 17b). Dq (q< 0Þ ex-
hibits substantial changes, while Dq (q<0Þ changes only slightly
(Fig. 17c, f, i). Hence, Dq (q<0Þ and Da can be used to accurately
predict the T2 cut-off value. The reason for this variation is provided
from a multifractal theory perspective.

According to the multifractal principle, Da reflects the uneven-
ness of the distribution probability of T2 value, while Df indicates
the structural changes among different probability subsets within
the T2 distribution (Stanley and Meakin, 1988; Ge et al., 2015).
Specifically, larger values of Da signify greater differences in the T2
distribution, more pronounced polarization trends of each subset's
Fig. 16. (a) SHAP values assigned to different multifractal features; (b) Bar d
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probability, and a more complex shape of the T2 spectrum.
Conversely, smaller values of Da indicate smaller distribution dif-
ferences in T2 values, more concentrated and uniform distributions
of each subset, and a higher degree of uniformity in the T2 spectrum
shape. Thus, Da can quantitatively express the differences, non-
uniformity, and polarization characteristics of the distribution of
each subset within the T2 spectrum shape, consequently reflecting
the degree of fluctuation in the T2 spectrum shape.

When Df <0, the multifractal spectrum of a� f ðaÞ exhibits a
“right hook” shape, indicating that a subset of the T2 distribution
with a small probability dominates, and resulting in a relatively
sharp T2 spectrum. Conversely, when Df >0, the multifractal
spectrum of a� f ðaÞ shows a “left hook” shape, signifying the
dominance of the high probability subset and a sharper and
rounder T2 spectrum. Namely, Df reflects the characteristics and
relative proportion between T2 spectral distributions. Larger Df
values correspond to more data points with larger actual T2 values
and uneven distribution. Thus, Da detects the relative position of
the T2 spectrum and internal differences in pore information, while
Df mainly detects the smoothness and sharpness of the T2
spectrum.
4. Conclusions

In this study, the pore types and NMR characteristics of 36 low-
permeability reservoir sandstones were investigated by NMR ex-
periments. The multifractal characteristic of the T2 spectrum of the
fully water-saturated medium was analyzed by using multifractal
theory, and the correlations between T2 cut-off values and porosity
as well as permeability, morphological parameters, andmultifractal
parameters were discussed. The following conclusionswere drawn:

(1) The T2 spectra of low-permeability reservoir sandstones
exhibited three modes of peak numbers: unimodal, bimodal,
and trimodal, with the trimodal mode being relatively rare.
The number of peaks in the T2 spectrum was directly deter-
mined by pore types. The T2 cut-off value ranged from 7 to 50
ms, with an average of 23.25 ms. This value could not be
predicted by petrophysical parameters, curve morphological
parameters, or simple mathematical statistical analysis.

(2) The T2 spectra captures the multifractal behavior of the pore
system within low-permeability sandstones. Da and
Dq ðq <0Þ were found to have a strongly correlated with the
T2 cut-off value. This correlation was attributed to Da and
Dqðq <0Þ detecting the position of the T2 spectrum relative to
the X-axis. However, the effects of the T2 spectrum position
iagram showing the importance ranking of the six multifractal features.



Fig. 17. Effects of the location of T2 spectrum relative to X-axis on calculations of multifractal analysis using math translation to produce original and translational NMR T2 spectra
from (a) sample # DF 13e4 as a trimodal case; (d) sample # WS1-1 as a bimodal case; (g) sample # DF13-2 as a unimodal case; (b) (e) (h) calculated multifractal spectra from (a) (d)
(g); (c) (f) (i) calculated generalized fractal spectra from (a) (d) (g).
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on Dq ðq >0Þ and Df wereminimal, leading to the inability of
Df and Dq ðq >0Þ to determine the T2 cut-off value.

(3) The limitation of NMR data volume owing to experimental
cost can be overcome by oversampling with the classic
SMOTE technique. SMOTE can augment sample data without
altering the underlying functional mapping relationships
within NMR T2 dataset.

(4) When classifying the T2 spectra of low-permeability reser-
voir sandstones based on the number of peaks, machine
learning models showed higher correlation coefficients
when using six sensitive features of Da and Dqðq <0Þ as in-
puts. The XGBoost model was recommended in determining
T2 cut-off values. Da exhibited the greatest importance ac-
cording to the SHAP method. No significant correlation be-
tween the T2 cut-off value and movable water saturationwas
observed. Combiningwith the predicted T2 cut-off valuewith
the fully-saturated T2 spectrum, movable water saturation
can be reliably estimated.

(5) However, due to the limitations in experimental data, the
multifractal method did not yield satisfactory performance
3425
for the trimodal mode. Estimations became more scattered,
especially for bimodal samples, when the T2 cut-off value
exceeded 30 ms. Considering the influences of random er-
rors, an error factor of ±5 ms can be utilized as a reliable
boundaries for T2 cut-off value estimation.
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