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a b s t r a c t

The stability of the subsea oil and gas production system is heavily influenced by slug flow. One suc-
cessful method of managing slug flow is to use top valve control based on subsea pipeline pressure.
However, the complexity of production makes it difficult to measure the pressure of subsea pipelines,
and measured values are not always accessible in real-time. The research introduces a technique for
integrating Unscented Kalman Filter (UKF) and Wavelet Neural Network (WNN) to estimate the state of
subsea pipeline pressure using historical data and a state model. The proposed method treats multiphase
flow transport as a nonlinear model, with a dynamic WNN serving as the state observer. To achieve real-
time state estimation, the WNN is included into the UKF algorithm to create a WNN-based UKF state
equation. Integrate WNN and UKF in a novel way to predict system state accurately. The simulated results
show that the approach can efficiently predict the inlet pressure and manage the slug flow in real-time
using the riser's top pressure, outlet flow and valve opening. This method of estimate can significantly
increase the control effect.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

In deepwater oil and gas development, the mixed fluids pro-
duced fromwells are typically transported to production platforms
for processing. Safe and cost-effective transportation of oil and gas
through subsea pipelines is a considerable challenge (Lin et al.,
2013). Slug flow is usually a severe problem during transportation
(Mao et al., 2016). It is plugs of liquid or gas that travel through the
pipeline and can be formed due to transient effects related to
pigging, start-up, blow-down, and changes in pressure or flow
rates. They are unwanted because they can produce significant
pressure fluctuations. When the pressure amplitude is too large,
this phenomenon is called severe slug flow and can negatively
affect the operation of production facilities.

Researchers have proposed slug catcher, topside choking, full
eering, Southwest Petroleum
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y Elsevier B.V. on behalf of KeAi Co
separation, and other techniques to manage extreme slug flow
(Ehinmowo and Cao, 2016). Due to the unique characteristics of
offshore oil and gas development, today's most common solutions
are feedback slug control systems based on the top valve (Storkaas
and Skogestad, 2004). To perform anti-slug control in the labora-
tory, the pipeline inlet pressure is usually measured precisely, and
the top valve is employed as amanipulated variable (Godhavn et al.,
2005; Sivertsen et al., 2009; Storkaas and Skogestad, 2007).
Because of the deep-sea environment, the pipeline inlet pressure
cannot be measured directly in the field. As a result, academics
employ theoretical methods to determine the slug flow. Backi et al.
(2018) proposed a method for estimating the pipeline condition
using top pressure and outlet flow to control the slug flow. Aamo
et al. (2005) and Di Meglio (2012) developed a state observer for
anti-slug control and verified its viability experimentally on this
foundation. The observation method's stability, however, is insuf-
ficient due to the right half-plane zero point's constraint. For this
reason, a virtual flow measurement method to estimate the sys-
tem's state is proposed by Jahanshahi et al. (2017).
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Fig. 1. Pipeline-riser simplified model with critical parameters.

C. Wang, L. Chen, L. Li et al. Petroleum Science 20 (2023) 3752e3765
In 2001, Havre et al. (2001) reported the first industrial appli-
cation of slug control. They proposed a new control system and
implemented it on the Hod-Valhall pipeline. The results showed
that when the control system was switched off and the valve
opening was kept constant, the slug flow occurred again in the
system. This proved that the control system was indeed stabilizing
an unstable operating point. In 2003, Skofteland and Godhavn
(2003) used a PID controller to stabilize the system flow. The
main feature of this approach was the introduction of a cascade
control system in which a flow in-loop control system and a pres-
sure out-loop control system were used to jointly suppress severe
slug flow. In 2005, Godhavn et al. (2005) reported an application
case at the Tordis site. A slug controller was combined with a model
to predict and handle liquid slugs entering the separator.

The pipeline and the slug flow inside it can be thought of as a
nonlinear dynamic system. The state estimation is now often done
using real-time filtering methods such as extended Kalman filter
(EKF), UKF, and particle filter (PF) (Kaczmarek, 2016). Among them,
the application of EKF to nonlinear system state estimation has
been recognized by academia and engineering. But this application
has apparent defects (Syre, 2012). The EKF has the characteristic
that the overall character of the function is replaced by the local
character, and the existence of noise makes it worse. Julier and
Uhlmann (1997) offered the UKF approach based on unscented
transform to increase the filtering effect of nonlinear issues. In
terms of nonlinear filtering, facts show that UKF outperforms EKF
(Julier, 2004). In comparison to PF, the calculation cost of UKF is
smaller, and the sample weight does not degrade (Arulampalam
et al., 2002).

In recent years, artificial intelligence has developed rapidly and
neural networks have been widely used in many fields (Lei et al.,
2020; Zhao et al., 2019), and WNN is one of them. It is a neural
network constructed based on wavelet transform theory, which
takes full advantage of the localization of wavelet transform and
the large-scale data-parallel processing and self-learning capabil-
ities of neural networks. WNN was initially used for function
approximation and speech recognition, and then gradually
extended to prediction, classification, and image compression (Guo
et al., 2022). Abiyev et al. (2013) combined type-2 fuzzy systems
and WNN to propose a novel structure for the identification and
control of nonlinear uncertain systems. Xin et al. (2018) proposed a
fault detection observer for nonlinear systems based on WNN.
Duan et al. (2016) used the WNN algorithm to improve the pattern
recognition of surface electromyogram signals. Rajankar and Talbar
(2015) used WNN to approximate the signal to maximum accuracy
to achieve the denoising of electrocardiographic signals. WNN can
accurately identify signals with local singularities, and has strong
approximation capability, fast convergence and fault tolerance. It
has been practiced successfully in the field of prediction and control
(Xia et al., 2020).

