
lable at ScienceDirect

Petroleum Science 20 (2023) 3450e3460
Contents lists avai
Petroleum Science

journal homepage: www.keaipubl ishing.com/en/ journals /petroleum-science
Original Paper
Physics-informed neural network-based petroleum reservoir
simulation with sparse data using domain decomposition

Jiang-Xia Han a, b, Liang Xue a, b, *, Yun-Sheng Wei c, Ya-Dong Qi c, Jun-Lei Wang c,
Yue-Tian Liu a, b, Yu-Qi Zhang d

a National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing, 102249, China
b Department of Oil-Gas Field Development Engineering, College of Petroleum Engineering, China University of Petroleum, Beijing, 102249, China
c PetroChina Research Institute of Petroleum Exploration & Development, Beijing, 100083, China
d Lushang Oilfield Operation Area, Jidong Oilfield Company, PetroChina, Tangshan, 063000, Hebei, China
a r t i c l e i n f o

Article history:
Received 20 September 2022
Received in revised form
16 October 2023
Accepted 24 October 2023
Available online 27 October 2023

Edited by Yan-Hua Sun

Keywords:
Physical-informed neural networks
Fluid flow simulation
Sparse data
Domain decomposition
* Corresponding author. National Key Laboratory
Engineering, China University of Petroleum (Beijing),

E-mail address: xueliang@cup.edu.cn (L. Xue).

https://doi.org/10.1016/j.petsci.2023.10.019
1995-8226/© 2023 The Authors. Publishing services b
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum
reservoirs. However, the predominant approach in existing research is to train neural networks using
high-fidelity numerical simulation data. This presents a significant challenge because the sole source of
authentic wellbore production data for training is sparse. In response to this challenge, this work in-
troduces a novel architecture called physics-informed neural network based on domain decomposition
(PINN-DD), aiming to effectively utilize the sparse production data of wells for reservoir simulation with
large-scale systems. To harness the capabilities of physics-informed neural networks (PINNs) in handling
small-scale spatial-temporal domain while addressing the challenges of large-scale systems with sparse
labeled data, the computational domain is divided into two distinct sub-domains: the well-containing
and the well-free sub-domain. Moreover, the two sub-domains and the interface are rigorously con-
strained by the governing equations, data matching, and boundary conditions. The accuracy of the
proposed method is evaluated on two problems, and its performance is compared against state-of-the-
art PINNs through numerical analysis as a benchmark. The results demonstrate the superiority of PINN-
DD in handling large-scale reservoir simulation with limited data and show its potential to outperform
conventional PINNs in such scenarios.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The modeling of flow and transport processes in subsurface for-
mations is essential for various reservoir engineering applications,
such as oil reservoir development and carbon sequestration. Quan-
tifying flow mechanisms in these scenarios often requires using
partial differential equations (PDEs) founded on laws of conserva-
tion. Traditionally, PDEs have been solved numerically using
methods such as finite elements, finite differences, spectral, and
meshless techniques. These methods have undergone significant
development over the years, rendering them robust and flexible for
solving complex subsurface flow and transport problems. However,
of Petroleum Resources and
Beijing, 102249, China.

