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a b s t r a c t

We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and
igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and
well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classi-
fication are powerful tools because they permit addressing the uncertainties in the model. We used the
ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic
impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,
reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic
impedance values of facies, we included geological information using a priori probability, indicating that
structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling
using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a
coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt
interface. The modeled porosity and the classified seismic facies are in good agreement with the ones
observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the
top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well
B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent
thickness-prediction capability.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Quantitative seismic interpretation combines several methods
for estimating three-dimensional models of elastic parameters and
petrophysical properties in the subsurface based on the integration
of geophysical, geological, and reservoir engineering data. The
routines include seismic data pre-conditioning, seismic attributes,
seismic inversion, rock physics, facies and petrophysical properties
modeling, geostatistics, well-logs upscale, and 4D seismic (Avseth
et al., 2005; Dvorkin et al., 2014; Simm and Bacon, 2014). More
recently, machine learning and deep learning algorithms have been
employed in quantitative seismic interpretation (Braga et al., 2019;
).

y Elsevier B.V. on behalf of KeAi Co
Allo et al., 2021; Vizeu et al., 2021). The goals of using all these
methods are the evaluation of uncertainty in themodel and the risk
reduction during petroleum exploration and production. The un-
certainties associated with the model can be evaluated through
probability distributions, confidence intervals, or a set of model
realizations (Grana et al., 2021).

In recent years, several studies employed quantitative seismic
interpretation methods in Brazilian presalt carbonates for potential
reservoirs identification (Dias et al., 2019; Peçanha et al., 2019;
Barnett et al., 2021; Ferreira et al., 2021; Penna and Lupinacci,
2021), porosity forecasting (Teixeira et al., 2017), igneous rocks
identification (Penna et al., 2019; Vizeu et al., 2021), gas-oil ratio
predictions (Oliveira et al., 2018), seismic features identification
and characterization (Jesus et al., 2019), and injector wells location
(Cunha et al., 2019). Although all these studies integrate different
quantitative seismic interpretation tools, each methodology is
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unique. This highlights that there is no single or best way to
perform the quantitative seismic interpretation. An adequate
methodology has to be selected considering the different chal-
lenges encountered in the study area, the available data, and their
quality (Gonzalez et al., 2016).

Seismic inversion is a routine in quantitative seismic interpre-
tation and reservoir characterization that promotes the passage
from an interface attribute (seismic amplitude) to a layer property
(acoustic impedance). Hence, seismic inversion helps the inter-
pretation and quantification of reservoir properties and their
spatial distribution (Latimer, 2011). Seismic inversion methods can
be divided into deterministic and stochastic techniques. An
advantage of the stochastic methods is the uncertainty quantifi-
cation. Currently, there are several methods for performing sto-
chastic seismic inversion, such as Bayesian analytical inversion
(Buland and Omre, 2003; Tarantola, 2005), Monte Carlo methods
(Bortoli et al., 1993; Connolly and Hughes, 2016), stochastic opti-
mization algorithms (Liu and Grana, 2018, 2019; Cyz and Azevedo,
2020), and probabilistic deep learning (Das et al., 2019;
Bhattacharya, 2021). Grana et al. (2022) provided an overview of
some of the most recent research advances and classical algorithms
in stochastic seismic inversion and joint seismic rock-physics
inversion. The method that Liu and Grana (2018) applied to sto-
chastic inversion is called ensemble smoother with multiple data
assimilation (ES-MDA). This is an ensemble-based data-assimila-
tion algorithm commonly used in reservoir engineering for history
matching (Emerick and Reynolds, 2013; Canchumuni et al., 2019).
Liu and Grana (2018) were the first to employ it for seismic inver-
sion. In the ES-MDA, the data assimilations iteratively update the
prior distribution by approximating the conditional distribution of
the model parameters with the empirical mean and covariances of
the ensemble members. Thus, the posterior distribution represents
the model conditioned by data assimilations. ES-MDA imple-
mentation is reasonably simple and has an acceptable computa-
tional cost for many applications, as is the case of seismic inversion.
Although Liu and Grana (2018) proposed the ES-MDA application
for stochastic elastic inversion, its extension can be easily adapted
for stochastic acoustic inversion. This algorithm has not yet been
used for seismic inversion in the presalt.

Facies classification on seismic volume can be achieved in a one-
step to a multi-step approach. One-step approaches represent the
direction inference of facies using seismic data, as seismic facies
inversion (Grana et al., 2012, 2021; Lang and Grana, 2017;
Kolbjørnsen et al., 2020) and deep learning for classification (Vizeu
et al., 2021). Two-stepmethods use elastic parameters from seismic
inversion and/or seismic attributes as input for clustering and
pattern recognition algorithms and Bayesian classification (Mukerji
et al., 2001; Ferreira et al., 2021). Multi-step approaches can inte-
grate some of these methods for fine-tuning the facies model.
Mukerji et al. (2001) disseminated “statistical rock physics”
methods, a two-step method, for facies classification from elastic
properties using Bayes’ theorem. In this approach, the facies are
pointwise classified through the relationship between elastic pa-
rameter(s) and facies, integrating the elastic parameter(s) with
something directly related to reservoir properties, which are the
facies. The Bayesian classification is a powerful method due to the
capability of uncertainty estimation and combining petrology and
geology in the definition of facies (Gonzalez et al., 2016). Recent
papers used this methodology to understand the facies distribution
in the presalt interval (Teixeira et al., 2017; Oliveira et al., 2018;
Penna et al., 2019; Penna and Lupinacci, 2021; Lebre et al., 2021;
Mello and Lupinacci, 2022).

As in seismic facies classification, petrophysical properties
modeling can also be achieved by a one-step to a multi-step
strategy. Joint seismic rock-physics inversion refers to the
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estimation of petrophysical properties from seismic data based on
rock-physics relations, while the two-step method consists of the
seismic petrophysical properties calculation by rock-physics
inversion using the elastic inverted volume(s) (Grana et al., 2022).
In the three-step approach, classified facies can be used as a
constraint with the inverted volume(s) for rock-physics inversion.
Establishing empirical relationships between porosity and acoustic
impedance conditioned by facies is a simple and efficient way to
perform the porosity modeling after stochastic acoustic inversion
and facies inference in a three-step manner. In the presalt interval,
Penna and Lupinacci (2021) successfully used empirical relation-
ships between these two variables for petrophysical property
modeling using lithofacies and flow units as a constraint.

Some of the main presalt reservoirs are interpreted in seismic
features like carbonate platforms, mounds, and coquina banks
(Carlotto et al., 2017; Jesus et al., 2019; Ferreira et al., 2021). Iden-
tifying good reservoir intervals in these seismic structures is chal-
lenging due to several factors. An example is the overlap of acoustic
impedance values of porous carbonates and clayey facies (Teixeira
et al., 2017). The presence of intrusive and extrusive igneous
rocks in the presalt is also a feature that complicates quantitative
seismic interpretation and reservoir characterization. In areas with
igneous rock presence, an overlap of the acoustic impedance values
of igneous with the low-porosity carbonates is observed (Penna
et al., 2019). Elastic parameters such as shear impedance and the
ratio between P-wave velocity and S-wave velocity tend to reduce
the uncertainty of facies in presalt reservoirs. Recent studies discuss
models and approaches for identifying these igneous bodies
throughout well-log (Oliveira et al., 2019) and seismic data (Penna
et al., 2019; Ren et al., 2019; Zhao et al., 2019; Vizeu et al., 2021).
Intrusive igneous bodies typically occur near the salt-carbonate
interface concordant with the layers, whereas the dominant
occurrence of extrusive igneous rocks prevails near the base of the
Itapema Formation (Penna et al., 2019).