In this article, WNN is used to create a high-precision state
model that thoroughly learns the dynamic properties of the pipe-
line's slug flow. To estimate and control the real-time slug flowwith
high accuracy, a new method of subsea pipeline pressure estima-
tion is established by combining dynamicWNN and improving UKF.
The rest of this paper is as follows: Section 2 describes previous
state estimation and control methods for severe slug flow; Section
3 and section 3.2 elaborate the proposed real-time state estimation
method that combines WNN and UKF; Section 4 shows the vali-
dation of the proposed method and the comparison with tradi-
tional methods; Section 5 draws conclusions and ends the full text.
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2. Background

Since the 1970s, Xiao et al. (1990), Taitel and Dukler (1977), and
others have developed slug flow dynamics models. These models
are mainly used to describe the flow parameters of slug flow, such
as liquid slug length, liquid slug velocity, liquid slug frequency, etc.
The goal of these models is to investigate the slugging process and
slug flow stability. Following that, various transient models
describing slug flow appeared, and a few commercial software,
such as OLGA, was created based on these models (Bendlksen et al.,
1991). The nonlinear partial differential equations (PDE) of two-
phase or three-phase flow, which include continuous equations,
momentum conservation equations, energy conservation equa-
tions and associated closure equations, are the foundations for
these transient models. It can simulate severe slug flow generated
in laboratory and oilfield systemswith reasonable accuracy, but it is
not suitable for real-time slug control due to the complicated pa-
rameters. After this, scholars such as Storkaas et al. (2003) and
Meglio (2009) have simplified the accuracy and complexity of the
PDE slug flow model and developed models based on the ordinary
differential equation (ODE).

Jahanshahi and Skogestad (2011) proposed an ODE model based
on the conservation of mass at each stage of the pipeline and riser.
The model includes a section of subsea horizontal pipeline, subsea
downward-dipping pipeline, riser section, and platform horizontal
pipeline. In the process of model establishment, it is assumed that
the gas in the pipeline conforms to the ideal gas equation, and the
liquid is incompressible. It has been proved that this model has
similar dynamic characteristics to the OLGA simulator and can
describe the state of slug flow. Fig. 1 is a description of this model.

Please refer to Appendix A for more information about the ODE
model, which has a detailed description of the pipeline-riser sys-
tem and model derivation. The ODE model has the advantages of
fewer parameters and excellent dynamic response. Syre (2012)
combined the model with EKF and UKF, respectively, to form an
observer. The simulation results showed that EKF worked well
locally. UKF worked best with high input disturbances and was
more robust. The observers were combined with proportional in-
tegral (PI) controller, linear quadratic regulator (LQR), and model
predictive control (MPC), respectively, for slug flow control. How-
ever, this control scheme was unstable under input perturbations
and increasing valve openings.

Jahanshahi et al. (2013b) applied this model to propose an anti-
slug controller whose convergence was proved in theory and ex-
periments. The controller directly used the pressures at the riser-
base and the riser top. The controllability limitation of utilizing
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riser-base pressure was the small gain of the systems with large
valve openings. No control method could address a limitation in
nonlinearity and non-minimum phase dynamics with riser top
pressure.

Oliveira et al. (2015) used the ODE model to propose a control
method that could quickly identify and adapt to system changes.
The scheme consisted of an autonomous detector and adaptive
controller that manipulated the pressure set point to maximize
throughput. Jahanshahi and Skogestad (2017) conducted nonlinear
and linear analyses and evaluated four control designs experi-
mentally with both subsea and topside pressures. It was demon-
strated that the system could be stabilized by using a nonlinear
high-gain observer and controlling estimation in the case of un-
measurable pipeline inlet pressure. But this solution was only
suitable for small valve openings.

Based on the ODEmodel, Jahanshahi et al. (2013a) compared the
control effects of several different observers, among which the UKF
sometimes did not stabilize the system. This may be since the ODE
models assume that the state within the pipeline varies linearly.
The simple linearity assumption limits the accuracy of the esti-
mation. When the model is used for nonlinear processes, consid-
erable deviations in accuracy and efficiency occur, and the accuracy
of UKF prediction is affected. Therefore, WNN with strong
nonlinear mapping capability is chosen to be introduced into UKF.
Since the wavelet function is an orthogonal local approximation
function and can translate and scale in space. It has good time-
frequency resolution performance when the system changes
sharply, and the neural network can improve the resolution scale to
ensure the accuracy of approximation (Guo et al., 2022). In addition,
due to the orthogonality of the function bases, adding or removing
network nodes during the training process does not affect the
trained network weights, which can greatly reduce the network
learning time. The compact combination of wavelet transform and
neural network fully integrates the advantages of both (Ramadevi
and Bingi, 2022). Compared with traditional neural networks,
WNN has stronger memory ability for nonlinear functions and has
great improvement in convergence speed, approximation accuracy,
and generalization performance. The system established by WNN
identification can approximate the dynamic properties of the sys-
temwell on themodel (Forootan et al., 2022). The fusion of UKF and
WNN can better cope with the relatively large fluctuation of inlet
flow and top valve flow and enhance the robustness of the system
to handle the slug flow with a new state estimation method.

