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a b s t r a c t

Accurately predicting downhole risk before drilling in new exploration areas is one of the difficulties.
Using intelligent algorithms to explore the complex relationship between multi-source data and
downhole risk is a hot research topic and frontier in this field. However, due to the small number and
uneven distribution of drilled wells in new exploration areas and the lack of sample data related to risk,
the training model has insufficient generalization ability, and thus the prediction is not effective. In this
paper, a drilling risk profile (depth domain) rich in geological and engineering information is constructed
by introducing a quantitative evaluation method for drilling risk of drilled wells, which can provide
sufficient risk sample data for model training and thus solve the small sample problem. For the problem
of uneven distribution of drilling wells in new exploration areas, the concept of virtual wells and their
deployment methods were proposed. Besides, two methods for calculating rock mechanical parameters
of virtual wells were proposed, and the accuracy and applicability of the two methods are analyzed. The
LSTM deep learning model was optimized to tap the quantitative relationship between drilling risk
profiles and multi-source data (e.g., seismic, logging, and rock mechanical parameters). The model was
validated to have an average relative error of 9.19%. The quantitative prediction of the drilling risk profile
of the virtual well was achieved using the trained LSTM model and the calculation of the relevant pa-
rameters of the virtual well. Finally, based on the sequential Gaussian simulation method and the risk
distribution of drilled and virtual wells, a regional 3D drilling risk model was constructed. The analysis of
real cases shows that the addition of virtual wells can significantly improve the identification of regional
drilling risks and the prediction accuracy of pre-drill drilling risks in unexplored areas can be improved
by up to 21% compared with the 3D risk model constructed based on drilled wells only.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Currently, oil and gas exploration and development are
advancing towards deep stratum and deep water (Sheng and Guan,
2019), but drilling in deep complex formations faces many chal-
lenges, such as strong uncertainty of formation information,
prominent well control risks, and frequent occurrence of complex
downhole accidents. In recent years, researchers have conducted
extensive studies on pre-drilling risk prediction, during-drilling
ineering, China University of
China.
).
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operation risk monitoring and risk-based decision-making opti-
mization, by optimizing drilling engineering design through risk
prediction before pre-drilling, identifying or warning risks in real-
time during-drilling operation monitoring, and make optimiza-
tion decisions quickly based on risk analysis. Due to the low pre-
drill data and low awareness of deep formation information, and
the sudden and often serious consequences of risks during drilling,
most of the current research is focused on two aspects: drilling
monitoring and decision optimization. For example, scholars from
the Center for Risk, Integrity and Safety Engineering (C-RISE) at
Memorial University of Newfoundland, Canada, have done a lot of
research on monitoring the risk of well surge or blowout during
drilling: Abimbola and Khan et al. (2016, 2018) proposed a dynamic
risk analysis method based on loss function that changes with
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different well conditions and stages. The dynamic consequence
model is established based on the loss function that constantly
changes with the bottom pressure of the well, and is used to
monitor and maintain the stability of the well at different stages; in
addition, there are scholars who use a variety of downhole pa-
rameters to achieve the monitoring of well surge. For example,
Rakibul Islam et al. (2017) used four parameters including down-
hole pressure, drilling mud density, mud conductivity and flow rate
to monitor well surge, and through different logical combinations,
achieved assessment of well surge and associated blowout risk.
Based on these, Nhat et al. (2020) proposed a data-driven early
monitoring of well surge based on a machine learning approach by
introducing a Bayesian network and optimizing the former model.
Sule et al. (2019) proposed a traditional Bayesian network by
optimizing a dynamic blowout risk model based on dynamic
Bayesian network that canmonitor the risk situation during drilling
in real time and validated in Amberjack filed in the Gulf of Mexico.
For other risks such as well leakagemonitoring, Unrau and Torrione
(2017) established a well leakage judgment warning model based
on real-time drilling data frommultiplewells, and coupled a variety
of machine learning methods to train "false alarm" and " failure
alarm". During test, the false alarm rate for lost circulation was one
in every 5 h, and the accuracy and reliability of pre-alarm were
significantly improved. Alkinani et al. (2020) realized the prediction
of lost circulation in natural fractures and induced fractures by
creating two neural network models, dividing the data in each
network model into three groups, and using ANN to continuously
train and optimize the number of neurons, achieved the prediction
of well leakage in natural and induced fractures, dividing the data
in each network model into three groups, and optimizing the
number of neurons using ANN training. In terms of decision opti-
mization for risk, Alkinani et al. (2021) classified well leaks ac-
cording to the degree of leakage, formation type, cost of leakage
and success rate of plugging, and then set different expected ex-
penditures of well leak management solutions based on decision
tree algorithm and recommended the practically applicable and
least expensive well leak solution based on different well leak
incident types. Seraj et al. (2021) proposed a geospatial information
system-assisted approach based on a soft computing, designed a
framework for calculating the description of geological risk in-
tervals and uncertainty estimation process for each hydrocarbon
structure to manage the spatial uncertainty in the exploration
process, and enhanced the risk analysis of the data-driven approach
by a fuzzy logic approach, showing a high predictive capability.
While drilling risks can be effectively reduced or even avoided
through during-drilling monitoring and decision optimization,
regulation during the drilling process (especially adjusting drilling
engineering design schemes such as well structure) can increase
non-operating time, while the ideal state of drilling engineering is
to guarantee less or even no sudden risks during drilling through
rational design, thus reducing non-operating time and increasing
drilling time efficiency.