We apply quantitative seismic interpretation routines for the
porosity modeling of an interval with a well drilled in a coquina
bank and to map the extension and thickness of an igneous rock
intrusion in a presalt field. Our workflow consists of a three-step
approach: stochastic acoustic inversion, Bayesian classification,
and porosity modeling. The first step is to use the ES-MDA algo-
rithm to perform stochastic acoustic inversion. With the acoustic
impedance realizations equivalent to the percentiles P10, P50, and
P90, we perform Bayesian facies classification to estimate the
probability of the facies: reservoir 1 (high-porosity carbonates),
reservoir 2 (intermediate-porosity carbonates), tight carbonates
(low-porosity carbonates), clayey rocks, and igneous rocks by
including a prior geological knowledge to update the a posteriori
probability of these facies. Finally, we model the seismic-driven
porosity by applying the well-log-based, facies-dependent empir-
ical relationships between porosity and acoustic impedance. For
the area of the well drilled in the coquina bank, we explore the
three steps of the workflow, while for the igneous intrusion area,
we evaluate the stochastic acoustic inversion and Bayesian classi-
fication exclusively.

2. Study area and dataset

Santos Basin is located in the southeastern Brazilian margin,
with an area of approximately 350,000 km2. The basin is limited to
the south by the Florianopolis High and to the north by the Cabo
Frio High, with its reservoirs representing 74.7% of Brazilian pe-
troleum production during 2022 (ANP, 2022). Santos Basin is a
distension-margin basin that has its origin associated with the
breakup of the supercontinent Gondwana and the formation of the
South Atlantic Ocean (Milani et al., 2007). The presalt carbonate
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reservoirs were developed in a lacustrine environment, with
unique features that are very different from the ones observed in
conventional lake deposits and classic marine carbonates, repre-
senting a challenge for its characterization (Wright and Barnett,
2015; Herlinger et al., 2017).

The presalt reservoirs comprise the coquinas from the Itapema
Formation (Neobarremian-Eoaptian) and the carbonates from the
Barra Velha Formation (Aptian). The coquinas of the Itapema For-
mation are interpreted as bivalves rudstones, grainstones, float-
stones, packstones, and wackestones, which were deposited in the
rift phase of the basin (Chinelatto et al., 2020). The structural lows
present non-reservoir low-energy facies like black shales rich in
organic matter. The lower limit of the Itapema Formation is the Pre-
Jiqui�a Unconformity, and the upper limit is the Pre-Alagoas Un-
conformity, which represents the transition to the Barra Velha
Formation (Moreira et al., 2007; Pietzsch et al., 2018). According to
Oliveira et al. (2021), the coquinas were deposited in a period of
continuous accommodation space generation and high carbonate
production rate. This process culminated in a sedimentary record
characterized by sigmoidal clinoforms in a retrogradational
context, producing the aspect of banks on the coquinas deposits.

In Barra Velha Formation, the main reservoir facies are shrubs
and spherulites deposited in a shallow, evaporitic, and hyperalka-
line lacustrine carbonate platform (Wright and Rodriguez, 2018).
The lower interval of the Barra Velha Formation was deposited
during the upper rift phase, with the Intra-Alagoas Unconformity
marking the passage to the sag phase. However, this unconformity
is sometimes hard to track on seismic data. The Barra Velha For-
mation ends up with the salt deposition of the Ariri Formation,
marked by the seismic horizon called Base of Salt. The facies found
in the formation are formed by three main in-situ components:
calcite shrubs, spherulites, and mud (Wright and Barnett, 2015).
Some of the seismic patterns characterized in the Barra Velha
Formation are mounds, carbonate platforms, debris, and bottom-
lake deposits (Wright and Rodriguez, 2018; Neves et al., 2019;
Ferreira et al., 2021).

Igneous rocks are characteristic in some areas of the presalt of
the Santos Basin (Oliveira et al., 2019; Penna et al., 2019; Ren et al.,
2019; Zhao et al., 2019). Moreira et al. (2007) identified four major
magmatic events that affected the basin: Valanginian-Hauterivian,
Aptian, Santonian-Campanian, and Eocene. The events of
Valanginian-Hauterivian and Aptian are associated with the pres-
ence of extrusive rocks in presalt, like the Early Aptian basalt in the
Itapema Formation and the Late Aptian basalt in the Barra Velha
Formation. On the other hand, the events of Santonian-Campanian
and Eocene developed more intrusive rocks in the presalt, and both
intrusive and extrusive in the post-salt interval. Regarding the
composition, these igneous rocks are majorly basic according to
their silica content (Ren et al., 2019). Zhao et al. (2019) proposed
that the faults play a key role in these magmatic events, working as
a conduit for magma migration. Thus, two major effects associated
with the presence of igneous rocks affect the presalt carbonates:
contact metamorphism and hydrothermalism (Ren et al., 2019). In
this case, the contact metamorphism of the igneous rock impacts
the carbonate reservoirs with a decrease in porosity by promoting
recrystallization. The general consequence of the percolation of the
hydrothermal fluid is also porosity reduction due to factors like
silicification and dolomitization.

The dataset available for this work comprises nine wells and a
3D prestack depth-migrated (PSDM) seismic volume with a bin-
size of 25 m � 25 m, the sample rate of 5 m, zero phase, and SEG
Polarity from a presalt field in the Santos Basin, Brazil. The company
used the reverse time migration (RTM) and tilted transverse isot-
ropy (TTI) velocity model for the migration. The peak frequency of
the seismic data in the presalt interval is 16.8 Hz. Due to data
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confidentiality, it is not possible to show explicit details about
seismic, the wells names and depths, and the location of the study
area. The results will be evaluated using seismic sections crossing
two wells, called Well A and Well B.
3. Theory

3.1. Seismic inversion

Seismic inversion is a valuable tool for seismic reservoir char-
acterization as it promotes the transformation from the seismic
amplitude data to the elastic properties of layers. It is based on the
inverse theory, a field of mathematics for estimating the model
variables from the observed data by assuming physical relations
between the data and model (Tarantola, 2005). In the elastic
seismic inversion, the relationship between the model and data is
given by the nonlinear and angle-dependent set of Zoeppritz
equations, as well as by their linear approximations (Aki and
Richards, 1980; Shuey, 1985; Fatti et al., 1994). It yields more than
one elastic property, such as P-wave velocity, S-wave velocity, and
density. The seismic acoustic inversion, or seismic impedance
inversion, is based on the convolution between a wavelet and the
reflectivity series, given by the acoustic impedance contrasts. This
relation is independent of the acquisition angle, and the parameter
recovered in the inversion process is the acoustic impedance.

