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Abstract: An incipient mechanical fault detection method, combining multifractal theory and 
Mahalanobis-Taguchi system (MTS), which is based on statistical technology, is proposed in this paper. 
Multifractal features of vibration signals obtained from machine state monitoring are extracted by 
multifractal spectrum analysis and generalized fractal dimensions. Considering the situation of mass 
samples of normal mechanical running state and few fault states, the feature parameters corresponding to 
different mechanical running states are further optimized by a statistical method, based on which incipient 
faults are subsequently identifi ed and diagnosed accurately. Experimental results proved that the method 
combining multifractal theory and MTS can be used for incipient fault state recognition effectively during 
the mechanical running process, and the accuracy of fault state identifi cation is improved.   
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of signals, but cannot describe the local scaling properties 
(Peng et al, 2002). Different local conditions and fl uctuation 
of parameters are important indicators of incipient faults in 
feature extraction.  

Simultaneously intelligent fault identification can be 
achieved by classifi cation of signals based on the information, 
and/or features extracted from the signals. Conventional 
methods (Siddique et al, 2003) rely on mass training data 
and historical data, especially fault samples for fault pattern 
recognition. In practice, however, it is not easy to apply these 
techniques due to the lack of efficient procedures to obtain 
training data (nonlinear or singular fault samples) and specifi c 
knowledge, which are required to develop a diagnosis model, 
since machines are usually in normal running states during 
most of their operational lifetime (Wang et al, 2008). 

Another important challenge in improving fault 
identifi cation accuracy is optimizing the fault features. Jade et 
al (2003) and Lee et al (2004) investigated the use of Kernel 
Principal Component Analysis (KPCA) for feature extraction, 
optimization, and denoising of nonlinear systems. Tamura and 
Tsujita (2007) used the PCA method to determine the number 
of principal components (PCs) in feature space during the 
fault detection process, and established relationships between 
the number of PCs and sensitivities for fault detection. 
In respect of optimization, Sun et al (2007) developed an 
Evolving Kernel Principal Component Analysis (EKPCA) 
method based on an evolution algorithm to select kernel 
functions and extract nonlinear fault features effectively. 
Though PCA-based methods partially address feature 
optimization, some disadvantages still exist. PCA-based 
methods do not decrease the dimension of feature space in 
respect of physical mechanism, because every PC is a linear 
or nonlinear combination of original variables. Secondly, 
it is difficult to give a physical explanation of abnormal * Corresponding author. email: hjqcup@yahoo.com.cn
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Incipient mechanical fault detection based on 
multifractal and MTS methods

1 Introduction
Incipient fault detection is one of the most important 

issues to be investigated in mechanical fault diagnosis. Quick 
and accurate incipient fault identification and diagnosis 
can help to minimize the quality and productivity offsets, 
and reduce the risk of hazardous consequences in abnormal 
situations. Due to incipient fault, some fault features based 
on vibration analysis are not obvious enough to detect in time 
normally, which may lead to secondary failures, malfunctions, 
and even breakdown during operation. This is because some 
vibration features, which are indicative of machine health, 
can be obscured by vibration from other machine parts, 
multiplicity of transmission paths, and ambient noise. 

In the last decade, several methodologies were developed 
for fault detection, such as neural network (Chen, 2008; Wu 
et al, 2008), time series modeling method (Marseguerra et 
al, 1992; Lv et al, 2007; Zhao et al, 2007), wavelet analysis 
(Chen et al, 2007; Rubini and Meneghetti, 2001; Wu and Liu, 
2008), empirical mode decomposition (Gao et al, 2008; Wu 
and Qu, 2008), and time-frequency analysis (Qin et al, 2008). 
Although these methods produced satisfying experimental 
and field results, there are still two important drawbacks: 
they have an inferior ability of fault structure analysis and are 
insensitive to incipient faults, which result in low accuracy of 
diagnosis, and failing to track hidden damage processes.