y Elsevier B.V. on behalf of KeAi Co
numerical simulations can be computationally demanding for large-
scale simulation problems in petroleum engineering, posing chal-
lenges during execution. Moreover, tasks like history-matching,
sensitive analysis, and project design optimization require multiple
simulation runs, leading to prohibitively inefficient computations for
obtainingmeaningful results (Ertekin and Sun, 2019). In recent years,
data-driven methods have garnered significant attention and ach-
ieved remarkable progress in various domains such as natural lan-
guage processing (Otter et al., 2021) and image classification (LeCun
et al., 2015). Among these methods, artificial neural networks
(ANNs) have emerged as one of the most important data-driven
simulation techniques due to their universal approximation prop-
erty and ability to accurately approximate any measurable function
(Hornik et al., 1989). The versatility of ANNs extends to various sci-
ence and engineering fields, demonstrating their potential in non-
linear universal approximation and data assimilation
(Shanmuganathan, 2016; Abiodun et al., 2018).
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Notably, within the realm of petroleum engineering, ANNs have
made substantial advancements in both forward modeling and
other applications. Dong et al. (2019) proposed an enhanced arti-
ficial neural network model for predicting CO2 minimum misci-
bility pressure based on the full composition of the crude oil and
temperature. Erofeev et al. (2019) studied the applicability of
various machine learning algorithms for predicting rock properties
usually defined by geoscientists through specialized laboratory
analysis. Moosavi et al. (2020) utilizedmultilayer perceptron neural
networks to accurately identify reservoir models from pressure
derivative curves derived from horizontal wells. Chung et al. (2020)
proposed a pore-scale finite volume solver to predict permeability
on digital cores by solving flow on micro-CT images. Kim et al.
(2021) proposed an innovative data-integration method that uses
an iterative-learning approach with a deep neural network coupled
with a stacked autoencoder to address challenges encountered in
many-objective history matching. Santos et al. (2021) tackled the
limitation of modeling important geometries like fractures and
vuggy domains accurately using a general multiscale deep learning
model that can learn from porous media simulation data.
Furthermore, Wang et al. (2021) outlined an integrated method
that combines predictions of fluid flowwith direct flow simulation,
significantly reducing computation time without compromising
accuracy. Alakeely and Horne (2022) examined the effectiveness of
generative deep learning methods in predicting multiphase flow
profiles of new wells in unseen locations using historical produc-
tion data and a variational autoencoder algorithm. Dong et al.
(2022) introduced a deep reinforcement learning based approach
for automatic curve matching for well test interpretation, utilizing
the double deep Q-network. Despite its remarkable advancements,
the conventional data-driven approach inevitably faces several
challenges. Firstly, the data-driven model is perceived as a "black
box," since it lacks the incorporation of physical meaning of the
dataset, leading to predictions that may be physically inconsistent
or implausible (Karniadakis et al., 2021). Secondly, the robustness
of the data-driven model may be poor, and its long-term prediction
capabilities are weak. This can be attributed to the fact that
generalizing and extrapolating beyond the parameter space of the
included dataset is remain extremely challenging, as the models
developed within artificial neural networks are bounded by the
parameter space of the training dataset (Almajid and Abu-Al-Saud,
2022).

A recent and innovative neural network architecture that em-
bodies this concept is known as ‘physics-informed neural networks’
(PINNs) (Raissi et al., 2019). By incorporating PDEs, boundary con-
ditions, initial conditions, and other measurable prior knowledge
into the loss function, PINNs seamlessly integrate data and physics
laws to construct a physics-constrained loss function based on
automatic differentiation. These algorithms not only improve the
interpretability of machine learning models in terms of physical
principles but also demonstrate robustness in handling flawed
data, such as missing or noisy values, outliers, and other irregu-
larities (Karniadakis et al., 2021). The performance of PINNs has
been demonstrated in petroleum reservoir problems associated
with subsurface flow and transport in porous media. Li et al. (2022)
introduced a TGNN model that integrates high-fidelity numerical
simulation data, fundamental physical laws, boundary conditions,
initial conditions, expert knowledge, and engineering control terms
in the loss function, enabling the solution of two-phase subsurface
flow problems at the reservoir scale beyond the BuckleyeLeverett
equation. Daolun et al. (2021) proposed an improved physics-
constrained PDE solution method by integrating potential fea-
tures of the PDE into the loss functions to alleviate the strong
nonlinear problem of the flow equation caused by the source-sink
term in the single-phase homogeneous reservoir problem. Gasmi
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and Tchelepi (2021) utilized PINNs to tackle the two-phase
immiscible flow problem governed by the BuckleyeLeverett
equation, achieving physical solutions by incorporating either a
diffusion term into the partial differential equations or observed
data. Almajid and Abu-Al-Saud (2022) implemented a physics-
informed neural network technique that combines fluid flow
physics and observed data to model the BuckleyeLeverett problem.
Cornelio et al. (2022) developed a neural network (NN) model to
learn the physical model residual errors in simulation-based pro-
duction prediction as a function of input parameters of an uncon-
ventional well. Hanna et al. (2022) developed a novel residual-
based adaptive PINN and compared it with the residual-based
adaptive refinement (RAR) method and a PINN with fixed colloca-
tion points. Wang et al. (2022) proposed a theory-guided con-
volutional neural network (TgCNN) framework that incorporates
discretized governing equation residuals into the training of con-
volutional neural networks, to extend to two-phase porous media
flow problems.