3. UKF based on WNN for state estimation

This section aims to explain the UKF fused with WNN for state
estimation. The core idea is as follows. Considering the subsea
Fig. 2. WNN s
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multiphase flow transport as a nonlinear model, theWNN can form
a transfer function for the improved UKF and constitute the best
state equation of the UKF. In real-time observations, the gas-liquid
quality changes of the subsea pipeline-riser are inevitably mixed
with the process noise. Due to the framework of the UKF, the one-
step prediction of the subsea pipeline pressure can be corrected
immediately by updating during the measurement update stage. In
this section, the UKF algorithm based on WNN is explained in
detail, and a fusion method is designed to ensure the effectiveness
of the combination of UKF and WNN, which is the focus of this
article.
3.1. State and measurement equations for fusion WNN

During the derivation of the ODE model, there is some mapping
relationship between the pipeline inlet pressure P1 and the riser
top pressure P2, the outlet flow wout, and the valve opening u.
Therefore, P1ðk�1Þ, P2ðkÞ, woutðkÞ, uðkÞ are used as input and P1ðkÞ as
output to train the WNN. In this paper, a wavelet neural network
with continuous parameters is used, and its structure is shown in
Fig. 2. The number of neurons in the input layer is N, and the
number of neurons in the hidden layer is J.

1. Input layer: Normalize the P1ðk�1Þ, P2ðkÞ, woutðkÞ, uðkÞ collected by
the sensor as the training input.

2. Hidden layer: The Morlet wavelet function will be used as the
mother wavelet function in this paper. The Morlet wavelet
function is continuous and derivable, having good time-
frequency local characteristics. It is relatively simple to ex-
press. The mathematical formula is:

JðxÞ¼C cosð5xÞe�x2=2 (1)

In the formula, C is the normalization constant during
reconstruction.

Increase the translation factor and expansion factor. The output
of each node can be expressed as:

hðjÞ¼J

0BBB@
PN
n¼1

ujnxn � bj

aj

1CCCA;n¼1;2;/;N j¼1;2;/; J (2)

Among them, hj is the output of the jth neuron in the hidden
layer obtained through the action of the wavelet framework. bj is
the translation factor. aj is the expansion factor and ujn is the
connection weight of the jth neuron in the hidden layer to the nth
neuron in the input layer.
tructure.
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3. Output layer: The output layer is a linear combination of the
wavelet framework, which can be expressed as:

yðkÞ ¼
XJ
j¼1

ujhðjÞ; j ¼ 1;2;/; J (3)

where, uj is the connection weight of the jth neuron in the hidden
layer to the output layer.

4. Parameter update: The wavelet network uses a weight correc-
tion algorithm, using the gradient to correct the weights of the
wavelet network and the parameters of the wavelet function, so
that the wavelet network continuously approximates the ex-
pected output. Here, the mean square error (MSE) is used as the
error function. The iterative process can be expressed as follows:

Calculation error:

MSE¼ 1
M

XM

k¼1
ðyk � bykÞ2 (4)

Correction parameters:

u
ðiþ1Þ
n;k ¼ ui

n;k þ Duðiþ1Þ
n;k

aðiþ1Þ
k ¼ aik þ Daðiþ1Þ

k

bðiþ1Þ
k ¼ bik þ Dbðiþ1Þ

k

(5)

Among them, Duðiþ1Þ
n;k ;Daðiþ1Þ

k ;Dbðiþ1Þ
k can be calculated accord-

ing to the error:

Duðiþ1Þ
n;k ¼ �h

ve

vu
ðiÞ
n;k

Daðiþ1Þ
k ¼ �h

ve

va
ðiÞ
k

Dbðiþ1Þ
k ¼ �h

ve

vbðiÞk

(6)

where, h is the learning rate. Combining with Eqs. (1)e(3), the
mapping relationship insideWNN can be expressedmore clearly by
weight matrix as follows:

bP1ðkÞ ¼ yðkÞ ¼ U,J
�
S,xinput;n � b

a

�
¼ f
�
xinput;n

�
;n ¼ 1;2;/;N

(7)

In the formula, xinput;n ¼ � P2ðkÞ woutðkÞ u P1ðk�1Þ
�T repre-

sents the input of WNN, and b ¼ � b1 b2 / bJ
�T represents the

translation factor vector, and a ¼ � a1 a2 / aJ
�T represents the

expansion factor vector, and S is the weight matrix from the input
layer to the hidden layer, and U is the weight matrix from the
hidden layer to the output layer, which are defined as:

S ¼

2664
u11 u12 / u1N
u21 u22 / u2N
« « 1 «

uJ1 uJ2 / uJN

3775 (8)

U ¼ �u1 u2 / uJ
�

(9)

In the continuous prediction process of P1, f ð ,Þ represents the
internal state of WNN. It is continuously changed and updated over
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time during state estimation. The WNN is integrated into the UKF
framework. Its state and measurement equations are as follows:

xk ¼

2664
P2
uout
u
P1

3775
k

þwk�1 ¼

2664
2664
1 0 0

0 1 0

0 0 1

3775
2664

P2

uout

u

3775
f ð½ P2 uout u P1 �Þ

3775
k�1

þwk�1

(10)

zk ¼HðxkÞ þ vk (11)

where xk is the system state and f ð ,Þ is the nonlinear transfer
function at time k in the WNN. wk�1 is random process noise and
has a covariance matrixQ k�1. vk is randommeasurement noise and

has a covariance matrix Rk. zk ¼ ½ P2 uout u �T is the observation

vector and H ¼
241 0 0 0
0 1 0 0
0 0 1 0

35 is the measurement function. The

initial state x0 is independent of all noise, and its prior mean and
covariance matrix are:

Eðx0Þ¼ x0 ¼ bx0j0; covðx0Þ¼ P0 (12)

3.2. Algorithm of UKF based on WNN

3.2.1. Initialization
The state estimate bxk�1jk�1 and the error covariance matrix

Pk�1jk�1 are initialized according to the initial gas and liquid flow.
Initialize the output of theWNN hidden layer as hj ¼ OJ , whereOJ is
an all-zero column vector of length J.