Therefore, a well-designed drilling engineering plan is crucial
for safe and efficient drilling, especially in new exploration areas
where there are few existing wells and limited reference data from
adjacent wells. In such cases, a pre-assessment of downhole engi-
neering risks is essential to develop a well-planned drilling engi-
neering scheme that canminimize the risks associatedwith drilling
encounters. By doing so, drilling operations can be conducted in a
safer and more efficient manner. In recent years, scholars have
proposed qualitative or semi-quantitative research methods such
as Analytic Hierarchy Process (Li et al., 2018; He and Wang, 2010),
Fault Tree Analysis (Yao et al., 2015), Interval Analysis (Guan et al.,
2013), Tree Naive Bayes Algorithm-based modeling approach
(Adedigba et al., 2018), Fuzzy Bow-tie Model Method (Liu et al.,
3655
2020), Monte Carlo simulation (Wei et al., 2013a, b; Zhao et al.,
2019), and Mathematical statistics theory (Guan et al., 2009; Ke
et al., 2009), which can be used to pre-drill the qualitative assess-
ment of regional drilling engineering risks and the safety of engi-
neering solutions. However, due to limitations in realistic factors
and models, engineering practice has shown that qualitative or
semi-quantitative methods may not fully meet the safety re-
quirements of drilling engineering in complex formations (Sheng
et al., 2019). In this regard, to address the problems of strong un-
certainty of deep formation information and difficulty in quanti-
tative evaluation of pre-drilling downhole engineering risks, Sheng
et al. (2019) proposed a method to quantitatively characterize for-
mation pressure uncertainty using credibility, and on this basis,
constructed a quantitative evaluation method of downhole engi-
neering risks such as lost circulation, kick, borehole collapse, and
pipe sticking based on the wellbore pressure balance criterion,
which can quantitatively assess the types and specific depths of
complex occurrences in the well. The method has achieved good
application results. However, the method relies on accurate for-
mation pressure profiles and drilling construction plans, and is
more suitable for post-evaluation of drilled wells, while for wells to
be drilled, it is difficult to obtain accurate formation pressure and
drilling construction plan information before drilling, which limits
the application of the method in pre-drilling of wells to be drilled.
Yi et al. (2021) used logging data from exploratory wells and dril-
ling logs to obtain the rock mechanical properties and pressure
profiles of neighboring wells, and then used the geomechanical
profiles of multiple wells to establish a 3D geomechanical model of
the entire block, which provided guidance for reducing drilling
risks. However, this process only judges the risk based on well
logging data and well history record data. To achieve quantitative
evaluation, the graded risk level is generally classified using
regional prediction approaches such as spatial difference to analyze
the risk characteristics of the formation pressure system. Prediction
results are affected by factors such as the accuracy of the risk grade
of drilled wells and the uniformity of drilling spatial distribution.
For new exploration areas, there are few and unevenly distributed
drilled wells, and it is more difficult to obtain accurate prediction
results. On the other hand, with the development of machine
learning, artificial intelligence, and other technologies, the field of
petroleum engineering is accelerating the crossover of disciplines,
such as Liang et al. (2019), Jahanbakhshi et al. (2014), Zhang et al.
(2022), Li et al. (2018), Xie et al. (2018), who proposed the opti-
mization of support vector regression machine using particle
swarm optimization algorithm, MLP algorithm, gradient boosting
decision tree algorithm, random forest, BP neural network, etc.
Such methods are based on various data before drilling to drive the
model and use intelligent algorithms to construct complex re-
lationships between various data and downhole risk to achieve
quantitative assessment of drilling risk. However, these methods
rely heavily on the number and quality of samples used for data
training, and for a well or even a block, the risk specimens of
downhole drilling engineering are small samples. For instance,
there is only single risk information in the well history, such as
specific well depths, events, and indirect monitoring data. The
model obtained in this way is prone to overfitting to small samples
and underfitting of task objectives, and it cannot guarantee the
generalization ability of the model. Therefore, gaining sufficient
quantity and quality of risk samples is one of the key bottlenecks of
current data-driven risk assessment methods.