Aster et al. (2004) and Tarantola (2005) are classical references
that provide complete foundations and several applications of
seismic impedance inversion. Russell (1988) visited some of the
first methods applied for seismic inversion, such as recursive
inversion and model-based inversion. Wang (2016) focused on the
practical aspects of different seismic inversion methods, intro-
ducing a new wave equation-based inversion approach. Simm and
Bacon (2014) gave an overview of the inversion process and discuss
some inversion issues found in seismic reservoir characterization.

Seismic inversion is a deconvolution problem relating the
reflection coefficients to the observed seismic data. The reflection
coefficients represent the response of subsurface geology to the
contrasts of acoustic impedance between rocks. In the continuous
form, the acoustic impedance zðtÞ can be considered as a function of
time t. Considering a weak-contrast medium with rðtÞ<0:3, which
is usually the case, the reflectivity series rðtÞ is approximately
expressed as (Russell, 1988)

rðtÞ¼1
2
d ðln ðzðtÞÞÞ

dt
: (1)

Discretizing Eq. (1) on a uniform finite-difference grid, it can be
written as

r¼Dtm; (2)

where r ¼ ½r1; r2;…; rN�1�T is the reflectivity series, in which N is
the number of samples in an acoustic impedance trace; Dt is a first-

order derivative matrix; and m ¼ 1
2 ½ln ðz1Þ;ln ðz2Þ;…; ln ðzNÞ�T.

Thus, a seismic trace is written in the discrete form as

d¼WDtm; (3)

whereW is the wavelet convolution matrix. By renaming G ¼ WDt

and adding a random noise n with the same frequency bandwith
than d, the forward modeling is

d¼Gmþ n: (4)

Eq. (4) defines the seismic forward modeling, specifically, the
convolutional model as a linear problem. Zoeppritz equations are
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an example where forward modeling is a nonlinear problem (Aki
and Richards, 1980). Seismic impedance inversion consists of the
estimation of the model parameterm given a seismic trace d and a
known mapping operator G. An approximation for the inverse
problem is finding a particular solution m that minimizes the dif-
ference between the observed and modeled data given some
matching criterion. The minimization of this residual vector r is
written as

r¼d� Gm: (5)

Hence, seismic acoustic inversion is an optimization problem,
and several algorithms can be used to minimize a cost function
defined from the residual vector. However, seismic inversion
problems are non linear, ill-conditioned, and nonunique due to the
limitations of the seismic method, such as limited bandwidth and
resolution of seismic reflection data, noisy nature of data, mea-
surement errors, numerical approximations, and physical as-
sumptions in the forward models (Tarantola, 2005; Azevedo and
Soares, 2017). Thus, the acoustic model retrieved at the end of a
seismic inverse process is just one result among severalmodels that
satisfy the observed seismic data. This nature of the seismic
inversion problem asserts the necessity of estimating the uncer-
tainty in the inverted models by accessing more than one model.
Azevedo and Soares (2017) divide the seismic inversion approaches
into deterministic and stochastic (probabilistic) frameworks. While
deterministic inversion obtains a unique solution, the stochastic
methods describe potential variabilities of the inverse solution
using several realizations of the subsurface model, allowing un-
certainty quantification.

Stochastic seismic inversion algorithms can be divided into two
main groups: the methods that treat stochastic inversion as an
optimization problem and the Bayesian linearized method
(Azevedo and Soares, 2017). The first group approaches seismic
inversion in an iterative process that converges the modeled data
with the observed data. Within this group is the iterative geo-
statistical inversion presented by Bortoli et al. (1993). This method
used sequential stochastic simulation algorithms to generate
random, spatially-correlated acoustic impedance models. Its main
limitation is that it is applied trace-by-trace, which makes it
impossible to distinguish between signal and noise (Azevedo and
Soares, 2017). Soares et al. (2007) introduced the global geo-
statistical inversion to overcome the limitations encountered in
trace-by-trace approaches, using a global approach during the
stochastic sequential simulation step. Alternative approaches were
proposed for stochastic inversion, in which the results are facies,
rock properties, and elastic parameter volumes (Grana et al., 2012;
Lang and Grana, 2017). In recent decades, geostatistical inversion
methods have been widely employed for predicting subsurface
properties from seismic reflection data and assessing the un-
certainties (Azevedo et al., 2019; Liu and Grana, 2019; Ketteb et al.,
2019; Cyz and Azevedo, 2020).

The second group is called the linearized Bayesian inversion.
This seismic inversion approach is based on a particular solution of
Bayes’ theorem. This solution assumes that the parameters, ob-
servations, and measurement errors are Gaussian distributed,
linearizing the forward modeling (Buland and Omre, 2003;
Tarantola, 2005). Gaussian mixture models emerged recently to
overcome some limitations of this method, like the multi-Gaussian
assumption (Grana and Della Rossa, 2010). The linearization of
forward seismic modeling in the Bayesian framework achieves
good approximations of the subsurface geophysical response for
near-acquisition angles for the solution of the elastic properties
(Aki and Richards, 1980). However, the solutions are highly
nonlinear for the largest angles and in the rock-physics domain.
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Since there is no analytical solution for nonlinear inverse problems,
numerical methodsmust be adopted. Ensemble-basedmethods are
used in these scenarios because they can handle the nonlinearity of
the forward problem (Liu and Grana, 2018). The ensemble implic-
itly linearizes the relation between the parameters and the
observed data working on finding a tangent linear model at each
assimilation step using the ensemble. An ensemble corresponds to
multiple realizations of a subsurface model and represents a
random sample set from a probability distribution (Gineste et al.,
2020). Grana et al. (2022) summarized the ensemble-based
methods in the family of stochastic optimization algorithms.

ES-MDA is part of the ensemble-based data-assimilation
methods based on the Kalman filter (Kalman, 1960). In the last
three decades, ensemble-based methods have been widely
employed for data assimilation in reservoir history-matching flow
(Emerick and Reynolds, 2013; Canchumuni et al., 2019). These
methods are data-assimilation algorithms in which the probability
distribution of model parameters is represented by an ensemble of
model realizations obtained from data assimilation. In the
ensemble-based methods, the prior distribution of the model pa-
rameters and the distribution of observation errors are assumed to
be Gaussian. Each data-assimilation step corresponds to a Bayesian
update step in which the conditional distributions of the model
parameters are approximated from the estimated conditional mean
and covariance matrix of the ensemble members. Thus, a large
number of ensemble members is required for the approximation to
have reasonable accuracy. From this, the model parameters are
considered approximately normal, and the forwardmodeling is not
highly nonlinear (Liu and Grana, 2018). Using Gaussian prior and
ensemble linearization implies that the posterior solution will be
unimodal. Gaussianmixturemodels have been explored recently to
impose multimodality in the posterior solution and to accommo-
date the effect of nonlinearity (Stordal, 2015). The first applications
of ensemble-based methods for solving geophysical inverse prob-
lems were performed for full-waveform inversion (Gineste and
Eidsvik, 2017; Thurin et al., 2017). After that, Liu and Grana
(2018) proposed a joint seismic and rock-physics inversion
method based on the ES-MDA.