However, when applying PINNs to reservoir simulation with
large-scale systems and production wells, existing research typi-
cally relies on training neural networks using high-fidelity nu-
merical simulation data. The challenge arises from the scarcity of
real reservoir data available for training purposes, which is often
limited to information such as production rates and bottomhole
flow pressures. Consequently, the accuracy of the physical infor-
mation method may not always be guaranteed, when solving
complex partial differential equations (PDEs) with large-scale sys-
tems and production wells, especially in the near-well zone where
the pressure gradient is the largest.

In this study, we propose a physics-informed neural network
based on domain decomposition (PINN-DD) to effectively utilize
the sparse production data (bottom hole pressure and production
data) of wells for reservoir simulation with a large-scale spatio-
temporal domain. The introduced domain decomposition tech-
nique aims to harness the advantages of PINN in solving small-scale
spatiotemporal domain problems to tackle the challenges posed by
production wells and large-scale computational domain, which
have very limited labeled data available. The computational domain
is divided into two sub-domains: the well-containing and the well-
free sub-domain, which are rigorously constrained by the govern-
ing equations, data matching, and boundary conditions. Specif-
ically, the pressure at the wellbore radius determined by the
Peaceman equation (Peaceman, 1978) serves as the inner boundary
of the well-containing sub-domain.

2. Methodology

2.1. Multi-phase Darcy flows in petroleum reservoirs

In this section, we present a general oilewater two-phase Darcy
flowmodel for porous media, which can be further simplified into a
single-phase model. The model assumes that the fluids are slightly
compressible and immiscible, and nomass transfer occurs between
the phases. The governing equation is expressed as:

V

�
rw

kKrw

mw
Vpw

�
þ qw ¼ vðfrwSwÞ

vt

V

�
ro
kKro

mo
Vpo

�
þ qo ¼ vðfroSoÞ
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(1)

where rw and ro are the density of water and oil, g/cm3; k is the
absolute permeability, mD; Krw and Kro are the relative perme-
ability of oil and water, respectively; mw and mo are the water and oil
viscosity, mPa s; po and pw are the pressure of oil phase and water
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phase, bar; Sw and So are the saturation of water and oil; qw and qo
are the source/sink term of water and oil phase, m3/d; f is the
porosity of porous media.
2.2. Physics-informed neural networks (PINNs)

In this subsection, we introduce the automatic differentiation
(AD) algorithm and physics-informed neural network (PINN)
model using fully-connected neural network (FC-NN) formulations.
Automatic differentiation (AD), also known as computational dif-
ferentiation, is a method for computing the derivatives of a function
with respect to its input parameters automatically. AD works by
representing the function as a graph of elementary operations, and
then using the chain rule to propagate the derivatives through the
graph (Lu et al., 2021). The core challenge addressed by AD is the
computation of derivatives, gradients, and hessian matrices of
complex functions. Nowadays, popular open-source machine
learning libraries such as PyTorch and TensorFlow provide AD al-
gorithms that are widely used in scientific computing and data
analysis applications. By repeatedly applying the chain rule to
simple arithmetic operations and elementary functions, AD can
compute derivatives of any order with high precision.

We consider an initial-boundary problem in which the gov-
erning equation is expressible. The partial differential equations
solved by neural networks can be presented in the following form:

f
�
t; x; y;ut ;Vu;V2u;…

�
¼ 0 (2)

In the context of fluid flow problems in porous media, u typically
denotes state variables such as the pressure or saturation within
the reservoir. We suppose it can be represented by fully connected
neural networks as uq:

uzuq ¼W ½n� �s
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whereW[n] are weight matrices and b[n] are bias vectors for layer n;
s is a nonlinear activation function.

In PINNs, the loss function is comprised of several components,
including the residual of the governing equation, initial and
boundary conditions, and data matching. In the theoretical case,
any dataset must satisfy the governing equation, meaning that the
residual of the governing equation should approach zero. Conse-
quently, the residual of the governing equation, as computed by Eq.
(4), should be included as a regularization term in the neural net-
work's loss function. The inclusion of the governing equation re-
sidual term ensures that the network satisfies the underlying
physical principles, while the data matching and prior knowledge
terms provide additional constraints to improve the accuracy of the
predictions.

MSEpde ¼ 1
Np

XNp

i¼1

h
f
�
tp; xp; yp;uqti;Vuqi;V

2uqi;…
� i2

(4)

where ftp; xp; ypgNp

i¼1 denotes the collocation points of the residual
of governing equation; Np denotes the number of collection data.