To solve the issues mentioned above, this paper proposes
several solutions. First, using the drilled well engineering risk
evaluation method based on the wellbore pressure balance crite-
rion (Sheng et al., 2016) to construct a probabilistic profile of
downhole engineering risk rich in geological and engineering
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information, which can significantly improve the quantity and
quality of risk samples. Second, construct quantitative relationships
between seismic, formation lithology, physical properties, drilling
parameters and downhole engineering risk profiles based on ma-
chine learning algorithms, add virtual wells in the undrilled area of
the block, and use the quantitative relationships of drilled wells to
quantitatively predict the downhole engineering risk profiles of
virtual wells, thus solving the problem of few drilled wells and
uneven spatial distribution in the new exploration area. Third,
construct a regional three-dimensional risk model based on the
downhole engineering risk profiles of drilledwells and virtual wells
by using spatial difference and depth adjust methods. The three-
dimensional risk model so constructed fully takes into account
the influence of regional geology, engineering design and con-
struction level, and is of great significance for improving the level of
understanding of drilling engineering risks in deep complex for-
mations before drilling, optimizing the engineering design plan of
wells to be drilled, and reducing downhole engineering risks dur-
ing drilling.
2. Quantitative risk assessment method of drilled
engineering based on wellbore pressure balance criterion

2.1. Basic principle of method

In response to the problem of strong uncertainty of deep for-
mation information and difficulty of quantitative evaluation of
downhole engineering risks, Sheng et al. (2016, 2019) proposed a
method of quantitative characterization of formation pressure un-
certainty using credibility (pore pressure calculation of formation
with credibility as an example, and its basic principle and effect are
shown in Fig. 1, the specific principle is shown in Appendix I). Based
on the wellbore pressure balance criterion, a quantitative evalua-
tion method for downhole engineering risks such as lost circula-
tion, kick, borehole collapse and pipe sticking is constructed, as
presented in Eqs. (1)e(4) for the risk assessment model. This model
can quantitatively evaluate the type and specific depth of downhole
risk occurrence (i.e., the risk probability profile of downhole com-
plex situations, as shown in Fig. 2). Field application has confirmed
that the risk evaluation compliance rate of this method for drilled
wells is greater than 92%. For more details, please refer to the
literature (Sheng, 2019).

Since the method evaluates complex downhole situations based
on the equilibrium relationship between formation pressure and
wellbore pressure. As a result, its risk assessment results provides a
wealth of geological information (such as formation pressure and
its uncertainty) as well as engineering information (drilling mud
density, wellbore structure scheme, construction level, etc.).
Compared to the risk information recorded in well history (such as
risk occurrence, well depth, surface monitoring overflow/lost cir-
culation, etc.), the quantity and quality of samples used for data
training are significantly enhanced.

The related risk evaluation model is as follows:
Kick Rk:

RkðhÞ ¼P
�
rd < rkðhÞ

�
¼1� FrkðbÞ ðrdÞ (1)

Lost circulation RL:

RLðhÞ ¼ P
�
rd > rLðhÞ

�
¼ FrLðbÞ ðrdÞ (2)

Borehole collapse RcðhÞ:
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RcðhÞ ¼ max
n
P
�
rd < rclðhÞ

�
;P
�
rd > rc2ðhÞ

�o

¼ max
n
1� FrcðbÞ ðrdÞ; Frc2ðbÞ ðrdÞ

o
(3)

Pipe sticking Rsk:

RskðhÞ ¼ P
�
rd < rskðhÞ

�
¼ FrskðhÞ ðrdÞ (4)

where RkðhÞ, RLðhÞ, RcðhÞ and RskðhÞ represent kick, lost circulation,
borehole collapse and pipe sticking at depth h, respectively; rd (g/
cm3) is the density of the drilling mud during drilling.

2.2. Analysis of drilling examples

This paper takes a block in the South China Sea is used as the
research object, which is characteristics by ultra-high temperature,
high pressure and narrow density window, and has drilled eight
wells. Downhole complexities such as kick, lost circulation are
common, and drilling risks are prominent. The distribution of the
eight drilled wells in the seismic area is shown in Fig. 3.

Taking the drilled Well number 2 as an example. First, sort out
the logging data used for calculation, and outliers were removed
and noise reduction was performed on the data. The results are
shown in Fig. 4.

The overburden pressure was calculated, and the pore pressure
was calculated by using the effective stress method. The results are
shown in Fig. 5.

In combination with the Eaton method, the Eaton index was
inversely calculated and the probability distribution of the Eaton
index was calculated. Combined with the probability distribution,
the pore pressure with confidence was calculated. The fracture
pressure and collapse pressure with credibility were calculated
based on Monte Carlo simulation. The results are shown in Fig. 6.

Finally, based on the pressure equilibrium criterion, the density
window of safe drilling mud with credibility was constructed, and
the risk profile of Well number 2 was constructed based on the
theory of generalized stress and strength interference.

Using the above method, we can obtain the risk profiles of eight
drilled wells, as shown in Fig. 7.

In the future, dozens of development wells will be drilled in the
seismic area shown in Fig. 3. However, as can be seen from the
figure, the number of drilled wells in this seismic area is small and
unevenly distributed. If the risk profile data of only eight drilled
wells are used to evaluate the risk of regional drilling projects, it is
difficult to fully reflect the overall situation of the block, especially
when the development wells are located far away from the drilled
wells, it is difficult for the existing technology to obtain a more
accurate risk evaluation results. Therefore, this paper proposes the
concept of virtual wells and its deployment method, by adding
virtual wells to undrilled areas in the block, with a view to solving
the problem of few drilled wells and uneven spatial distribution.