The theoretical development of ES-MDA is based on the Kalman
filter. In the Bayesian framework, the Kalman filter represents the
maximum a posteriori (MAP) of the posterior distribution under
Gaussian assumptions. The posterior probability distribution
f ðmjdÞ is conditioned by the prior distribution f ðmÞ and the like-
lihood f ðdjmÞ.

f ðmjdÞ¼ f ðdjmÞf ðmÞ
f ðdÞ ; (6)

where f ðdÞ is a normalization factor, called evidence. Assuming the
forward modeling (Eq. (4)) as linear and under Gaussian assump-
tions, the MAP of the model parameters is given by (Emerick and
Reynolds, 2013):

mMAP ¼ mm þ Kðd� GmmÞ; (7)

where mm is the mean of the prior distribution, G is the forward
mapping operator, and K is the Kalman gain. The Kalman gain
matrix relates the covariances of the model and data. We will
further analyze its terms. For more details on ES-MDA derivation
from the Bayes' rule and the Kalman filter, see Emerick and
Reynolds (2013) and Liu and Grana (2018).

However, the MAP of the model parameters obtained utilizing
the Kalman filter is intractable for nonlinear and high-dimensional.
The ensemble-based methods are adopted to overcome this chal-
lenge. The ES-MDA method approximates the covariance model
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with the empirical covariance of the ensemble members (Emerick
and Reynolds, 2013). In ES-MDA, the posterior distribution is
updated using the following equation:

mu
i ¼ mp

i þ K
�
dobsi � dp

i

�
; (8)

for i¼ 1; :::;Ne with Ne denoting the ensemble number, where
the superscript u and p represent the posterior and prior distri-
butions of the model variable m, respectively, and dobsi is the
vector of observed data. The matrix K denotes the Kalman gain
estimated from ensemble members given by

K¼Cpmd

�
Cpdd þ ajCd

��1
; (9)

where Cp
md is the cross-covariance matrix between the prior vector

of model parameters mp and the vector of modeled data dp. The
matrix Cp

dd is the auto-covariance matrix of predicted data, Cd is the
covariance matrix of observed data measurement errors, and aj is

the inflation coefficient with aj >1. Since the matrices Cp
md and Cp

dd
cannot be analytically computed due to the nonlinearity of the
forward operator, an approximation of these matrices is made us-
ing the empirical covariance from the ensemblemembers, given by,
respectively,

Cpmd ¼ 1
Ne � 1

XNe

i¼1

�
mp

i �mp
��

dp
i � d

p�T
; (10)

and

Cpdd ¼ 1
Ne � 1

XNe

i¼1

�
dp
i � d

p��
dp
i � d

p�T
; (11)

where mp ¼ PNe
i¼1m

p
i and d

p ¼ PNe
i¼1d

p
i .

Ensemble smoother performs a single full-step Gauss-Newton
iteration for data assimilation. In ES-MDA, updating the ensemble
of prior models iteratively is equivalent to performing multiple
smaller corrections in the ensemble instead of a single and large
Gauss-Newton correction (Emerick and Reynolds, 2013; Liu and
Grana, 2018). In this approach, the posterior ensembles from one
assimilation serve as prior ensembles for the next, with the same
data being assimilated multiple times. Emerick and Reynolds
(2012) proved the equivalence between the single and multiple
steps in the linear-Gaussian scenario for the ensemble Kalman filter
and evidenced that multiple steps can improve the estimates in the
nonlinear scenario. The ES-MDA algorithm updates each ensemble
to minimize the difference between the modeled and observed
data. Therefore, the results are multiple models that honor the
measurement and can be explored statistically.

As Cp
dd is a real-symmetric positive semi-definite matrix, C ¼

ðCpdd þ ajCdÞ�1 will also be real-symmetric positive-definite matrix
if Cd is positive-definite (Emerick and Reynolds, 2013). However,
Evensen (1994) highlights that the matrix C can be ill-posed, which
leads to instability in the inverse problem. Therefore, Emerick and
Reynolds (2013) argue that it is typical to use the Moore-Penrose’
pseudoinverse when the number of measurements does not exceed
the number of ensembles. In these cases, it is possible to bring
stability to the inverse problem and maintain enough energy of the
singular values.

For example, the behavior of acoustic impedance distribution
before and after ten assimilations in the ES-MDA algorithm is
shown in Fig. 1. After data assimilation, the mean of posterior
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distribution converges to the true acoustic impedance value at a
chosen well depth. The convergence does not occur to the exact
value due to several factors, such as the noisy nature of seismic data
and its limited frequency band. In addition, to the convergence
between the modeled and observed values, a reduction in the
standard deviation of the posterior distribution occurs when
compared to the prior.
3.2. Bayesian classification

Bayes' theorem is a fundamental statistical approach to updat-
ing the probability of an event given some evidence. It shows how
the a priori knowledge can change the a posteriori probability of a
certain event. Bayesian classification is an application of Bayes’
theorem for estimating the probability that a pattern of variables is
related to a certain class. It assumes that the relevant probability
values are known and that the decision problem is posed in prob-
abilistic terms (Duda et al., 2001). Considering the class as a facies yi
and an elastic parameter x, the Bayesian classification computes the
a posteriori probability as follows:

PðyijxÞ¼
f ðxjyiÞPðyiÞ

f ðxÞ ; (12)

where yi¼ 1; :::;n with n ¼ number of facies, x is the elastic
parameter value, f ðxjyiÞ is the likelihood function of the elastic
parameter given the facies yi, PðyiÞ is the a priori probability of yi,
and f ðxÞ is the normalization function. The product of the likeli-
hood function and the a priori probability is the most relevant part
of Eq. (12), whereas the normalization factor just scales the a pos-
teriori probabilities of all facies to sum one. Thus, this raises some
special cases for the classification problem. Let f ðxjy1Þ ¼ f ðxjy2Þ,
then the observations give no clue about the occurrence of facies,
consequently, the decision is given by the a priori probability. Also,
if Pðy1Þ ¼ Pðy2Þ, the facies are equally probable and the decision is
entirely influenced by the likelihood functions. Hence, both factors
are relevant for the Bayesian classification.

In this research, the classes of Bayesian facies classification are
the facies. Facies is a geologic term used to distinguish rock bodies
into mappable units based on physical characteristics, composition,
formation, or other aspects (Gressly, 1838). Thus, the facies can be
defined as lithofacies, petrofacies, electrofacies, flow units, or any
other so that the choice is made based on the one that can enhance
the reservoir characterization or has the best response to the well-
log data of the study area. Authors such as Teixeira et al. (2017) and
Penna et al. (2019) performed the Bayesian classification of lith-
ofacies in the presalt interval, while Penna and Lupinacci (2021)
and Lebre et al. (2021) used flow units.