Wang and Zhang (2003) proposed a fractal method to 
diagnose the incipient faults of engines based on the fractal 
dimension of signals undergoing condition monitoring, with 
the emphasis on refl ecting the fault essence. However, single 
fractal approach only can reflect the overall irregularity 
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observations based on PCA method.       
Aiming at the above three challenges, an incipient 

fault detection method combining multifractal theory and 
Mahalanobis-Taguchi system (MTS) is proposed in this 
paper. Based on multifractal theory, the local conditions of 
fractal objects are described more precisely; the relationship 
of local scaling properties and the overall characteristics is 
established, and the incipient fault features are successfully 
extracted from the multifractal spectrum and generalized 
dimensions. Fault identification procedures are developed 
further for the statistical optimization of feature parameters by 
optimal Mahalanobis space, and automatic fault classifi cation 
using the MTS method.

Experimental results of incipient fault detection achieved 
from the process of fi eld data acquisition, diagnostic model 
parameter determination, multifractal feature extraction, 
Mahalanobis distance calculation, feature optimization based 
on two-level orthogonal array, and final fault classification 
indicate that the combinatorial method with multifractal 
theory and MTS for incipient fault detection is effective, 
feasible, and of remarkable higher accuracy. 

2 Incipient fault feature extraction by 
multifractal theory

2.1 Generalized dimensions
Fractals refer to objects that are either self-similar or 

self-affine. The whole fractal structure can be regarded 
as the buildup of local fractals with different local fractal 
dimensions. This structure composed of different local fractal 
structures is called Multifractal. In other words, multifractal 
is defined as a set constituted by singular measures with 
multi-scaling exponents in fractal structure. For any fractal 
object, a set of generalized dimensions can refl ect the spatial 
distribution information of the fractal structure. 

Based on the Whitney embedding theorem and Packard 
phase space reconstruction theory, Grassberger and Procaccia 
(1984) proposed an algorithm, using time series data, to 
calculate the correlation dimension of strange attractors 
in dynamical systems. Generalizing the above theory, the 
correlation integral method to estimate the generalized 
dimensions of mechanical vibration signals is provided as 
follows:

Set signal series as{ , 1, 2, , }kx k N , and embed them 
into m-dimensional Euclidean space Rm, then a point set J(m) 
is obtained, in which the elements are denoted by:  

(1)( 1)( , ) ( , , , )n n n n mX m x x x   1, 2, , mn N

where τ is delay time, and ( 1)mN N m  is the number of 
vectors in the point set  J(m).

The q-order correlation integral for a discrete fractal set is 
defi ned as:
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Then the generalized dimensions can be represented as:

 (5)
0

ln( ( , ))( ) lim
ln( )r

c q rD q
r

Based on Eq. (5), generalized dimensions D(q) can 
be obtained by the least square linear-fitting method (Yu 
et al, 2004). The non-stationary vibration signals can be 
characterized by a set of fractal dimension values, which 
provides a potential for signal feature extraction in terms of 
complexity of the signal.

2.2 Multifractal spectrum
The multifractal spectrum f(α) is also named as singularity 

spectrum, where α, singularity index, indicates the local 
dimension of a certain small area of the fractal object. f(α) 
represents the fractal dimensions of certain subsets which 
have the same value of α, and describes the characteristics of 
the fractal object on different levels as well as the distribution 
of fractal measures in the support set. In other words, f(α) 
is used to research the overall fractal object in respect of its 
local scaling properties. α and f(α) are provided from the 
following Legendre transforms:

 (6)( ) ( 1) ( )q q D q     
d ( )( )

d
qq

q
        

( ( )) ( ) ( )f q q q q  
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(8)

Three important characteristic parameters of a multifractal 
spectrum can be obtained from Eqs. (6)-(8), which are 
the width of the multifractal spectrum max min ,
the difference of the fractal dimensions between the 
maximum probability and minimum probability subsets 

max min( ) (f f f ), and the maximum of multifractal 
spectrum fmax. The value of  describes the degree of 
inhomogeneity of the distribution of probability measures on 
the overall fractal structure, which refers to the fluctuating 
degree of mechanical vibration signals. The value of ∆f 
describes the proportion of the number of elements at the 
maximum and minimum in the subset developed by related 
physical variables, which refers to the proportion of the large 
and small peaks of vibration signals. fmax, the largest height 
on the multifractal spectrum, represents the irregularity of 
the number of units having the same probability as the scale 
ε changes, which refers to the irregularity of the large and 
small peaks of vibration signals. The proportion of the large 
and small peaks and the irregularity represent the degree 
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of severity of the mechanical vibration. Therefore, the 
multifractal spectrum refl ects the proportion and the degree of 
inhomogeneity of the distribution of probability measures on 
the overall fractal structure, that is to say, it comprehensively 
describes the fluctuating degree and the degree of severity  
of mechanical vibration signals. From this point of view, the 
features of different incipient fault states can be extracted in 
this way.