3. Determination method of virtual well location and related
attributes

3.1. Determination method of virtual well location

It can be seen from Fig. 3, the distribution of drilled wells in the
block is relatively scattered and there are large undrilled areas. If
we rely only on the data of existing drilled wells, it is difficult to
predict the risk characteristics of the whole block with high accu-
racy. Therefore, virtual wells need to be inserted in the undrilled



Fig. 1. Basic principle and effect of pore pressure calculation of formation with credibility (Ke, 2019).
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area to enrich the block information and improve the prediction
accuracy of the drilling risk of the whole block. To ensure that the
selected virtual wells are randomly and uniformly distributed in
the undrilled area, a random function (Wang and Li, 2014) was used
to generate virtual wells:
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The seismic plane region is denoted as D ¼ fðx; yÞja⩽x⩽b;
41ðxÞ⩽y⩽42ðxÞg, then a point ðX;YÞ in the region should obey the
uniform distribution on the D region, where the edge density
function of X is:



Fig. 2. Schematic diagram of the risk profile of the complex downhole situation in the well.
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fXðxÞ¼
ðþ∞

�∞

f ðx; yÞdy¼

8>><
>>:

ð42ðxÞ

41ðxÞ

�
1

∬ Dds

�
dy a⩽x⩽b

0 others

¼

8>><
>>:

ð42ðxÞ � 41ðxÞÞ
∬ Ddsdy

a⩽x⩽b

0 others

(5)

where, fXðxÞ is the edge density function of X; 42ðxÞ and 41ðxÞ are
the boundaries of seismic region.

Returns a random number x in the interval [0, 1] by the random
function Random. Assuming the mapping of m from x to X is
X ¼ m(x), and m can be monotonically differentiable. Then,
3658
fxðg�1ðxÞÞ,ðm�1ðxÞÞ0 ¼ fXðxÞ and mð0Þ ¼ a;mð1Þ ¼ b，so it can be
resolved:

x¼

ðX
a
ð42ðuÞ � 41ðuÞÞdu

ðb
a
ð42ðxÞ � 41ðxÞÞdx

(6)

where, x is the value obtained by random function; X is the Х co-
ordinate of the point to be solved; a and b are the boundaries of
seismic region.

The value of X can be obtained by substituting x. Again, h can be
obtained by the Random function, and Y can be solved by the
following formula.



Fig. 3. Distribution map of drilled wells in the seismic area.

Fig. 4. Logging data of Well number 2.

Fig. 5. Pore pressure of Well number 2.
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Y ¼ð42ðXÞ�41ðXÞÞhþ 41ðXÞ (7)

where, Y is the Y coordinate of the point to be solved; X is the Х
coordinate of the point to be solved; h is the value obtained by
random function.
3659
By using a looping command to repeat the above operations
multiple times, and the resulting (X, Y) will be the distribution
coordinates of the virtual well.

Using the abovemethod, thewell location of the virtual well can
be obtained as shown in the following Fig. 8.



Fig. 6. Pressure with credibility of Well number 2.
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3.2. Determination method of virtual well depth

According to the well history data, all eight drilled wells are
vertical wells, and the virtual wells are also set as vertical wells. At
the same time, in order to ensure that the data of the drilled wells
can be fully considered when using the interpolation method to
obtain the relevant properties of the virtual wells, the depth of the
virtual wells is set to the bottom boundary of the deepest formation
encountered by the eight drilled wells.

The bottom boundary of the deepest stratum that has been
drilled in this block is T40. Based on this layer, the depths of eleven
virtual wells in Fig. 8 are determined, as shown in the following
Table 1.
3.3. Calculation method of seismic interval velocity for virtual well

The virtual well information involves a variety of data such as
seismic interval velocity and rock mechanical parameters. Among
them, the seismic interval velocity can be extracted from the 3D
seismic interval velocity model. Based on the geodetic coordinates
of the virtual well, the 3D seismic interval velocity model was
established by combining the SEG-Y seismic body of the block (as
shown in Fig. 9), and the single well seismic interval velocity of the
virtual well was extracted from the model based on the borehole
trajectory of the virtual well respectively.

The seismic interval velocities of the drilled and virtual wells are
shown in Fig. 10.
3660
3.4. Calculation method of rock mechanical parameters for virtual
well

3.4.1. Calculation method of rock mechanical parameters for drilled
wells

Rock mechanical parameters mainly include static Poisson's
ratio, static modulus of elasticity, internal friction angle, internal
cohesion, uniaxial compressive strength and uniaxial tensile
strength, which reflect the physical properties of the rocks under
the action of external forces (Wu, 2020). They are also necessary
parameter for calculating formation pressure. However, the acqui-
sition of static mechanical parameters like static Poisson's ratio and
static modulus of elasticity can be complex and costly (Li et al.,
2020). Therefore, the method of dynamic and static conversion is
often used in engineering, i.e., the dynamic mechanical parameters
are first obtained by using logging data, and then the dynamic
mechanical parameters are converted to static mechanical param-
eters by using the correction formula.