The definition of the likelihood probability density function
(PDF) of the facies is a crucial step in the Bayesian classification. It is
done by assuming that the PDF f is unspecified, but only a dataset x,
which are samples of an unknown distribution. By this way, an
approximation of the PDF is made using density estimation. The
estimation can be performed parametrically or nonparametrically.
The parametric approach is the case where the mean and variance
parameters are used for defining the PDF by assuming the shape of
the PDF. In non-parametric approaches such as kernel density
estimation (KDE), no assumptions are made about the shape of data
distribution. Herewith, the probability density function f tends to
provide best fits to the distribution of the data in comparison to
parametric PDFs. The PDF estimated through KDE is given by
summing the individual kernel contribution of each sample ac-
cording to the equation (Silverman, 1986):



Fig. 1. Example of data assimilation performed in ES-MDA algorithm: (a) observed acoustic impedance value, prior distribution, and the mean of prior distribution before data
assimilations; (b) observed acoustic impedance value, posterior distribution, and the mean of posterior distribution after ten data assimilations.
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bf ðxÞ ¼ 1
nh

Xn
i¼1

~K
�x � xi

h

�
; (13)

where n is the number of samples in the dataset, the kernel type ~K
determines the shape of the distribution, xi is a sample from the
dataset, and the bandwidth h inserts the width of the distribution
window.

3.3. Porosity modeling

Porosity is a petrophysical property that plays a key role in pe-
troleum exploration and production. Jointly with other properties
like clay volume and water saturation, porosity estimation is
mandatory to evaluate the presence of reservoirs and define the
occurrence of commercial volumes of hydrocarbon. In the well-log
scale, porosity is commonly estimated using conventional ap-
proaches based on the sonic, neutron, density, or their combination
(Ellis and Singer, 2007). In the presalt carbonate reservoirs, Castro
and Lupinacci (2022) observed a better fit of the porosities from
the nuclear magnetic resonance (NMR) logs with laboratory data
than those conventional methods mentioned.

Rock physics studies the relations between petrophysical
properties, such as porosity, mineral fractions, and fluid satura-
tions, and elastic properties, such as elastic moduli, velocities,
density, and impedances (Mavko et al., 2009). These petro-elastic
relations linking petrophysical properties to elastic attributes are
widely used in reservoir characterization studies since elastic at-
tributes are estimated from seismic data through seismic inversion
(Grana et al., 2021). Thus, these relations allow an integration of
information from different scales to generate 3D volumes of pet-
rophysical properties. The process of porosity estimation from a
seismic-inverted elastic parameter is called rock-physics inversion
(Grana et al., 2022).

Empirical models are simple rock-physics relations to establish
the connection between rock and fluid properties and elastic pa-
rameters and perform the rock-physics inversion. They are
approximated by taking the shape of a function and determining its
coefficients from the calibration of a regression to a dataset (Avseth
et al., 2005). The relationship between the elastic and petrophysical
properties depends on the purpose and available dataset. Some
authors propose a linear relation between porosity and P-wave
travel time (Wyllie et al., 1956), while others resort to a quadratic
function (Raymer et al., 1980). Furthermore, the porosity can line-
arly relate to compressional velocity if the clay content remains
significantly constant (Han et al., 1986). In presalt reservoirs, a
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lithological-dependent quadratic relationship is suitable for
relating the acoustic impedance and effective porosity (Penna and
Lupinacci, 2021).

Among the empirical models, two ways to perform the linear
regression between properties are through the regressions using
the L1 and L2 norms. The L2 norm, also known as the least-squares
solution, is one in which the cost function is given by the square of
the difference between the observed and the calculated data. In this
type of solution, the minimization is done on the mean of absolute
error and assumes that the data errors are independent and nor-
mally distributed. However, it can be strongly compromised by the
presence of outliers in the dataset. To circumvent this problem, the
L1 norm solution is preferable. In this case, the minimization is
performed in norm 1 of the residual vector, and it is assumed that
the errors in the data are distributed according to the Laplace dis-
tribution. The cost function of the solution using the L1 norm is
given by (Aster et al., 2004):

mð1Þ ¼
Xn
i¼1

��di � ðGmÞi
��

si
¼ kdw � Gwmk1; (14)

where dw is the observed data, Gw is the mapping operator, and m
are the model parameters.
4. Methodology

We applied the workflow illustrated in Fig. 2 in the presalt in-
terval. We evaluated the characterization of the coquina bank in the
Well A area, while in the Well B area, we analyzed the extension
and thickness of an igneous intrusion.

The interpretation of themain seismic horizons and the seismic-
to-well tie were important to build the low-frequencymodel with a
horizon-guided interpolation and for the wavelet estimation. The
low-frequency model handles the lack of low-frequency content in
the seismic amplitude altering from a relative acoustic impedance
to an absolute one (Veeken and Da Silva, 2004).
4.1. Stochastic seismic inversion

We performed the stochastic seismic inversion using ES-MDA
(Liu and Grana, 2018). The algorithm of ES-MDA consists of the
following steps.

1) Read seismic data, low-frequency model, and wavelet in the
time domain.



Fig. 2. Workflow applied to stochastic inversion, Bayesian facies classification, and porosity modeling. The blue boxes represent the observed data, the pink boxes are the con-
struction steps to the objective, and the yellow boxes are the main three steps performed.
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2) Generation of acoustic impedance prior ensemble members for
trace x and their forward modeling. For each trace x, we build
vertical-correlated stochastic simulations (Doyen, 2007;
Dvorkin et al., 2014; Fernandes and Lupinacci, 2021).

3) Application of ES-MDA algorithm (Eq. (8)), where the inverse of

the matrix C ¼ ðCp
dd þ ajCdÞ�1

is calculated using Moore-Pen-
rose’ pseudoinverse since the ensemble number is greater than
measurements number for trace x.

4) After Na assimilations, we calculate the posterior distribution
statistics of parameters conditioned by seismic data.

We achieved the construction of the acoustic impedance sim-
ulations by imposing a vertical correlation between the values us-
ing a vertical correlation function. In the simulations, vertically
close randomvalues are similar, and as the distance increases, these
values tend to lose their correlation. The vertical correlation func-
tion allows us to represent this behavior mathematically. This
method aims to simulate a vertical geological continuity that is
described by a variogram model (Dvorkin et al., 2014; Fernandes
and Lupinacci, 2021).

We used an exponential theoretical variogram model with a
range of 20 ms to build the vertical correlation function. The var-
iogram model brings the high-frequency content to the stochastic
realizations (Doyen, 2007). We set the number of simulations at
500. Then, we performed the forward modeling of simulations to
obtain the predicted input data for ES-MDA for each trace. Within
ES-MDA, the inputs are assimilated Ne times to fit the modeled data
to the predicted data. In the example illustrated in Fig. 3, the input
stochastic simulations of the algorithm for one trace are shown. A
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low-frequency trend is observed in the input simulations associ-
ated with the low-frequency model extracted at the trace position.
In addition to this trend, the variogram introduces a high frequency
to the prior ensemble members. After the last assimilation, the
forward modeling of the mean of acoustic impedance distribution
converges fittingly to the observed data while the prior ensemble
members are updated.