Similarly, the mean square error associated with the initial
condition, boundary condition, and data match can be expressed
as:
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MSEBC ¼
1
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i¼1

½uqiðtBC; xBC; yBCÞ � uiðtBC; xBC; yBCÞ�2 (5)

MSEIC ¼
1
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MSEdata ¼
1

Ndata
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(7)

where ftBC; xBC; yBCgNBC
i¼1 and ftIC; xIC; yICgNIC

i¼1 denote the collocation
points of the boundary conditions and initial conditions, respec-
tively; NIC denotes the number of collection data;
uiðtdata; xdata; ydataÞ and uqiðtdata; xdata; ydataÞ denote the label data
and prediction data, respectively; Ndata denotes the total number of
label data.

Thus, the overall loss function can be formulated as follows:

LossðW; bÞ ¼ lpdeMSEpde þ ldataMSEdata þ lICMSEIC

þ lBCMSEBC (8)

where lpde, ldata, lIC, lBC denote the weights of each term, and all
take the value of 1 in this study. Currently, there is no systematic
analysis in the literature of weight determination or optimization,
and these weights are typically tuned by hand based on experience
or trial and error. In this study, we introduce an approach to
partially alleviate the cumbersome process of manual weight tun-
ing, by ensuring that the value of each loss item falls within the
same range. Specifically, wemodify the training process by training
the initial conditions and data matching in the first stage and
subsequently adding the remaining items. This is feasible because
the learning of the laws of physics and other components relies on
the initial conditions.

2.3. PINNs based on domain decomposition

A typical reservoir problem comprises a set of equations that
includes a continuity equation, initial conditions, outer boundary
conditions, and inner boundary conditions. The inner boundary is
represented by a wellbore, but the well radius is far smaller than
the reservoir scale, and the regionwhere pressure gradients are the
largest is closest to awell, so it is often treated as a point source or a
point sink in the calculation. However, the conventional PINN
model cannot accurately solve the PDEs with source-sink terms
(production and injection wells), unless the spatiotemporal fields
are small or have a large amount of labeled data to guide the
training process.

As illustrated in Fig. 1, the computational domain is divided into
two distinct sub-domains: the small well-containing sub-domain 1
and the larger well-free sub-domain 2. The continuity assumption
of the distribution of state variables at the partition interface con-
nects the different domains. The spatiotemporal data of this
interface are contained in both sub-domains and trained simulta-
neously, which results in the interface being constrained by the
governing equations and boundary conditions of both sub-
domains. Therefore, the continuity condition is implicitly satisfied
without requiring additional constraints on the interface. The well
is served as the inner boundary of the well-containing domain, and
the formation pressure at the well-bore radius can be calculated
using the Peaceman equation, as determined by Eq. (9). The
structure of the PINN-DD model is illustrated in Fig. 2.



Fig. 1. The solution domain decomposition.

Fig. 3. Sensitivity analysis of interface size.
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where h is the thickness of the reservoir, m; m is the fluid viscosity,
mPa s; pwell is the well-containing grid pressure, bar; pwf is the
bottom hole flow pressure, bar; re is the equivalent radius, m; S is
the skin effect, S ¼ 0.

3. Results and discussion

In this section, we evaluate the performance of PINN-DD by
assessing it on two distinct reservoir scenarios: a single-phase
reservoir problem and an oilewater two-phase problem.

3.1. Sensitivity analysis of interface size

Accurately simulating pressure gradients near the wellbore re-
quires carefully selecting the size of the interface. Large-size in-
terfaces are advantageous for well-free domain calculations as it
efficiently covers broader region, but cannot capture rapidly
changing gradients close to the wellbore with desired accuracy.
Conversely, smaller interfaces can simulate severe gradient changes
and reduce the scale mismatch between the wellbore and well-
Fig. 2. The structure of t
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containing domain, but at the cost of increased computational
complexity in the well-free domain. Therefore, conducting a
sensitivity analysis of interface size is essential to determine the
optimal size that balances the computational efficiency of the well-
free domain with the simulation precision of pressure gradients
near the wellbore. To evaluate the impact of interface size on
simulation accuracy, we conducted an analysis using a range of
different interface sizes, considering the other parameter settings
outlined in Section 3.2.