(1) Calculation of static Poisson's ratio and static modulus of
elasticity

The conventional method is the triaxial experimental method,
i.e., the static elastic model and Poisson's ratio are obtained by
applying a constant surrounding pressure to the rock sample and
gradually increasing stress in the axial direction until the sample is
destroyed. However, this method is slow and costly, and it is



Fig. 7. Risk profiles of eight drilled wells.

Y.-Q. Xu, K. Liu, B.-L. He et al. Petroleum Science 20 (2023) 3654e3672
difficult to obtain continuous data (Xu et al., 2014). Therefore, in
practical applications, the conversion between dynamic and static
is often achieved by linear regression method.

The calculation formulae of dynamic Poisson's ratio and dy-
namic modulus of elasticity are as follows:

md ¼
V2
p � 2V2

s

2
�
V2
p � V2

s

� (8)

Ed ¼
rV2

s

�
3V2

p � 4V2
s

�
V2
p � V2

s
� 103 (9)

where, md: dynamic Poisson's ratio, nondimensional quantities; Ed:
dynamic modulus of elasticity, 104 MPa; Vp: P-wave velocities, km/
s; Vs: S-wave velocities, km/s; r: rock density, g/cm3.

The conversion formulae of static Poisson's ratio, static modulus
of elasticity are as follows:
3661
ms ¼A1 þ K1md (10)

Es ¼A2 þ K2Ed (11)

where, ms: static Poisson's ratio, nondimensional quantities;
A1 ¼ 0.1096; K1 ¼ 1.0385; md: dynamic Poisson's ratio, nondi-
mensional quantities; Es: static modulus of elasticity, 104 MPa;
A2 ¼�0.082; K2 ¼ 0.74; Ed: dynamic modulus of elasticity 104 MPa.

(2) Calculation of uniaxial compressive strength and uniaxial
tensile strength

Uniaxial compressive strength has different calculation
formulae according to different lithologies. According to the well
history data, we found that the block is mainly mudstone, so the
calculation formulae of uniaxial compressive strength are as
follows:



Fig. 8. Distribution of drilled wells and virtual wells in the block.
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Sc ¼0:033r2V4
p

�
1þ md
1� md

�2
ð1�2mdÞð1þ0:78VshÞ (12)

where, Sc: uniaxial compressive strength, MPa; r: rock density, g/
cm3; Vp: P-wave velocities, km/s; md: dynamic Poisson's ratio,
nondimensional quantities; Vsh: mudstone content, nondimen-
sional quantities.

The calculation formula of uniaxial tensile strength is as follows:

St ¼ Sc
K

(13)

where, St: uniaxial tensile strength, MPa; Sc: uniaxial compressive
strength, MPa; The value range of K is 8~25, usually 12.

(3) Calculation of internal cohesion and internal friction angle

Internal cohesion can be calculated by rock density, acoustic
velocity, mudstone content and dynamic Poisson's ratio. The
calculation formula is as follows:

C¼0:00544r2V4
p

�
1þ md
1� md

�2

ð1�2mdÞð1þ0:78VshÞ (14)

where, C: internal cohesion, MPa; r: rock density, g/cm3; Vp: P-
wave velocities, km/s; md: dynamic Poisson's ratio, nondimensional
quantities; Vsh: mudstone content, nondimensional quantities.

The calculation formula of internal friction angle is as follows:
Table 1
Depth of virtual wells.

Name XN1 XN2 XN3 XN4 XN5

Depth, m 3942.59 3890.62 3953.33 3920.19 4360.61
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4¼ a , log
�
Mþ

�
M2 þ 1

�1
2

�
þ b (15)

M¼ a1 � b1C (16)

where, 4: internal friction angle, �; a ¼ 2.654; b ¼ 20; a1 ¼ 58.93;
b1 ¼ 1.785; C: internal cohesion, MPa.

Using Eqs. (8)e(16) to calculate the rock mechanical parameters
of eight drilled wells, the final rock mechanical parameters are
shown in Fig. 11.

3.4.2. Calculation method of rock mechanical parameters for virtual
wells

For the prediction of rock mechanical parameters of virtual
wells, we propose two methods: the prediction method based on
deep learning and well seismic data fusion, and the prediction
method based on the combination of Ordinary Kriging Interpola-
tion and Depth Adjustment. In Appendix II, we provide a detailed
analysis of the applicability and accuracy of the two methods. The
results show that the prediction accuracy of both methods is poor
when the number of drilled wells in the area is small and unevenly
distributed. If the drilling wells are relatively evenly distributed, the
prediction results of the second method can be used as a reference.
When the number of drilled wells in the area is appropriate (the
case in this paper), the prediction accuracy of the two methods is
not much different, so the second method is used in this paper, and
the prediction results are shown in Fig. 12.