3.2.2. Sampling at s points

(1) Calculate s point weight coefficient:8>>>>>><>>>>>>:

u
ðmÞ
0 ¼ l

.
ðnþ lÞ

u
ðcÞ
0 ¼ l

.
ðnþ lÞ þ

�
1� a2 þ b

	
u
ðmÞ
i ¼ u

ðcÞ
i ¼ 0:5

ðnþ lÞ; i ¼ 1;2;/;2n

(13)

Among them, n is the state space dimension, and
l ¼ a2ðnþkÞ � n is a comprehensive factor. a determines the
dispersion degree of s points, usually being a small positive value
(such as 0.01), and k is usually 3� n. b is used to describe the dis-
tribution information of x. In the case of Gauss distribution, the

optimal value of b is 2. uðmÞ
i is the weight coefficient when seeking

first-order statistical characteristics, and u
ðcÞ
i is the weight coeffi-

cient when seeking second-order statistical characteristics.

(2) Calculate the s point x（i）
k�1jk�1ði ¼ 0;1;/;2nÞ:8>>>>>><>>>>>>:

x
ð0Þ
k�1jk�1¼bxk�1jk�1

x
ðiÞ
k�1jk�1¼bxk�1jk�1þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþlÞPk�1jk�1

q 	
i; i¼1;2;/;n

x
ðiÞ
k�1jk�1¼bxk�1jk�1�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþlÞPk�1jk�1

q 	
i; i¼nþ1;nþ2;/;2n

(14)
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In the formula, bxk�1jk�1, Pk�1jk�1 represents the initial state and

error covariance matrix, and ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþlÞPk�1jk�1

q
Þi represents the ith

column of the square root of the matrix.
3.2.3. Time update
When WNN and UKF are directly combined, there is a contra-

diction. According to the structure of WNN, WNN is dynamic.
Because of continuous input, its internal state is constantly upda-
ted, and the nonlinear transfer function formed by WNN is also
dynamic. In the time update phase, the input of the nonlinear
transfer function is only the s point, so for any two consecutive s

points, the corresponding nonlinear transfer function will not be
the same. However, according to the standard UKF algorithm, each
s point should be transformed according to the same nonlinear
transfer function in unscented transformation. In other words, once
the unscented transformation is applied, the transfer function in
the state equation should be completely static. Therefore, there is a
contradiction between the update of the nonlinear transfer func-
tion and the effective conversion of the s point. The method which
solves this problem is shown in Fig. 3.

(1) s point transformation

The Eq. (10) can be simplified as:

xk ¼ Fðxk�1Þ þwk�1 (15)

where Fð ,Þ is the transfer function at time k. Transform the s points
from 1 to 2n through the non-linear input-output transfer function
of WNN:

x
ðiÞ
k ¼ F

�
x
ðiÞ
k�1jk�1

	
; i ¼ 1;2;/;2n (16)

In the formula, xðiÞkjk represents the next prediction of s points. In

the standard UKF algorithm, the transfer function Fð ,Þ is deter-
mined by the state model, but the WNN is introduced into the UKF
framework. To obtain the transfer function at this time, the dy-
namicWNN is regarded as a static nonlinear function briefly, where

the value of f ðxðiÞk�1jk�1Þ is calculated separately by input xinput;i ¼
x
ðiÞ
k�1jk�1ði ¼ 1;2;/; 2nÞ. This transformation can be seen as inde-

pendently applying the same state to each s point. It is worth
Fig. 3. Contradict
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noting that after the entire process, the internal state of the WNN

has not been updated at this time. xðiÞk�1jk�1ði¼ 1;2;/;2nÞ is not a

continuous input of a dynamic WNN, but an independent input to
the transfer function at this time. Therefore, at time K , the pre-
diction of each s point can be calculated separately.

(2) WNN status update

Convert the s point through the transfer function:

x
ð0Þ
k ¼ F

�
x
ð0Þ
k�1jk�1

	
(17)

At time K, xð0Þk�1jk�1 is regarded as the input of the dynamicWNN,

i.e. xinput;k ¼ x
ð0Þ
k�1jk�1, to get f ðxð0Þk�1jk�1Þ. At this moment, the pre-

diction of xð0Þk�1jk�1 is also calculated based on the same WNN in-

ternal state in the previous step. But after this process, the internal

state of WNN has been updated. After x
ð0Þ
k is obtained, the input-

output function of WNN has changed, which provides a basis for
the time update in the next stage.

Through the methods in Eqs. (1) and (2), the nonlinear transfer
function in UKF becomes dynamic during the entire observation
process, becauseWNN is updated after each time step. Therefore, it
can keep track of the trend of state changes. In a certain time step,
the transfer function is static, which ensures that each s point is
converted based on the same transfer function at the same time.