The results in Fig. 3 show that the test error decreases as the
interface size increases until a certain point, beyond which it starts
to increase. This observation aligns with the findings of the previ-
ous analysis. Based on considerations of computational efficiency
and the sampling of collocation points data, we have chosen an
interface size of 10 m for this study.
3.2. Single-phase reservoir problem

To assess the performance of PINN-DD, we conducted simula-
tions for a single-phase problem with a production well. The
computational domain was a 500-m square with no-flow bound-
aries. The production well was positioned at the center of the so-
lution domain and operated at a constant rate of 50m3/d. The initial
he PINN-DD model.



Fig. 4. Pressure fields of numerical simulation reference (a), PINN-DD (b, c), and PINN (d, e) at t ¼ 10 d.
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pressure was 300 bar, and the permeability, porosity, and Cf were
100 mD, 0.2, and 0.00045 bar�1, respectively. A neural network
with 15 hidden layers, each consisting of 100 neurons using the
softplus activation function was employed. The Adam optimizer
Fig. 5. Pressure fields of numerical simulation referenc
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with a learning rate decay strategy was used to train the network.
The coefficient of determination and the relative error L2 were
utilized to evaluate the accuracy, as follows:
e (a), PINN-DD (b, c), and PINN (d, e) at t ¼ 30 d.



Fig. 6. Relative errors L2 obtained by PINN-DD and PINN on the test dataset.

Table 1
Summary of the evaluation metrics for the pressure on the diagonal obtained by
PINN-DD and PINN.

Time, d Model R2 MAPE, %

10 PINN-DD 0.994 0.0478
PINN 0.687 0.292

30 PINN-DD 0.986 0.123
PINN 0.734 0.467
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R2 ¼1�

PN
i¼1

ðuqi � uiÞ2

PN
i¼1

ðui � uÞ2
(10)

L2 ¼
kuq � uk2

kuk2
(11)

where uqi is the solution of PINNs; N is the number of evaluation
points; ui is the numerical solution of evaluation points; u is the
average value of the numerical solution u.

The production rate and bottom-hole pressure data from a 30-
day numerical simulation serve as the prior sparse label data.
Subsequently, following the determination of network configura-
tions, mathematical and geological models, as well as domain
decomposition, the networks undergo training and testing.
Notably, Figs. 4(b), 5(b), 4(d) and 5(d), illustrate the solved pressure
fields of both PINN-DD and PINN at t ¼ 10 d and t ¼ 30 d,
Fig. 7. The pressure obtained with PINN-DD and PINN o
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respectively. The absolute error of PINN-DD remains below 4 bar at
t ¼ 10 d and t ¼ 30 d, in contrast to the PINNs, which amounts to 12
and 18 bar. As shown in Figs. 4 and 5, it becomes evident that the
distribution pattern of the near-well zone of PINN-DD aligns more
closely with the reference value, confirming that domain decom-
position improves the simulation efficacy of the near-well zone.

The accuracy of results is further supported through the histo-
gram of relative errors L2 obtained by the PINN-DD and the PINN
models on the test dataset, as illustrated in Fig. 6. Notably, while
both approaches achieve comparable levels of relative errors L2, the
PINN-DD exhibits a heightened level of precision. Although PINN-
DD also suffers from the error accumulation as the PINN model,
we can see that the slope of the PINN-DD error over time is
significantly smaller than that of PINN, proving a more stable
generalization ability.

Fig. 7 and Table 1 show the pressure results obtained from PINN-
DD and PINN along the diagonal line of the computational domain
at t ¼ 10 d and t ¼ 30 d, providing a visual representation of
pressure changes near the productionwell and offering insight into
overall variations on a smaller-scale. The results obtained from
PINN-DD perform better than those from PINN at both t ¼ 10 d and
t ¼ 30 d, specifically at the near-well area with the largest pressure
gradient. Domain decomposition, expertly applied in the PINN-DD
approach, emphasizes the continuity of state variables near the
well. Conversely, the PINN model endeavors to solve the entire
computational domain as awhole unit, consequently, it struggles to
precisely capture the intricate pressure fluctuations that arise
within the near-well zone. Notably, inaccuracies in the pressure of
the near-well zone can also propagate and impact the far-well zone,
thereby exacerbating the limitations inherent in the traditional
PINN methodology.
n the diagonal line at t ¼ 10 d (a) and t ¼ 30 d (b).