4. Regional drilling risk prediction method based on deep
learning

The seismic interval velocity as well as rock mechanical pa-
rameters of the virtual wells obtained in the previous section
provide rich data support for the next deep learning. The steps of
regional drilling risk prediction using deep learning are as follows:
First, an intelligent model based on deep learning is used to
quantitatively evaluate the correlation between the rock mechan-
ical parameters of the drilledwells, the seismic interval velocity and
the downhole risk. Second, the obtained correlation is used to
predict the risk of the virtual well by combining the rock me-
chanical parameters and seismic interval velocity of the virtual
well. The detailed process is shown in Fig. 13.

4.1. Optimization of intelligent model

Currently, the commonly used intelligent models for risk pre-
diction include BP neural network (Shaik et al., 2020), Bayesian
network (Liu et al., 2021; Zinke et al., 2020), Logistic regression,
RNN model and LSTM model. In order to select the optimal model,
seven drilled wells (Well number 1, Well number 2, Well number 3,
Well number 5, Well number 6, Well number 7 andWell number 8)
were used as the training set, while the risk profile data of Well
number 4 was used as the test set. The risk prediction values of the
Well number 4 obtained from seven drilled wells were compared
with the actual value (original risk data). By drawing the confusion
matrix (Ahmad et al., 2022; Theissler et al., 2022;Wang et al., 2022)
of risk prediction results, the performance of each commonly used
XN6 XN7 XN8 XN9 XN10 XN11

4251.6 4382.36 4441.11 4279.54 4266.8 4471.5



Fig. 9. 3D seismic interval velocity model.
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intelligent model was evaluated, as shown in Fig. 14. It can be seen
that the LSTM model has a high accuracy in predicting lost circu-
lation, kick, borehole collapse and pipe sticking in different
downhole complexities. Therefore, the LSTMmodel was selected to
analyze and predict risks.

4.2. Structure of LSTM

The LSTM (Long Short Term Memory) model is a variant of the
RNNmodel, and the most important feature of this kind of model is
that the neurons can be fed again as inputs after being output at
some point (Song et al., 2022), which can maintain the de-
pendencies in the data. Compared with the traditional neural
network, it can process the data of sequence change (Pan et al.,
2021). The key of the LSTM is the cell state, the horizontal line
running through it above. The cell state is similar to a conveyor belt
that runs directly over the entire chain with only some few linear
interactions, which ensures that information is transmitted over it
without loss. In addition, the LSTM is elaborated with structures
called "gates" to remove or increase information into the cell state,
including forget gate, input gate and output gate (Cheng et al.,
2019). The structure of the LSTM model is shown in Fig. 15

Firstly, the forget gate determines what information we discard
from the cell state:
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ft ¼ s
�
Wf ½ht�1; xt � þ bf

�
(17)

Then, the input gate calculateswhat part of the input data can be
stored into the cell state:

it ¼ sðWi½ht�1; xt � þ biÞ (18)

~Ct ¼ tanhðWc½ht�1; xt � þ bcÞ (19)

Next, the old cell state Ct�1 from the previous state is updated to
the current state Ct:

Ct ¼ ft*Ct�1 þ it*~Ct (20)

Finally, the output gate needs to determine what value to
output, and this output will be based on our cell state:

ot ¼ sðWo½ht�1; xt � þ boÞ (21)

ht ¼ ot*tanh ðCtÞ (22)

where,Wf ,Wi,Wc,Wo are the hidden layer weight values between
the current hidden layer and the previous hidden layer, and bf , bi,
bc, bo are the deviation vectors (Lin et al., 2022). s and tanh are the
activation functions. The formula of s is Eq. (23), which can convert
all the calculated data to the (0, 1).

SðxÞ¼ ex

ex þ 1
(23)

The calculation formula of the activation function tanh is Eq.
(24), which can convert the calculated data to (�1, 1).

f ðxÞ¼ ex � e�x

ex þ e�x (24)

4.3. Construction method of LSTM input model

The first step in LSTM model prediction is to train the model to
find correlations between input and output attributes. In this paper,
the input xt of the training model is the rock mechanical parame-
ters of the drilled wells calculated by logging data (including static
Poisson's ratio, static elastic of modulus, internal friction angle,
internal cohesion, uniaxial compressive strength and uniaxial
tensile strength), with seismic interval velocity, and each attribute
corresponds to depth one by one. The output ht is the corre-
sponding risk (lost circulation, kick, borehole collapse and pipe
sticking). As shown in Fig. 16.

From the risk profile of drilled wells, it is evident that the length
of the risk-section of awell is particularly short, with themajority of
sections having a risk probability data of "0". However, when there
are too much "0" data, it inevitably affects the quality of training.
Therefore, in order to reduce computation and shorten the training
time, it is necessary to remove some of the "0" data, so that the final
non-"0" risk data segments account for about 90%e95% of the total
data. In addition, the data must be deleted from both ends of the
data set to ensure that the training part of the depth data is
continuous and the step size is consistent. In this paper, the step
size of the training and prediction sets is 0.1 m. If a well contains
multiple risk scenarios, each risk should be predicted separately.