By repeating this process for all traces, statistical parameters
from the posterior distribution of each of them are analyzed. We
have chosen to work with the realizations equivalent to the per-
centiles P10, P50, and P90. Thus, we were able to evaluate an
optimistic scenario (P10), a base one (P50), and a pessimistic one
(P90). It is noteworthy that the terms optimistic and pessimistic
used here assume that the highest acoustic impedance values are
associated with lower porosities and vice versa. However, this
relationship is not as straightforward for complex reservoirs as the
presalt carbonates due to some non-reservoir facies like clayey
rocks that present low acoustic impedance and porosity. This
behavior highlights the reason to classify facies before modeling
the porosity in our workflow.
4.2. Bayesian facies classification

For Bayesian classification, we upscaled the elastic parameter
logs using Backus averaging (Backus, 1962) with a frequency of
100 Hz and 5-m sampling. We defined five facies, four of which
were based on cutoffs of the effective porosity and clay volume logs
using well-log data. The clay volumewas estimated using Larionov’
empirical model for old rocks (Larionov, 1969), and the effective



Fig. 3. Example of data assimilation in ES-MDA at one seismic trace: (a) prior ensemble members before the first assimilation; (b) forward modeling of (a); (c) posterior ensemble
members after the fifteenth and last assimilation; (d) forward modeling of (c). The observed data (Dobs) is illustrated as a density plot in (c) and (d).
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porosity is from the NMR log. We used the information from well
logs and composite log to define the intervals with the occurrence
of igneous rocks. In igneous intervals with break-ups, the porosity
was estimated using the sonic log (Ellis and Singer, 2007). The
facies are high-porosity reservoirs (reservoir 1), intermediate-
porosity reservoirs (reservoir 2), low-porosity carbonates (tight
carbonates), clayey, and igneous rocks. Table 1 shows the criteria
for defining these five facies. Reservoirs 1 and 2 are considered the
reservoir intervals, while tight carbonates, clayey rocks, and
igneous rocks are non-reservoirs.
Table 1
Criteria for defining the facies usingwell-logs data and composite profile, where 4e
is the effective porosity and Vclay is the clay volume.

Facies Cutoffs

Reservoir 1 4e >12% and Vclay <20%
Reservoir 2 6% �4e � 12% and Vclay <20%
Tight carbonates 4e <6% and Vclay <20%
Clayey 4e <6% and Vclay >20%
Igneous Well logs and composite profile
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We built the likelihood PDFs through KDE using the upscaled
acoustic impedance (IP) logs fromwell logs separately for the Barra
Velha and Itapema Formations (Fig. 4). For kernel bandwidth esti-
mation, we used Scott’ method with a Gaussian-type kernel (Scott,
1992).

In the Itapema Formation, the igneous rocks present in thewells
are extrusive. At the lowest IP values, there is a large overlap be-
tween reservoir 1 and clayey intervals, which impairs the distinc-
tion of these two facies in Bayesian classification. The confusion
matrices for both formations using an equal a priori probability
(0.20 for each facies) are shown in Fig. 5. The estimation of the
confusion matrix is part of the classification data-driven feasibility
study, in which the same acoustic impedance data are used for the
construction of the PDFs and the Bayesian classification.

The accuracies in the Barra Velha and Itapema Formations are
55% and 67%, respectively. There is a good hit rate for reservoirs 1 in
the Barra Velha Formation, while in the Itapema Formation, both
reservoirs 1 and 2 have a hit rate higher than 70%. However, there
are some uncertainties in the Barra Velha Formation caused by the
overlap between PDFs, as is the case of clayey intervals and reser-
voirs 2, with 33.7% of reservoir 2 classified as clayey rocks, and



Fig. 4. Likelihood PDFs of acoustic impedance values for the five facies defined in the (a) Barra Velha Formation (Fm.) and (b) Itapema Formation.

Fig. 5. Confusion matrices between facies in the (a) Barra Velha Formation and (b) Itapema Formation. The matrix rows indicate the observed facies, and the columns are the
classified facies. The facies are the igneous rocks (IGN), clayey rocks (CLA), tight carbonates (TGT), reservoir 2 (RES2), and reservoir 1 (RES1).

Fig. 6. Schematic seismic section illustrating the clayey rocks a priori probability
approach applied to introduce prior geological knowledge in the Bayesian classification
algorithm.
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igneous and tight carbonates, where 24.8% of igneous rocks were
inferred as tight carbonates. In the Itapema Formation, the hit rate
of the clayey facies is the lowest, with a 50% uncertainty with
reservoir 1. Therefore, the identification of clayey rocks and their
distinction from reservoirs is impaired in both formations.

Projects in oil and gas companies drilled wells on the structural
highs of presalt reservoirs, which allegedly are the best geological
targets. Thus, the well positions induce a bias in the likelihood
PDFs, which can lead to incorrect predictions (Gonzalez et al.,
2016). Depositional models for presalt consider that clayey in-
tervals are associated with the structural lows, while the structural
highs are dominated by clean carbonates (Wright and Barnett,
2015; Chinelatto et al., 2020). One way to incorporate this infor-
mation into Bayesian classification is through the a priori proba-
bility. The approachwhere a priori probability of each facies is equal
to 0.2 is very simple and is inconsistent with the geological setting,
resulting in the overlap in reservoirs and clayey intervals, as pre-
viously seen in Fig. 5. Since there is no evidence of an expressive
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structural inversion in the study area, we chose to introduce a
geological knowledge into the Bayesian classification by modifying
the a priori probability of the clayey facies and the reservoirs based
on the depth of the Pre-Jiqui�a and Pre-Alagoas Unconformities
(Fig. 6). By holding the a priori probability of igneous rocks and tight
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carbonates equal to 0.2 for each, we perform a balance between the
clayey rocks and reservoir 1 and 2, totalizing 0.6 of probability. At
the deepest parts of the Pre-Jiqui�a and Pre-Alagoas Unconformities
(structural lows of the Itapema and Barra Velha Formations,
respectively), the a priori probability of the clayey facies dominates
over that of the reservoirs: 0.6 for clayey rocks, 0 for reservoir 2, and
0 for reservoir 1. At the shallowest parts of both unconformities
(structural highs), the a priori probability of the reservoirs will
overcome that of clayey rocks: 0.3 for reservoir 2, 0.3 for reservoir 1,
and 0 for clayey rocks.

4.3. Porosity modeling

After the Bayesian facies classification, we performed the
porosity modeling using the acoustic impedance and the most
probable facies volumes from the realizations equivalent to the
percentiles P10, P50, and P90. For this modeling, we used the L1-
norm linear fits to the effective porosity and acoustic impedance
relationships for the upscaled well-logs data. The effective porosity
log used is fromNMR logs in non-igneous zones and the sonic log in
igneous intervals. We chose the L1 norm due to the presence of
outliers in the dataset since it is more unaffected by spurious points
than the L2 norm.We established five equations for each formation,
one for reservoir 1, reservoir 2, tight carbonates, and igneous rocks,
while in clayey intervals, the porosity was set as zero (Fig. 7).

We decided to fit a linear function for the four facies due to its
linear behavior observed in the individual plots. In addition, using
five relations at each formation catches the full potential of the
classified facies. By joining two or more facies with one rela-
tiondfor example, reservoir 1, reservoir 2, and tight carbo-
natesdtheir separation in the Bayesian classification step would
become unneeded and mask the identification of the best porosity
intervals. Despite the similar linear coefficient observed in reservoir
1 and reservoir 2, the different angular coefficient highlights
different trends on each facies in both formations. Concerning the
tight carbonates, they cover very distinguishing processes for their
generation, like contact metamorphism, silicification, and dolomi-
tization. Thus, disregarding the clayey rocks, this facies presents the
highest dispersion and worst fit correlation in both formations.
Joining the tight carbonates with other facies would worsen the
modeling step. The uncertainties in the porosity model are
analyzed by performing the porosity modeling in the percentiles
P10 and P90 of acoustic impedance and their respective modeled
facies using the same equations shown in Fig. 7.