2.3 Multifractal spectrum entropy
Information entropy, which is used to describe the degree 

of information uncertainty in information theory, is a measure 
for the homogeneous degree of the probability distribution. 
Kolmogorov and Chaitin (Li and Vitanyi, 1997) extended the 
concept of entropy, and proposed the entropy defi nition based 
on the system complexity. Based on the calculation theory of 
entropy, the homogeneity of singularity distribution of fractal 
structure is described quantitatively, and the characteristic 
indices of mechanical vibration signals are developed in 
terms of multifractal spectrum entropy. The multifractal 
spectrum entropy can describe the singular condition of the 
signal energy distribution and its probability of the geometric 
feature distribution. It can be used for precise description 
and accurate extraction of the intrinsic feature information of 
non-stationary signals, which is conducive to discovering and 
identifying the incipient fault signal characteristics.

Set f(α) as the multifractal spectrum of a mechanical 
vibration signal, and based on the measuring formula of 
entropy, the calculation of multifractal spectrum entropy Hm 
is provided as follows:

1
log

k

m i
i

iH p p   (9)
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where pi represents the proportion between f(αi) and the 
whole multifractal spectrum. Multifractal spectrum entropy 
Hm refl ects the complexity of non-stationary signal in respect 
of multifractal spectra with different measures.

3 Optimization and classification of fault 
features based on MTS

The Mahalanobis-Taguchi system (MTS) is a pattern 
information technology, which has been used in different 
applications to make quantitative decisions by constructing a 
multivariate measurement scale using a data analytic method 
(Das and Datta, 2007; He and Han, 2007; Pedro et al, 2004). 
The design model of MTS is shown in Fig. 1, which includes 
two key steps: (1) constructing Mahalanobis distance (MD) 
scale; (2) using the signal-to-noise ratio (SNR) to evaluate the 
quality of measurement, and optimizing all of the information 
to improve the SNR with an orthogonal array. For the feature 
recognition based on MTS, mass normal feature samples are 
utilized to develop Mahalanobis distance space, whereas only 
a few fault feature samples are used for feature optimization.

3.1 Mahalanobis distance scale
In the MTS, the Mahalanobis space (reference group) 

is obtained using the standardized variables of healthy or 
normal data. 

Let
m = the number of features obtained from original signals;
n = the number of signal samples;
nij = standardized ith observation (sample) of normal 

Fig. 1 Design model of MTS
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Calculation of characteristic vector of Mahalanobis space     

Calculation of Mahalanobis distance of normal groups      

Determination of abnormal conditions       
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group for jth variable (feature), , 1, ,i n 1, ,j m ; 
m mR = correlation matrix for m standardized variables 

(feature);

1
m m ij m n

R a ; 

1 2( , , , )mY y y y = an observation of test group with 
unknown condition.

Then the Mahalanobis distance D2 calculated for the test 
group observation is given by

 (11)2

1 1

( ) /
m m

ij i j
i j

D a y y m

When an observation belongs to the reference group, 
, otherwise D2 should be considerably greater than one 

and increase as the difference between the observation and 
the reference group increases. According to the difference 
degrees between each of the fault states of the mechanical 
machine and the normal states, different Mahalanobis distance 
intervals can be mapped to different operational states of the 
mechanical machine.

3.2 Feature optimization based on two-level 
orthogonal array

There are various state features of a mechanical machine 
existing in the Mahalanobis space, whereas parts of them are 
not relevant to recognition. Hence, selecting the effective 
features can improve the recognition ability of Mahalanobis 
space, and save the calculation cost of feature extraction and 
diagnosis. According to the number of features participating 
in the optimization, an appropriate two-level orthogonal array 
is selected. In MTS, an orthogonal array is mainly used to 
identify useful features, and to assign them different lines 
through the fewest experiments. Each feature variable has 
two levels - level 1 and level 2, where level 1 represents using 
such feature variables to calculate MD. Level 2 represents 
not using such feature variables to calculate MD, and 
simultaneously, the appointed features on each row are used 
to construct the Mahalanobis space. 