In addition, theremay be anomalous data in the data caused by a
variety of unknown factors, which may produce biased prediction
results for the model (Boulmaiz et al., 2020). In order to minimize
the influence of unknown factors, the data set is input and then



Fig. 10. The seismic interval velocity of drilled wells and virtual wells.
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randomly sorted before dividing the data set, and the first 90% of
the new data set formed after sorting is used as the training
segment and the last 10% as the validation segment, as shown in
Fig. 17.

In Fig.17, h0 and C0 are the initial states of the hidden layer of the
LSTM neural network, while hd�1 and Cd�1 are the outputs of the
90% training section, which are passed at the beginning of 10%
validation section as input. Assuming that the sample point number
at the beginning of the validation section is d, then based on hd�1
and Cd�1 calculated at d� 1, combined with rock mechanical pa-
rameters and interval velocity at d, hd and Cd at d are predicted, and
then the risk at d can be calculated. Next, according to hd and Cd at
d, together with the rock mechanical parameters and interval
Fig. 11. Rock mechanical parameters of drilled wells. (take uniaxial tensile strength of
Well number 1 as an example, the remaining figure are in Appendix III).
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velocity at d, hdþ1 and Cdþ1 and risk at dþ 1 are calculated (Zhang
et al., 2018). The cycle is repeated to finalize the training and vali-
dation of the model.

When building a risk prediction model, in addition to dividing
the data set, it is necessary to standardize the data, which can avoid
the influence of dimension on the model learning, thereby signif-
icantly improve the training speed of the model (Zhou et al., 2021).
The input feature contains seven dimensions, and the output
feature includes one dimension. Consequently, the number of cell
units in the input layer is set to seven, and the number of cell units
in the output layer is one, while the number of cell units in the
hidden layer is determined according to the empirical formula (Wei
et al., 2013a, b). In order to accelerate the learning speed of the
network, the Adam optimization algorithm was used, and 500
rounds of training were performed. Besides, the gradient threshold
was also set to 1 to prevent gradient explosion, and the initial
learning rate of 0.001 was specified and reduced after 20 rounds of
training by multiplying by a factor of 0.9. Finally, the LSTM pre-
diction results are back-normalized to obtain the corresponding
risk data. The entire prediction structure is shown in Fig. 18, where
the computation of the hidden layer is the core of the network
(Wang et al., 2020).
4.4. Construction method of LSTM prediction model

The prediction model utilizes the correlation of the training
model to predict the risk of virtual wells. The prediction model data
set is processed in the same way as the training model. Considering
the continuity of layer, the sedimentary structure of adjacent wells
is identical (Zhang et al., 2012). Consequently, when predicting
virtual wells, in order to make the prediction results more reliable
and strengthen the correlation between the data, the “close interval
prediction method” was proposed. According to the depth interval
of the drilling risk data, the prediction depth interval of the virtual
well is selected similarly, e.g., if the depth interval of a certain risk
data is 2500e2550 m, the depth interval of the virtual well can be
selected as 2450e2600 m.
Fig. 12. Rock mechanical parameters of drilled wells. (take uniaxial tensile strength of
Well number 1 as an example, the remaining figure are in Appendix III).



Fig. 13. Basic process of regional drilling risk pre-assessment.

Fig. 14. Confusion matrix of risk prediction results of commonly used intelligent models.
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4.5. Prediction effect analysis

Seven drilled wells (Well number 1, Well number 2, Well
number 3, Well number 5, Well number 6, Well number 7 andWell
number 8) were used as the training set, and the Well number 4
was used as the test set to analyze the prediction accuracy of the
constructed LSTM model. The training results of the seven drilled
wells were as shown in Fig. 19.

It can be seen that the test data profiles of the LSTM for the four
3665
risks and the actual data profiles not only have similar trends but
also have similar values, which proves that the predictions of the
LSTM for the 10% training data segment have a high degree of
confidence. Using the quantitative relationships obtained for the
Well number 4, the predicted risk profiles of the Well number 4 is
compared with the actual risk profiles as shown in Fig. 20.

The same method was used to verify Well number 1, the pre-
dicted results are shown in Fig. 21.

It can be seen from Figs. 20 and 21 that the prediction of the



Fig. 15. The structure of the LSTM.
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occurrence depth and probability of each risk were basically
consistent with the actual risk profile and the actual risks situation.
Fig. 16. Diagram of the input

Fig. 17. Trainin
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In addition, there is no risks case of borehole collapse in the well
history of Well number 4, and the predicted risk of borehole
collapse was less than 0.2, which was consistent with the actual
situation. Using the actual and predicted risk profile maximums as
the standard, the prediction error was calculated and the relative
error of the model was 9.19%.
4.6. Virtual well risk profile prediction

Using the trained model to foresee the risk of virtual wells, the
risk profile of the virtual wells are as shown in Fig. 22.
5. Construction method of regional 3D risk body

In order to analyze the impact of adding virtual wells on the
block risk prediction accuracy, one of the eight drilled wells is
selected as the control well. Based on the sequential Gaussian
simulation method, the block risk model was constructed with the
and output of the model.

g process.