(3) State estimation and measurement value prediction:8>>>>><>>>>>:
bxkjk�1 ¼

X2n
i¼0

u
ðmÞ
i x

ðiÞ
k

Pkjk�1 ¼
X2n
i¼0

u
ðcÞ
i

�
x
ðiÞ
k � bxkjk�1

	�
x
ðiÞ
k � bxkjk�1

	T þ Qk�1

(18)

where bxkjk�1 denotes the estimated state and Pkjk�1 denotes the
covariance matrix of the error.

When calculating the predicted measurement value bzkjk�1 and
its error covariance matrix P~zk , generating s points can be skipped.

The generated predicted points are directly brought into the mea-
surement equation. The process is as follows:
ory solution.



C. Wang, L. Chen, L. Li et al. Petroleum Science 20 (2023) 3752e3765
8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

j
ðiÞ
k ¼ H

�
x
ðiÞ
k

	
; i ¼ 0;1;/;2n

bzkjk�1 ¼
X2n
i¼0

u
ðmÞ
i j

ðiÞ
k

P~zk ¼
X2n
i¼0

u
ðcÞ
i

�
j
ðiÞ
k � bzkjk�1

	�
j
ðiÞ
k � bzkjk�1

	T þ Rk

P~xk~zk ¼
X2n
i¼0

u
ðcÞ
i

�
x
ðiÞ
k � bxkjk�1

	�
j
ðiÞ
k � bzkjk�1

	T
(19)

In the formula, j
ðiÞ
kjk represents the predicted measurement

corresponding to the s point, and bzkjk�1 represents its mean, and P~zk
represents its error covariance matrix. P~xk~zk represents the cross

covariance matrix of the state estimation and the predicted
measurement.
3.2.4. Measurement update
After obtaining the measurement zk, the best state estimate bxkjk,

the gainmatrix Kk, and the updated error covariancematrix Pkjk can
be obtained:8>>>><>>>>:
bxkjk ¼ bxkjk�1 þ Kk

�
zk � bzkjk�1

	
Kk ¼ P~xk~zkP

�1
~zk

Pkjk ¼ Pkjk�1 � KkP
�1
~zk

KT
k

(20)

According to historical data, WNN learns through training
samples, and each sample consists of an input vector and a target.
Therefore, the trained WNN can learn the dynamic characteristics
of the multiphase flow in the mixed transmission pipeline. It can
accurately predict the pipeline inlet pressure and continuously
update its internal state. However, the nonlinear transfer function

in the UKF framework is not updated over time, so x
ð0Þ
k�1jk�1 is

selected as the input of WNN at time K. It is transformed by the
nonlinear transfer function and updates the WNN, but other s

points cannot be continuous input of the WNN, otherwise the in-
ternal state of theWNNwill be updated. As a result, in the real-time
estimation of fusing WNN and UKF, WNN provides an essential
basis for time update in UKF. At the same time, the framework of
UKF can provide accurate input for WNN in real-time and promote
WNN updates. The whole algorithm framework is shown in Fig. 4.
4. Results and discussion

The experiments of real-time estimation and slug flow control
using the WNN-UKF algorithm are introduced in this section to
prove the applicability and superiority of the method.
Fig. 4. WNN-UKF algorithm.
4.1. Experimental setup

Fig. 5 is the schematic diagram of the experimental setup. The
pipeline and riser are made of flexible pipes with an inner diameter
of 15 cm. The length of the pipe is 5000m, and the inclination angle
is 15�. The height of the riser is 30 m, and the top is installed with a
top valve. The Xmas tree on the far left is connected to the multi-
phase pipeline. A multiphase flowmeter is used at the inlet to
measure the flow rates of the gas and liquid phases. The collected
data is pipeline inlet pressure P1, top valve opening u, riser top
pressure P2, and outlet flow wout.
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Fig. 5. Schematic diagram of the experimental device.

Fig. 6. Training and testing data sets.

Fig. 7. (a) Comparison results of the different number of neurons in the hidden layer.
(b) The enlarged part of (a).
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4.2. Analysis of results

The above device continuously collects eighteen thousand data
points. The first 14,400 data points are used to train WNN. The
dataset is shown in Fig. 6. To study the fitting characteristics of
WNN and set the appropriate number of nodes in the hidden layer,
the number of different neurons in the hidden layer is compared.
The number is set to 3, 4, 5, 6, 7, and 8 respectively. The number of
neurons in the input layer is N ¼ 4. After the WNN training is
completed, the last 3600 data points are used for testing and
comparison, and the results are shown in Figs. 7 and 8.

The data collected by the above device for 5 h are the subsea
pipeline pressure P1, the top valve opening u, the top pressure P2,
and the flow ratewout. Take the first 4 h of data for training and the
last hour of data for verification. The data set is shown in Fig. 6.
Mean square error (MSE) is used as an evaluation parameter, which
is defined as Eq. (21), and the results are shown in Table 1.
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MSE¼

Pm
i¼1

ðyi � byiÞ2
m

(21)

In the formula, yi represents the actual value, and byi represents
the estimated value, and m represents the number of samples.

The above results reflect that when the number of neurons in-
creases from 3 to 5, the MSE decreases from 1.591e-3 to 1.323e-5.
But when the number of neurons continues to increase, the MSE
gradually increases. It may be that the limited amount of infor-
mation contained in the training set is not sufficient to train all the
neurons, thus leading to overfitting. Even if the training data con-
tains enough information, excessive neurons will increase the
training time, making it difficult to achieve the expected prediction
accuracy. For this reason, the number of hidden layer neurons is
chosen to be 5 for constructing the estimation model.