Fig. 8. The water, oil relative permeability, and water fractional flow function curves.
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3.3. Oilewater two-phase problem

Unlike the single-phase problem, the governing equation for
two-phase flow describes a coupled relationship between pressure
and saturation. Consequently, this coupling presents significant
challenges in solving the equation, highlighting its inherent
nonlinearity.

In this investigation, we assumed that the fluid is both incom-
pressible and immiscible, i.e., consistent with the 2D
BuckleyeLeverett two-phase problem. Based on these basic as-
sumptions, we can construct a Sw-net to solve the saturation using
PINNs based on BuckleyeLeverett theory (Buckley and Leverett,
1942) and then solve the pressure in conjunction with the basic
two-phase control equation using PINN-DD. The 2D
BuckleyeLeverett equation for the oilewater is written as:

vSw
vt

þ Q
fAðrÞ

vfw
vSw

vSw
vr

¼ 0 (12)

The initial and boundary conditions, respectively, are:

Initial condication Swðt¼0; rÞ¼ Swi (13)

Boundary condition Swðt; r¼ rwÞ¼1� Sor (14)

where Sw is the water saturation; fw is the water fractional flow; r is
the distance from the injectionwell; A(r) is the cross-sectional area;
f is the porous medium porosity. The fractional flow function of
water is defined as the ratio of water mobility to that of total
mobility:
Table 2
Model parameters of the Sw-net.

Parameter Value

Porosity 0.2
Permeability, mD 100
Irreducible water saturation 0.2
Residual oil saturation 0.2
Number of hidden layers 8
Number of neurons 50
Activation function tanh

Fig. 9. The saturation fields of analytic solutions and Sw-net. (a) t ¼ 10 d; (b) t ¼ 20 d;
(c) t ¼ 30 d.
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Table 3
The R2 score of saturation prediction of Sw-net.

Time, d R2

10 0.9999
20 0.9999
30 0.9998

Fig. 10. Domain decomposition of the quarter five-spot problem.
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fw¼ lw
lw þ lo

¼ 1

1þ Kromw
Krwmo

(15)

Fig. 8 illustrates the relative permeability curves of water and oil.
The saturation value of the oilewater front is a constant value that
Fig. 11. Pressure fields of numerical simulation referen
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can be determined by drawing a tangent line to the water fractional
flow curve, starting from the irreducible water saturation. The
intersection point of the tangent line with the water fractional flow
function curve represents the water saturation of the oilewater
front, as denoted by the red dashed line in Fig. 8.

Numerous studies have explored the application of PINNs to
solve the BuckleyeLeverett problem (Fraces et al., 2020; Diab and
Kobaisi, 2021; Rodriguez-Torrado et al., 2021; Xu et al., 2021;
Diab et al., 2022). Given the wealth of literature on this topic, a
comprehensive discussion of these works is beyond the scope of
this study. In this study, we employ the Sw-net to solve the 2D
BuckleyeLeverett equation and use its pre-trained model as an
auxiliary model in the process of solving the pressure field with
PINN-DD. The pre-trained model provides the saturation values of
each spatio-temporal point at each time step and further facilitates
the determination of the coefficient values of the pressure term.
First, the saturation of the oilewater front and its corresponding
position are calculated using the saturation-displacement equation.
The dataset is then used as data matching constraints, together
with the saturation distribution in the single-phase region, to assist
Sw-net in solving the BuckleyeLeverett equation. Table 2 lists the
model parameters of the NNs.

Fig. 9 shows the predicted saturation distributions of Sw-net at
three time steps compared to the reference values. Based on Fig. 9
and the evaluation metrics in Table 3, it is evident that the Sw-net
method accurately predicts the saturation distribution and cap-
tures the shock location.

The physical model to be solved is a 2D domain covering an area
of 100 m � 100 m with four no-flow boundary conditions. The
injection and production wells are located at coordinates (97.5,
97.5) and (2.5, 2.5), respectively. The computational domain can be
divided into three sub-domains based on the presence of produc-
tionwells, injectionwells, or neither, as shown in Fig. 10. The initial
pressure is 250 bar, while the initial water saturation is 0.2, and
ce (a), PINN-DD (b, c), and PINN (d, e) at t ¼ 10 d.