5. Results

The metrics used for quantitatively evaluating seismic inversion
were the correlation coefficient and the mean absolute percentage
error (MAPE). The correlation coefficient indicates how the esti-
mated variable is linearly correlated with the observed variable. On
the other hand, a lower MAPE indicates how dispersed the esti-
mated variable is from the observed variable. These two metrics
also are adopted for evaluating the porosity modeling. Quantita-
tively, the seismic inversion reached satisfactory results in Wells A
and B, as shown in Table 2. The comparisons were performed with
the observed upscaled log and the acoustic impedance trace
extracted at well position in the time domain. A correlation coef-
ficient of 0.93, as calculated in Well B, can be considered excellent
for the low seismic resolution and high geological complexity of the
presalt reservoirs. The correlation coefficient and MAPE estimated
in Well A are also adequate to carry out the Bayesian classification
without high uncertainties associated with inverted acoustic
impedance.

The results of stochastic acoustic inversion, Bayesian
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classification, and porosity modeling on a seismic section crossing
Well A are presented in Fig. 8. The main target of this well was a
coquina bank in the Itapema Formation, which developed in a
drowning regime with continuous generation of accommodation
space (Neves et al., 2019; Oliveira et al., 2021). The upper interval of
the Itapema Formation is marked by low/medium IP values, with an
excellent correlation with the upscaled IP from the well log. In this
interval, the best reservoirs were classified, with high confidence
given by probabilities higher than 70% and with the porosity
modeling reaching values of approximately 20%. The yellow/orange
tones in the porosity model represent values close to the 15%
porosity average estimated by Carlotto et al. (2017) for awell drilled
in a presalt coquina bank. Seismic inversionwas also able to recover
the high IP values associated with the tight carbonates in the lower
interval of Well A, with porosities of less than 6%. In this zone, the
Bayesian classification was unable to identify thin reservoir 1
layers. This difficulty is associatedwith the vertical resolution of the
inversion result. Indeed, the reservoir 1 probability is smaller than
20% in these thin layers. The result is also good in the Barra Velha
Formation, with its lower interval marked by high porosity values
near Well A, with an opposite behavior to that observed in the
Itapema Formation, presenting a porosity decrease towards the top.
The porosity model identifies a reservoir 1 body with intermediate
porosity (14�18%) in a mounded-like feature in the structurally
higher portion of the Barra Velha Formation (8000�9000 m),
constituting a potential reservoir target. The workflow performed
satisfactorily for estimating the well behavior of the increase in
porosity towards the upper interval Itapema Formation. In the
structural low (0�2000 m), our approach estimated an intercala-
tion between clayey rocks and tight carbonates, with the former
associated with the low/intermediate acoustic impedance values
and the second associated with the high values. It is mainly marked
by zero-to-low porosity zones consisting of a non-reservoir
interval.

Quantitatively, the Bayesian classification reached good results
in Well A. Fig. 9 illustrates the confusion matrix between observed
and classified facies at Well A position and the crossplot between
observed and estimated porosity from the P50 of acoustic imped-
ance and facies using the linear-equations fits. The Bayesian clas-
sification accuracy estimated is 63.4%. The correlation coefficient
for porosity is close to that for inversion, indicating a good rela-
tionship between acoustic impedance, facies, and porosity in the
interval near Well A. The porosity modeling in reservoir 1 intervals
is excellent at the highest porosities (greater than 14%), while the
results are underestimated at intermediate porosities (greater than
12% and lower than 14%). The reservoir 1 samples with under-
estimated porosity caused a significant increase in MAPE, reaching
27.4%. The main uncertainty estimated is between tight carbonates
and reservoir 2. The PDFs overlap causes this and is an expected
behavior given that these two facies are lithologically similar,
differing only by the cutoff of 6% set in the porosity log. At the tight
carbonate intervals that were classified as reservoir 2, the porosity
is overestimated. The opposite behavior is also expected due to the
32.6% of reservoir 2 being classified as tight carbonates. Our
approach adopted in the a priori probability for Bayesian facies
classification assisted in the non-identification of clayey intervals in
the coquina bank.

The uncertainties associated with porosity modeling were
estimated based on the realizations equivalent to the percentiles
P10 and P90 for the optimistic and pessimistic scenarios (Fig. 10).
The P10 facies presents misclassified clayey rocks below the Pre-
Alagoas Unconformity caused by the estimate of low inverted IP
values (7�8 km/s,g/cm3), in an IP range that the ponderation of a
priori probability in the structural high was not able to contour the
control of the clayey rocks in the likelihood PDFs. This resulted in a



Fig. 7. Linear-equations fits of porosity and IP performed using the L1 norm for reservoirs 1 and 2, tight carbonates (Carb.), and igneous rocks from data from nine wells in the (a)
Barra Velha Formation and (b) Itapema Formation.
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Table 2
Correlation coefficient and mean absolute percentage error (MAPE) estimated in
Wells A and B.

Well Correlation coefficient, % MAPE, %

A 73.0 8.48
B 93.6 6.61

Fig. 8. Seismic section that crosses the Well A, with (a) IP (P50) from stochastic
inversion, (b) classified facies from Bayesian classification, (c) porosity model, and (d)
reservoir 1 facies probability. In all items, the lime green line is the Pre-Jiqui�a Un-
conformity, the blue line is the Pre-Alagoas Unconformity, and the magenta line is the
Base of Salt. Seismic data is courtesy of CGG.
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strong decay in the porosity estimate from P10. On the other hand,
the P90 estimated false probabilities of igneous rocks near the top
and the bottom of the well. Elsewhere, we notice that the observed
porosity values are coherent with the estimate in the well, setting
between P10 and P90 with a high correlation with the three re-
alizations equivalent to the percentiles.

We evaluate the capability of the stochastic inversion and
Bayesian classification for identifying the igneous rocks extension
in the west-east seismic section crossing Well B (Fig. 11). The
igneous rock is a diabase intrusion that occurred near the
carbonate-salt interface, in the upper interval of the Barra Velha
Formation. Identifying the extension and thickness of these igneous
bodies is challenging and ambiguous using the seismic amplitude
only. In the base scenario (P50), the thickness of the igneous rock is
in excellent visual agreement with the one observed in Well B. This
occurred due to the capability of the stochastic acoustic inversion of
recovering the high IP values characteristics of the igneous rocks in
this interval, being this well the one that reached the highest cor-
relation coefficient calculated. A thinning of the intrusion is
observed in the dip direction (range from 0 to 2000 m). Further-
more, in the P10 and P50 scenarios, there is a near-to-zero proba-
bility of igneous rocks in the interval 4000�6000 m. In the P90
scenario, this region is marked by probabilities lower than 50%.