The estimation value of Mahalanobis distance of practical 
machine states is defi ned as the signal factor level, and d state 
feature samples are extracted from d signal factor levels Mi 

(i=1, 2, ..., d). That is to say, one of the feature samples is 
selected corresponding to one certain machine state. Then, the 
Mahalanobis distances 2

1 ,D  2
2 , , d

2D D  between each feature 
vector and the Mahalanobis space are calculated based on 
Eq. (11). The identifi cation performance of the Mahalanobis 
space is evaluated by signal-to-noise ratio (SNR) based on 
Eq. (12).

 (12)10ln ( ) /V S V r  
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The fault identification performance is improved as the 
SNR of the Mahalanobis space increases. Considering the 
SNR of each Mahalanobis space, the average signal-to-noise 
ratios of features relative to each machine state on level 1 
and level 2 are calculated, respectively. If the average SNR 
of a certain feature on level 1 is higher than level 2, this 
feature contributes to better fault identification, and should 
be advised to be reserved, otherwise be eliminated. Finally, 
the Mahalanobis space newly constructed by reserved 
features can obtain the theoretically optimal identification 
performance.

4 Fault identification model based on 
multifractal theory and MTS

A mechanical fault detection model is developed 
based on multifractal theory and MTS in this study. 
Nine mult ifractal  features 1 2 9( , , , ) ( ( 2),X x x x D  

( 1), (0), (1), (2),D D D D ∆α, fmax, ∆f, Hm) of mechanical

vibration signals are extracted using multifractal theory. 
Secondly, MTS is used to optimize the above features, i.e. 
selecting effective features with greater contribution to 
the SNR of Mahalanobis space. Finally, based on MTS, 
Mahalanobis distance is used to discriminate mechanical fault 
states and identify the pattern of fault data from multiple-
dimension data. The overall work fl ow of the detection model 
is shown in Fig. 2, and the main parameters are selected as 
follows:

(1) Selection of data length N.  Related literature (Xie 
and Xie, 1997) shows that during the process of fractal 
dimension evaluation of the discrete time series signal, 
the length of series should be larger than 500. Considering 
the characteristics of mechanical vibration signals and the 
sampling frequency, the length of series in this model is set as 
1,024. 

(2) Selection of delay time τ. Based on the pseudo-phase 
portrait, delay time τ is set step-by-step from a small value 
to a large one. When the pseudo-phase portrait extends to 
its maximal degree, the self-correlation of data reaches 
mimimum, and moreover the motion state information 
refl ected by the original data may not be lost. At this moment, 
the value of  τ is the optimum.  

(3) Selection of embedding dimension m. Trial and error is 
used to determine m. If the embedding dimension m increases 
gradually during calculation, it will commonly converge to a 
lower dimensional space for a deterministic system. That is 
to say, the fractal dimension will tend to be a constant with 
increasing embedding dimension. When the fractal dimension 
begins to converge, the value of embedding dimension m at 
this moment is the optimum in the model.   

(4) Selection of two-level orthogonal array. Considering 
the original multifractal feature vector, the factor number 
c is 9, and the value t of factor level is 2, so the common 
orthogonal array L12(2

11) is selected. The variable arrangement 
of L12(2

11) is shown in Table 1, including 12 orthogonal 
experiments. Subsequently the signal-to-noise ratios are 
computed according to Eq. (12) for feature optimization.  

Pet.Sci.(2009)6:208-216
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5 Case studies

5.1 Preparation of experimental data
The method presented above was applied to incipient 

fault detection of oil pumps in the Tarim Oilfield, China. 
Signal samples of the normal running state, vibration induced 
by air clearance in a sliding bearing, and race wear of a 
rolling bearing were acquired from condition monitoring 
with a sampling frequency of 4,000 Hz. The waveforms in 