To compare the one-step state estimation of different models
built byWNN and ODE, the same test set was used to examine their



Fig. 8. (a) Comparison results of the different number of neurons in the hidden layer.
(b) The enlarged part of (a).

Table 1
Accuracy analysis of the different number of neurons in hidden layers.

Number of neurons in hidden layers MSE, MPa

3 1.591e-3
4 4.055e-4
5 1.323e-5
6 2.413e-4
7 8.743e-4
8 3.100e-3

Fig. 9. (a) Comparison of one-step state estimation of different models established by
WNN and ODE. (b) The enlarged part of (a).

Fig. 10. Comparison of squared estimation errors.
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prediction accuracy. The initial parameters of the system are shown
in Table 2, and Fig. 9 shows the comparison results. Fig. 10 shows
the squared estimation error for both models. To quantitatively
compare the prediction accuracy of different models, Table 3 lists
the statistical analysis of prediction errors, includingmean absolute
error (MAE) and root mean squared error (RMSE), which are
defined as follows:
Table 2
Model initial parameters.

Parameter Value

P0 5 MPa
wc 0.17
rl 832.2 kg/m3

Mg 18 gr
m 1.426 � 10�4 Pa,s
R 8314 J/(mol$K)
Ctop 3.3 � 10�3

Kg 3.49 � 10�2

Kl 2.81 � 10�1

Dp 0.25 m
Dr 0.25 m
wnom 9 kg/s
T1 369 K
T2 298 K
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MAE¼

Pm
i¼1

jyi � byij
m

(22)
Description

Top separator pressure
Moisture content
Liquid density
Gas molecular mass
Viscosity
Gas constant
Top valve coefficient
Gas flow coefficient at the bottom of the riser
Liquid flow coefficient at the bottom of the riser
Diameter of subsea pipeline
Diameter of riser
Nominal flow
Pipe inlet temperature
Top temperature of riser



Table 3
Comparison of estimation accuracy of different models.

Model MAE, MPa RMAE, MPa

ODE 5.413e-3 6.793e-3
WNN 2.923e-3 3.747e-3

Fig. 11. Feedback control block diagram.

Fig. 12. Real-time control effect using different observers with 10% valve opening. (a) ODE-U
part of (c).
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RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

ðyi � byiÞ2
m

vuuut
(23)

In the formula, yi represents the actual value, and byi represents
the estimated value, and m represents the number of samples. All
the comparison results indicate that in the one-step state estima-
tion, compared with the ODE model, the WNNmodel has a smaller
estimation error and can better reflect the dynamic changes of gas
and liquid in the pipeline. It is more suitable for fusion with UKF to
form a new observer.

To verify the effectiveness of the observation system, the PI
controller is combined for real-time control of the system. As
shown in Fig. 11, the full state feedback is applied by using the
estimated states. Also, to prevent deviations from the set pipeline
inlet pressure Ps, the integral action is added by integrating the
deviation values. The overall control action can be expressed as
(Jahanshahi and Skogestad, 2017):
KF as observer. (b) The enlarged part of (a). (c) WNN-UKF as observer. (d) The enlarged



Fig. 13. Real-time control effect using different observers with 15% valve opening. (a) ODE-UKF as observer. (b) WNN-UKF as observer.

Table 4
Comparison of errors of different control systems.

Valve opening Observer ISE IAE

10% ODE-UKF 2.85 2.98
WNN-UKF 0.73 0.85

15% ODE-UKF 3.65 3.82
WNN-IKF 1.26 1.41
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uðtÞ¼ �KpðbxðtÞ� xsÞ þ Ki

ðt
0

ðbP1ðtÞ� PsÞdt (24)

where KP is the linear optimal controller calculated by solving the
Riccati equation, and Ki is a relatively small integral gain (Ki ¼ 0.01).
MATLAB is used to simulate the multiphase flow transmission and
set the variance of P2 and wout measurement noise to be 0.33% of
Fig. 14. Real-time control effect using different observers with 20% va
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the observed mean. The gas flow rate at the inlet is wg;in ¼
0:34 kg=s, and the liquid flow rate is wl;in ¼ 8:60 kg=s. To test the
robustness of the control system, Gaussian white noise is added to
the input flow. Under these boundary conditions, the valve opening
where the system switches from stable (non-slug) to oscillatory is
at u ¼ 15% (Jahanshahi and Skogestad, 2011). The steady-state in
the slug condition is unstable but can be stabilized by control. u is
set to 10%, 15%, and 20%, respectively, to compare the control per-
formance of different observation methods.

The controller is turned on at 25 min and held for 35 min. It can
be seen from Fig. 12(a) and (c) that when the valve opening is 10%,
both ODE-UKF andWNN-UKF can stabilize the system as observers.
However, by comparing (b) and (d), it can be seen that the actual
value of WNN-UKF is closer to the set-point. As the valve opening
increases, it becomes more difficult for the control system to sta-
bilize (Jahanshahi et al., 2012).When the valve opening increases to
15%, in Fig. 13(a), the system state is near the set value but fluctu-
ates frequently. Obviously, with ODE-UKF as the observer, the
lve opening. (a) ODE-UKF as observer. (b) WNN-UKF as observer.
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control performance is not ideal. To quantitatively compare the
deviation between the actual value and the set-point in different
control systems, we compare the integral squared error (ISE) and
the integral absolute error (IAE), which are defined as follows:

ISE ¼
ðt
0

½eðtÞ �2dt (25)

IAE ¼
ðt
0

jeðtÞjdt (26)

It can be seen from Table 4 that the overall error of WNN-UKF is
smaller at the valve opening of 10% and 15%. This means that the
uncertainty of the model is smaller, the response speed of the
control system is faster, and the tracking performance is better.
When the valve opening increases to 20%, as shown in Fig. 14,
WNN-UKF stabilized the system successfully, but ODE-UKF failed.
This is because the ODE model is linearly assumed. The transfer
function in UKF is entirely static and cannot accurately capture real-
time dynamic trends. The robustness of the closed-loop system is
weak.