Fig. 18. LSTM network prediction framework.

Fig. 19. Comparison of risk test results.
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remaining seven drilled wells and the block risk model after adding
eleven virtual wells was built by using the geological modeling
software. The risk data of the control well are extracted from the
twomodels and comparedwith the actual risk occurrence locations
obtained from the well history data to determine the impact of the
3667
virtual wells on the risk prediction accuracy.
5.1. Sequential Gaussian simulation method

Sequential Gaussian simulation is a stochastic simulation



Fig. 20. Well number 4 risk comparison.

Fig. 21. Risk comparison of Well number 1.
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method that applies Gaussian probability theory and sequential
simulation algorithm to generate the spatial distribution of
continuous variables (Wang et al., 2012; Bai and Tahmasebi, 2022).
It is one of the most widely used stochastic modeling method for
continuous geological variables, and the basic idea is to perform
sequential simulation of conditional data obeying normal distri-
bution (Gao, 2014). The Gaussian function is constructed according
to the known data, and each value of the regionalized random
variable ZðxÞ is regarded as a random realization conforming to the
3668
Gaussian function FðxÞ. At each simulated location xm, FðxÞ is a
cumulative conditional probability density function with the n
known data ZðxjÞðj¼ 0;1;2;/;nÞ and the m� 1 simulated values
ZðxiÞði¼ 1;2;/;m�1Þ (Zhao et al., 2011).
5.2. Comparative analysis

From the eight drilled wells, Well number 4 was selected as the
control well. Based on the risk data of the remaining seven wells,



Fig. 22. Risk profile of virtual wells. (take XN1 as an example, the remaining figure are in Appendix III).

Fig. 23. Kick risk model at T30 level.
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according to the sequential Gauss simulation method in combina-
tion with the seismic interpretation layer, a three-dimensional risk
model of the block with only seven drilled wells was established
layer by layer, and the risk data of Well number 4 were extracted
from the three-dimensional risk model. Then, on the basis of seven
drilled wells, the risk data of eleven virtual wells were added, and
the 3D risk model of the block was also established according to the
hierarchical group of sequential Gaussian simulation method, from
which the risk data of Well number 4 were extracted. The risk data
of Well number 4 extracted twice were compared with the actual
risk location of Well number 4 based on the well history data, and
the results are shown in Fig. 24.

It can be seen from Fig. 23 that the 3D risk model after adding
eleven virtual wells is significantly richer in color, i.e., the risk in-
formation was richer than the model established with only seven
drilled wells. From Fig. 24, it can also be seen that the location in-
terval of the risk occurrence of Well number 4 extracted with only
3669
seven drilled wells for the first time is obviously far from the
location of the actual risk occurrence, while the risk interval of Well
number 4 after adding eleven virtual wells for the second time is
notmuch different from the location of the actual risk. The accuracy
was calculated using the maximum value of the risk profiles
extracted from both times, and the highest prediction accuracy was
improved by 21% in the second time.

The same method is used to verify Well number 5, the result is
shown in Fig. 25.

Similarly, the risk profile data extracted after adding virtual
wells in Fig. 25 is more accurate than the data extracted using only
the drilled wells. This shows that the risk model built by relying
only on the risk data of drilled wells cannot make accurate risk
prediction for the whole block, while the risk model built after
adding eleven virtual wells can significantly improve the fineness
of regional risk prediction, which verifies the feasibility of the
method.



Fig. 24. Risk comparison of Well number 4.

Fig. 25. Risk comparison of Well number 5.
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6. Conclusion

(1) Based on the risk profiles calculated by the pre-drill risk
evaluation method, it contains rich geological and engi-
neering information. Using them as sample data for the
3670
training of the intelligent model not only solves the problem
of small number of risk samples, but also incorporates
physical knowledge (wellbore pressure balance criterion)
constraints for the training set, which improves the model
reliability.

(2) The prediction method of virtual wells and their related
parameters proposed in this paper can better solve the
problem of small number and uneven distribution of drilled
wells in new exploration areas. Using the preferred LSTM
model, the quantitative relationship between the seismic,
logging, rock mechanical parameters, other multi-source
data of drilled wells and the drilling risk profile is explored,
and the drilling risk profile of virtual wells is predicted.
Finally, the drilling risk profile with uniform distribution of
well locations in the area is obtained, which significantly
improves the accuracy of the pre-drilling three-dimensional
risk predictor. Compared with not adding virtual wells, the
accuracy of risk prediction in unexplored areas has been
improved by 21% at most.

(3) Reliable data set is the basis of intelligent model training and
guarantee the accuracy of prediction results. Since the dril-
ling risk in the study area is basically caused by pressure
imbalance, the calculation method of drilling risk profile
based on wellbore pressure balance is applicable. However,
for the more complex drilling risks that are not caused by
pressure imbalance, it is recommended to further investigate
the correction method of risk profiles of drilled wells, so that
the drilling risk sample data can be maximized to match the
actual situation and incorporate more physical knowledge.
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