Fig. 12. Pressure fields of numerical simulation reference (a), PINN-DD (b, c), and PINN (d, e) at t ¼ 30 d.
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both irreducible water saturation and residual oil saturation are 0.2.
The permeability is 100 mD, and the viscosity of water and oil is 0.3
and 3 mPa s, respectively. The injection and production wells
operate at a constant liquid volume of 30 m3/d and a constant well
bottom pressure of 150 bar, respectively. The neural networks
comprise 20 hidden layers, each with 50 neurons, and other
network parameters are the same as in Subsection 3.2.

Figs. 11(b), 12(b), 11(d), and 12(d) show the pressure fields
solved by both PINN-DD and PINN at t ¼ 10 d and t ¼ 30 d,
respectively. The absolute error of PINN-DD remains below 8 bar,
while the absolute error of PINN absolute error reaches 22 bar. The
Fig. 13. Relative errors L2 obtained by PINN-DD and PINN on the test dataset.
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result shows that the PINN-DD has smaller errors, especially in the
vicinity of the injection wells, indicating that domain decomposi-
tion can improve the accuracy of the large-scale computational
domain problem with sparse production data.

Fig. 13 compares relative errors L2 between the PINN-DD and
PINN models over 30 d. The results confirms that domain decom-
position effectively mitigates the error accumulation. It is expected
that the PINN-DD model may show an increasing error trend in
later stages. Nevertheless, for the current 30-day simulation, the
error accumulation effect in PINN-DD is not significant. Thus,
domain decomposition improves the accuracy and stability of the
PINN model in solving two-phase problems.

Fig. 14 and Table 4 show the pressure results obtained from both
PINN-DD and PINN along the diagonal line at t ¼ 10 d and t ¼ 30 d.
The results demonstrate that the PINN-DD curve closely agrees
with the true value curve, while the standard PINN model exhibits
significant discrepancies. The poor convergence of the PINN model
can be attributed to the presence of discontinuous shock fronts in
the saturation field and sharp changes in pressure gradients near
the wellbore, which leads to inaccurate pressure field solutions
near the injection well.
4. Conclusions

In this study, a physics-informed neural network based on
domain decomposition (PINN-DD) is proposed to effectively utilize
sparse production data from wells for reservoir simulation with
large-scale systems. The novelty of this work is that, for the first
time, the idea of the domain decomposition method is introduced
into physics-informed-based large-scale reservoir simulation. It
takes full account of the challenges posed by sparse data and the
fact that the PINN model is good at solving small-scale spatio-
temporal domain. By computational domain, it preserves the
physical continuity of the near-well region where the pressure



Table 4
Summary of the evaluation metrics for the pressure on the diagonal obtained by
PINN-DD and PINN.

Time, d Model R2 MAPE, %

10 PINN-DD 0.985 0.523
PINN 0.1765 4.859

30 PINN-DD 0.9835 0.581
PINN <0 5.68

Fig. 14. The pressure with PINN-DD and PINN on the diagonal line at t ¼ 10 d (a) and t ¼ 30 d (b).
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gradient is largest, and both the sub-domain and the interface are
rigorously constrained by the governing equations, data matching,
and boundary conditions.

The accuracy of the proposedmethod is evaluated on the single-
phase and the oilewater two-phase problem with sparse produc-
tion data, and its performance is compared against state-of-the-art
PINNs through numerical analysis as a benchmark. In both cases,
PINN-DD demonstrates its superiority of PINN-DD in handling
large-scale reservoir simulation with sparse data, highlighting its
potential to outperform conventional PINNs in such scenarios. In
single-phase and two-phase scenarios at t ¼ 10 d and t ¼ 30 d,
PINN-DD consistently achieves lower absolute pressure field errors
compared to the standard PINN model. The domain decomposition
technique helps reduce error accumulation, and although both
PINN-DD and the standard PINN model are affected by error
accumulation, PINN-DD experiences a gentler rate of error increase.

Several limitations of this study must be acknowledged. Firstly,
while the PINN-DD method can capture the pressure dynamics
system of large-scale reservoirs with limited data, it comes with the
drawback of being computationally expensive and time-
consuming. Secondly, even though the method only requires
sparse production data, the data used in this study were obtained
through numerical methods. Consequently, the absence of a history
matching process, which corrects geological static parameters,
represents another limitation of this study.
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