No. 1 2 3 4 5 6 7 8 9 10 11

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9

Experiment 1 1 1 1 1 1 1 1 1 1 1 1

Experiment 2 1 1 1 1 1 2 2 2 2 2 2

Experiment 3 1 1 2 2 2 1 1 1 2 2 2

Experiment 4 1 2 1 2 2 1 2 2 1 1 2

Experiment 5 1 2 2 1 2 2 1 2 1 2 1

Experiment 6 1 2 2 2 1 2 2 1 2 1 1

Experiment 7 2 1 2 2 1 1 2 2 1 2 1

Experiment 8 2 1 2 1 2 2 2 1 1 1 2

Experiment 9 2 1 1 2 2 2 1 2 2 1 1

Experiment 10 2 2 2 1 1 1 1 2 2 1 2

Experiment 11 2 2 1 2 1 2 1 1 1 2 2

Experiment 12 2 2 1 1 2 1 2 1 2 2 1

Table 1 Orthogonal array L12(2
11) with the variable arrangement

time domain are shown in Figs. 3-5, respectively, with the 
data length N of 1,024. Original signals were preprocessed 
by “db8” wavelet for de-noising. Although there were 
some differences between the two fault states and the 
normal state in time domain figures, it was still difficult to 
identify and distinguish these different states with some 
quantitative indices. Therefore, it was necessary to make use 
of multifractal theory to extract the quantitative features of 
incipient faults.

Fig. 2 Fault detection model based on multifractal theory and MTS
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5.2 Fault feature extraction of oil pumps 
based on multifractal theory

5.2.1 Main parameter selection of the detection 
model

(1) Selection of delay time τ. The normal data sample 
was analyzed for phase space reconstruction with different 
delay times τ, and the evolution process of the phase space 
trajectory could explain the relationship between delay time 
and phase space extension, which is shown in Fig. 6. When  
τ= 3, 10, the phase trajectory extends to its maximal degree; 
when τ= 6, 7, the phase trajectory shrinks to its minimal 
degree along the auxiliary diagonal; when τ= 1, 12, the 
phase trajectory shrinks to its minimal degree along the main 
diagonal. According to the principle of pseudo-phase portrait 
method, the delay time τ was set as 3.

(2) Selection of embedding dimension m. According 
to the Takens theorem and using the trial and error, when 
weight factor was firstly fixed as q = 2, and m was set 
from 4 to 20, the corresponding double logarithmic plot 
ln(r)−ln(c(q, r)) is shown in Fig. 7, and the corresponding 
fractal dimensions D(2) with different m were calculated 

Fig. 3 Normal operational condition 
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respectively, which are shown in Table 2. The double 
logarithmic plot ln(r)−ln(c(q, r)) tends to converge gradually 
as the embedding dimension m increases from 4. When m 
= 10, the system becomes steady, and the fractal dimension 
reaches a stable value 3.54. Therefore, the embedding 
dimension was set as m = 10.  
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Fig. 6 Pseudo-phase portrait of vibration signal with τ= 1 to τ= 12 
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5.2.2 Multifractal feature extraction
Considering the data samples of the above three 

mechanical states, based on multifractal theory, the weight 

m 4 5 6 7 8 9 10 11 12

D(2) 2.3564 2.5387 2.7568 3.0233 3.1959 3.2541 3.5398 3.5452 3.5479

Table 2 Fractal dimension with different embedding dimensions 

Multifractal features D(−2) D(−1) D(0) D(1) D(2) ∆α fm ∆f Hm

Normal state 3.02 2.86 2.61 2.43 2.25 6.04 36.74 -4.29 4.19

Air clearance in a sliding bearing 5.04 4.93 4.79 4.63 4.47 11.58 57.83 -7.40 4.81

Race wear of a rolling bearing 4.37 4.25 4.03 3.82 3.61 9.56 50.71 -6.37 4.54

Table 3 Calculated multifractal feature vectors of three mechanical running states

5.3 Feature optimization and fault identifi cation by 
MTS

The statistical rule of multifractal characteristic 
distribution was analyzed by the Mahalanobis distance 
discrimination method. Nine kinds of multifractal features 
from 30 normal samples were utilized as original data to 
construct the Mahalanobis space. In the fault identification 
experiment, 44 observational signals (20 samples of normal 
state, 16 samples of race wear of a rolling bearing, and 8 
samples of air clearance in a sliding bearing) were used to 
calculate the Mahalanobis distances, which are shown in Fig. 
8. The Mahalanobis distance interval (0, 1.3), [1.3, 4), and [4, 
+∞) were separated to represent the normal state, race wear 
of a rolling bearing, and air clearance in a sliding bearing 
respectively. Preliminary identifi cation results shown in Table 
4 indicate that there are fi ve groups in misjudgment according 
to the actual working conditions, and the identification 
accuracy is 88.6%.