Besides modeling errors, the nonlinearity of the system is also
the leading cause for robustness problems in severe slug flow
control. BecauseWNN-UKF updates the nonlinear transfer function
in the state equation at different times, the observer can provide
accurate predictions to the controller. Therefore, it has excellent
control performance with different valve openings. In the control
process, the use of WNN requires fewer parameters and physical
values, so after the controller is turned on, WNN-UKF has better
control effect, faster stability of the system and more significant
advantages in real-time control.
5. Conclusions and prospects

An observation method combining WNN and UKF is provided
for severe slug flow control in this paper. In the proposed method,
the subsea multiphase flow transportation is considered as a
nonlinear model, and themodeling of the internal state of pipelines
is realized by WNN, which can fully learn the dynamic character-
istics of gas-liquid mixing. To accurately estimate the pipeline inlet
pressure, WNNwas introduced into the framework of UKF, forming
a new observation method. It ensures the effective conversion of s
points in the time update phase and promotes the update of WNN
simultaneously. Therefore, the transfer function in the UKF state
equationwill changewith the update of theWNN after each update
and can keep up with the changing trend of subsea pipeline pres-
sure. The comparison results with ODE modeling show that WNN
can better fit the relationship among top pressure, flow rate, valve
opening and inlet pressure. The integration of the UKF algorithm
can improve the system state estimation and provide more accu-
rate estimation results for the controller to achieve real-time con-
trol. Compared with traditional methods, WNN-UKF offers better
control and faster stabilization of the system. The valve opening can
be up to 20%. The larger the valve opening, the higher the oil pro-
duction rate. The simulation results verify the applicability and
superiority of the method. The data-driven neural network enables
the traditional filtering algorithm based on physical model to cope
with nonlinear systems better. On the other hand, the real-time
noise reduction ability of traditional filtering algorithm improves
the generalization ability of neural networks obviously. The pro-
posed WNN-UKF method has certain guiding significance for
complementing their advantages. At the same time, WNN-UKF
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shows the possibility of the application of artificial intelligence
method in the field of slug flow control, and provides a new idea for
the practical application of future engineering.

Furthermore, the addition of neural networks and other
methods can effectively improve the reliability of the control sys-
tem and has certain guiding significance for oil and gas develop-
ment under complex working conditions. For different working
conditions, when using WNN-UKF, if the initial settings of param-
eters such as weights, scale scaling factors and time translation
factors are not reasonable, the convergence speed of the whole
network will become slow or even divergent. Therefore, the proper
parameter selection is the difficulty of using this model. Moreover,
when the amount of neural network training data is insufficient,
the uncertainty of the model will increase. This will lead to the
decrease of the initial prediction accuracy and the poor control
effect of slug flow. Since neural networks rely heavily on data, they
usually need to be retrained for different working conditions.
Improving the adaptability of the neural network should be the
focus of future work. Meanwhile it is necessary to study the
constraint boundary of the controller.
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Appendix A. ODE model details

The model was proposed by Jahanshahi and Skogestad (2011),
and the specific details are as follows:

(1) Inflow conditions

The inlet boundary conditions usually change. The liquid vol-
ume fraction in the pipeline section can be obtained based on the
liquid mass fraction and densities of the two-phase:

aL ¼
aLm=rL

aLm=rL þ ð1� aLmÞ=rG
(27)

The average liquid mass fraction in the pipeline section can be
attained using the inflow boundary condition:

aLm1y
wL;in

wG;in þwL;in
(28)

Combing the two above equations gives the average liquid
volume fraction in the pipeline:

aL1y
rG1wL;in

rG1wL;in þ rLwG;in
(29)

In Eq. (29), the gas density can be calculated based on the
nominal pressure (steady-state) of the pipeline:
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rG1 ¼
P1;nomMG

RT1
(30)

(2) Outflow conditions

After the long transport pipeline reaches the offshore platform,
its external boundary pressure is constant (separator pressure). The
constant pressure condition and the choke valve model are used as
the boundary conditions at the outlet of the riser.

wmix;out ¼Ck3f ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rtðP2 � P0Þ

p
(31)

where z2(0, 1) and f(z) is the equation for the opening of the valve.
A linear valve is assumed in the simulation model (i.e., f ðzÞ ¼ z).

The equation of gas and liquid outflow is.

wL;out ¼aLm;twmix;out (32)

wG;out ¼
�
1�aLm;t

�
wmix;out (33)

To calculate the mass flow rate of each phase in the outlet model
in Eqs. (32) and (33), also the mixing density rt, used in Eq. (31), the
phase distribution at the top of the riser must be known.

The liquid mass fraction at the outlet choke valve:

wG;out ¼
�
1�aLm;t

�
wmix;out (34)

aLm;t ¼
aL;trL

aL;trL þ
�
1� aL;t

�
rG2

(35)

The density of the two-phase mixture at the top of the riser:

rt ¼aL;trL þ
�
1�aL;t

�
rG2 (36)

The above equation aL;t is the liquid volume fraction at the top of
the riser. The pressure and liquid volume fraction between the
vertical gravity-dominated two-phase flow pipes are approxi-
mately linear for the desired steady flow state. The pressure
gradient along the riser can be assumed to be constant. Due to the
assumed linear relationship, the liquid volume fraction also main-
tains an approximately constant gradient along the riser for a
steady flow state.

vaL2
vy

¼ constant (37)

This assumption indicates that the volume fraction of the liquid
in the middle of the riser is the average of the volume fractions at
both ends of the riser. On the other hand, the volume fraction of
liquid in the middle of the riser is approximately equal to the
average volume fraction of liquid in the riser. Therefore,

aL2 ¼
aL;lp þ aL;t

2
(38)

The liquid volume fraction aL;lp at the bottom of the riser is
determined by the flow area of the liquid phase at the low point.

aL;t ¼2aL2 � aL;lp ¼ 2mL2

V2rL
� AL

pr21
(39)

(3) Pipeline model
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In the pipeline, the gas and liquid are usually distributed un-
evenly. In this case, the mass of the liquid in the pipeline is given by
mL1 ¼ rLV1aL1. The lowest point of the pipeline level at the bottom

of the riser can be defined as h1yhcaL1. If the mass of the liquid in
the pipeline increases, the level at the bottom of the riser will also
change, and its position changes have the following relationship.

Dh1 ¼ DL sinðqÞ
DmL1 ¼ DLpr21ð1� aL1ÞrL

h1 ¼ h1 þ DL sinðqÞ

h1 ¼ h1 þ
DmL1

pr21ð1� aL1ÞrL
sin ðqÞ

h1 ¼ KhhcaL1

(40)

where Kh is the correction factor around unity which can be used
for fine-tuning of the model.

Therefore, the liquid level of h1 in the pipeline can be expressed
as a function of the liquid mass mL1 in the pipe. The functional
relationship can be expressed as:

h1 ¼Khh1 þ
 
mL1 � rL;rV1aL1

pr21ð1� aL1ÞrL

!
sinðqÞ (41)

where mL1 is the state variable of the model. The remaining pa-
rameters are constant.

The volume occupied by the gas in the pipe:

VG1 ¼V1 �
�
1� aL;t

�
mL1

rL;r
(42)

Gas density in the pipeline:

rG1 ¼
mG1

VG1
(43)

Pressure in pipeline assuming ideal gas:

P1 ¼
rG1RT1
MG

(44)

For the pressure loss due to friction in the pipeline, only the
friction of the liquid is considered.

DPfp ¼
aL1lprLU

2
sl;inL1

4r1
(45)

The correlation for turbulence flow in smooth wall pipes is used
as the friction factor in the pipeline.

lp ¼0:0056þ 0:5Re�0:32
p (46)

Reynolds number in the pipeline:

Rep ¼
2rLUsl;inr1

m
(47)

where m is the liquid viscosity and Usl,in is the surface velocity of the
inlet liquid:

Usl;in ¼
wL;in

pr21rL
(48)
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(4) Riser model

The total volume of riser:

V2 ¼pr22ðL2 þ L3Þ (49)

The volume occupied by gas in the riser:

VG2 ¼V2 �
mL2

rL
(50)

The density of gas at the top of the riser:

rG2 ¼
mG2

VG2
(51)

Pressure at the top of the riser:

P2 ¼
rG2RT2
MG

(52)

Average liquid volume fraction in riser:

aL2 ¼
mL2

V2rL
(53)

The average density of mixture inside riser:

rm ¼mG2 þmL2

V2
(54)

Friction loss in the riser:

DPfr ¼
aL2lrrmU

2
mðL2 þ L3Þ

4r2
(55)

The friction factor of riser using the same correlation as a
pipeline:

lr¼0:0056þ 0:5Re�0:32
r (56)

Reynolds number of flow in riser:

Rer ¼2rmUmr2
m

(57)

Riser fluid mixing speed:

Um ¼Usl2 þ Usg2 (58)

Among them:

Usl2 ¼ wL;in

rLpr
2
2

Usg2 ¼ wG;in

rG2pr
2
2

(59)

(5) Gas flow model at the bottom of the riser.

When the liquid height at the bottom of the riser exceeds the
critical level(h1 � hc), slugging will occur at the bottom of the riser
and the gas flow rate is zero.

wG;lp ¼0; h1 � hc (60)

When the liquid is not blocked at the bottom of the riser(h1 <
hc), the gas will flow from volume VG1 to VG2 with a mass flow rate
of wG;lp. According to the physical model, the two most important
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parameters determining the gas rate are the pressure drop over the
low-point and the opening area. This suggests that the flow of gas
can be approximated by a valve flow model. The pressure drop
drives the gas through an opening area of AG.

wG;lp ¼KGAG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rG1DPG

q
; h1 <hc (61)

Among them:

DPG ¼ P1 � DPfp � P2 � rmgL2 � DPfr (62)

(6) Liquid flow model at the bottom of the riser.

The liquid at the bottom of the riser can also be used similarly to
the equation for the gas at the bottom of the riser.

wL;lp ¼KLAL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rLDPL

q
(63)

Among them:

DPL ¼ P1 � DPfp þ rLgh1 � P2 � rmgL2 � DPfr (64)

The area of the gas flow is calculated exactly using some trigo-
nometric functions. For simplicity, a quadratic approximation is
used in the proposed model.

AGypr21

�
hc � h1

hc

�2

; h1 < hc (65)

AL ¼pr21 � AG (66)
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