Fig. 7 In (r) − In(c(q, r)) double logarithmic plot
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factor was set as  q  [-20, 20], and then the generalized 
dimensions were calculated by Eqs. (1)- (5). When the weight 
factor q was set as −2, −1, 0, 1, 2 respectively, the calculated 
generalized dimensions of three mechanical running states 
were prominently different, which could represent the 
characteristics of mechanical states. Hence, the corresponding 
generalized dimensions as D(−2), D(−1), D(0), D(1), and D(2) 
served as five multifractal features. Secondly, multifractal 
spectrum was calculated based on Eqs. (6)-(8), and then the 
width of the multifractal spectrum ∆α, the difference of the 
fractal dimensions ∆f between the maximum probability and 
minimum probability subsets, the maximum of the multifractal 
spectrum fm, and the multifractal spectrum entropy Hm were 
extracted as another four multifractal features. Finally, the 
calculated multifractal feature vectors (D(−2), D(−1), D(0), 
D(1), and D(2), ∆α, fm, ∆f , Hm) were considered as incipient 
fault features, as shown in Table 3, corresponding to the above 
three different mechanical running states. 
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In order to improve the identification performance, the 
above features were optimized to select the most effective 
ones. The SNR of each feature on level 1 and level 2 were 
computed respectively, based on the orthogonal array L12(2

11) 
with the variable arrangement shown in Table 1. The SNR 
of level 1 related to each feature was subtracted from the 

Finally, the optimal feature vectors (D(−2), D(−1), D(2), 
∆α, fm, ∆f , Hm) were utilized to construct the Mahalanobis 
space. Mahalanobis distances of 44 groups of observational 
signals were calculated over again, and the results are shown 
in Fig. 9, from which Mahalanobis distance intervals (0, 3.3), 
[3.3, 16) and [16,+∞) are mapped to normal state, race wear 
of a rolling bearing, and air clearance in a sliding bearing 
respectively. There is no misjudgment or false alarm, and the 
accuracy of fi nal identifi cation is 100%. 

Practical running states of oil pump 

Normal state Race wear Air clearance

Mahalanobis 
distance
 interval

(0, 1.3) 18 2 0

[1.3, 4) 2 14 1

[4, +∞) 0 0 7

Number of misjudgment 2 2 1

Number of signal samples 20 16 8

Table 4 Preliminary identifi cation result of MTS

Multifractal features D(−2) D(−1) D(0) D(1) D(2) ∆α fm ∆f Hm

Difference of SNR 0.66 1.44 -0.82 -0.06 0.09 0.66 2.57 0.43 1.23

Table 5 SNR of multifractal features 

Fig. 9 Mahalanobis distances of monitoring signals with optimal features
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SNR of level 2 to obtain the results of difference shown in 
Table 5. From Table 5, the SNR of features D(0) and D(1) 
decrease when they participate in fault identifi cation, which 
means that these two features play a negative role in the fault 
identification process, and should be eliminated from the 
reference group. 

6 Conclusions 
1) A incipient mechanical fault detection method 

combining a multifractal method and Mahalanobis-
Taguchi system (MTS) is proposed and used in incipient 
fault detection of oil pumps in the Tarim Oilfi eld, Xinjiang, 
China. The multi fractal features of nonlinear signals are 
extracted based on generalized dimensions and multifractal 
spectrum through machine monitoring. According to 
MTS, the mechanical running states are distinguished 
effectively and the incipient faults are identified accurately 
by Mahalanobis distances. As the number of samples of the 
vibration spectra of pumps running with mechanical faults in 
low, the MTS feature optimization method is used to select 
the essential feature variables with greater contribution to 
fault identification based on SNR, and further improve the 
mechanical fault identifi cation accu racy.   

2) The case study indicates that the combination of a 
multifractal theory and MTS and its feature optimization 
scheme with a few fault samples can effectively identify the 
incipient faults of oil pumps with high accuracy.  
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