In the P10 scenario, the probabilities of igneous rocks greater
than 20% are observed at 500�4000 m, while values greater than
50% are estimated in the neighborhood of Well B. In the P90 sce-
nario, these probabilities reach values between 20% and 50% in the
4000�6000 m range. However, these estimates are greater than
50% in 0e4000 m, indicating that even in the pessimistic scenarios,
the behavior of the igneous distribution remains similar, with a
higher probability between 0 and 4000m. Therefore, the percentile
analysis ratifies the comportment observed in the P50 scenario.
Table 3 summarizes the igneous hit rate, classified thickness, and its
extension for the realizations equivalent to the three percentiles.

Our result in the P50 vol ratifies the analysis of the visual
agreement between observed and classified facies, with an esti-
mated thickness of 90m, which is close to the observed thickness in
Well B. Despite the higher hit rate in P90, the thickness of the
igneous rock was overestimated in this scenario, with 53.8% of the
tight carbonates classified as igneous. On the other hand, P10
underestimated the igneous thickness, presenting igneous intervals
classified as tight carbonates. This uncertainty between tight car-
bonates and igneous rock is expected during the identification of
these facies in the Bayesian classification. In the three scenarios, the
highest probability of igneous rock occurs in the neighborhood of
Well B.
6. Discussion

Since the presalt discovery, different workflows have been
adopted for the quantitative seismic interpretation and character-
ization of the presalt reservoirs. Several of them use seismic
inversion (Teixeira et al., 2017; Dias et al., 2019; Peçanha et al., 2019;
Penna et al., 2019; Barnett et al., 2021; Ferreira et al., 2021; Penna
and Lupinacci, 2021). The use of ES-MDA for stochastic seismic
inversion is relatively recent, with Liu and Grana (2018) being the
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first to explore this method for this purpose. The success of its
applications in presalt shows that the ES-MDA is a robust method
also for geologically-complex datasets with low vertical seismic
resolution. ES-MDA handles the nonlinearity of the forward model
for the largest angles of the Zoeppritz equations in elastic inversion.
In our application, we did not utilize the maximum potential of the
method, as we employed it for acoustic inversion. Nevertheless, its
reasonably simple implementation and efficient computational
cost encouraged us to apply the ES-MDA in our presalt dataset, and



Fig. 9. Quantitative evaluation of Bayesian classification and porosity modeling in Well A, showing (a) the confusion matrix and (b) the crossplot of observed porosity versus
estimated porosity colored by the observed facies, with the correlation coefficient (r) and the mean absolute percentage error (MAPE).

Fig. 10. IP, classified facies, and modeled porosity of the percentiles P10, P50, and P90 extracted at Well A position.
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the results show that the algorithm fits well for the purpose.
A very important input in stochastic inversion using ES-MDA is

the prior ensemble members. We used an approach for its gener-
ation based on constructing spatially correlated stochastic simula-
tions in time (Doyen, 2007; Dvorkin et al., 2014). Therefore, our
input simulations do not have horizontal correlation, so it was not
possible to use unique and selected simulations because the
behavior becomes completely non-geologic due to poor lateral
continuity. The alternative we chose was using the realizations
equivalent to the percentiles P10, P50, and P90, which proved
suitable for our approach. However, Liu and Grana (2018) point out
that other simulation-generation methods, such as variogram-
based and multiple-point geostatistics algorithms, can be inte-
grated with ES-MDA. Thus, the selection of specific simulations
after data assimilations is possible. Liu and Grana (2019) use the
FFT-moving average and probability field simulation for generating
the prior ensemble members for stochastic simulations. This
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method stands out for its computational efficiency in large grids
(Simm and Bacon, 2014; Liu and Grana, 2019) when compared to
variogram-based approaches such as sequential Gaussian simula-
tion (Doyen, 2007) because it does not require the construction of
the local PDF at every grid cell to incorporate previously simulated
samples.

Also, within ES-MDA, the proposal presented by Liu and Grana
(2018) allows for a joint seismic and rock-physics inversion. How-
ever, we believe that this strategy is not suitable for a presalt
dataset due to the multimodal behavior of porosity and acoustic
impedance (previously shown in Fig. 8). The use of a single rock-
physics model, for example, calibrated for clay-poor carbonates,
tends to significantly overestimate porosity values in non-reservoir
intervals, such as the clayey facies. In this aspect, the Bayesian facies
classification works on inferring a facies before modeling porosity.
The distinction between clay-poor and clay-rich facies is a requisite
for porosity estimation since rock-physics models for the presalt



Fig. 11. Seismic section crossing Well B showing the IP of stochastic inversion from the realizations equivalent to the percentiles (a) P10, (c) P50, and (e) P90 and their respective
igneous occurrence probability estimated in Bayesian classification: (b) igneous probability from P10; (d) igneous probability from P50; (f) Igneous probability from P90. The lime
green line represents the Pre-Jiqui�a Unconformity, the blue line is the Pre-Alagoas Unconformity, and the magenta line is the Base of Salt. Seismic data is courtesy of CGG.
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rocks highlight that clay minerals and calcite, dolomite, and quartz
contents modify the trend on the acoustic impedance and porosity
domain (Vasquez et al., 2019; Mello and Lupinacci, 2022). In our
work, in addition to clay minerals and variations in mineralogical
content, the presence of igneous rocks is a factor that brings more
difficulty in fitting a unique rock-physics model.

Due to the introduction of geological knowledge in the a priori
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probability, the facies model is accurate in both formations. This
strategy proved necessary to reduce the bias caused by the well
position. Teixeira et al. (2017) used an a priori probability model
with the same strategy we adopted to solve the overlap between
porous and clayey carbonates. For their case, they used the elastic
parameters IP versus VP/VS (ratio between P-wave velocity and S-
wave velocity) in the Bayesian classification and successfully



Table 3
Hit rate and estimated thickness extracted at Well B position and W-E extension of
igneous facies estimated in the realizations equivalent to the percentiles P10, P50,
and P90. The igneous rock thickness observed in the well data is 85 m.

P10 P50 P90

Igneous hit rate 64.7% 94.1% 100%
Estimated thickness 55 m 90 m 115 m
W-E extension 2000 m 3700 m 4500 m
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modeled the facies in a presalt dataset, exemplifying a well drilled
in the structural low, which was dominated by shaley carbonates
with approximately 100% of shaley carbonates a posteriori proba-
bility. Here, the classification becomes more critical because we
used only IP. However, we consider the results satisfactory using
only IP, with the facies accurately identified on the coquina bank at
Well A and the non-identification of clayey rocks on the structural
highs. In addition, this approach proved effective for predicting
scenarios for the igneous rock extension in Well B.

The comparison between the Bayesian facies classification with
the a priori probability ponderation and with the equal a priori
probability for the five facies (Fig. 12) underlines the improvement
in consistency of the facies model with our proposed method. The
traditionally equal approach presents clayey rocks over the struc-
turally higher area, predominantly in the Barra Velha Formation.
These areas were classified as reservoir 2 in the proposed approach.
As introduced in the model, we expect that clean carbonates
dominate these areas, while structural lows are dominated by
clayey facies associated with low-energy deposits (Wright and
Barnett, 2015). In the traditional approach, an inaccurate clayey
interval was classified near Well A in the upper part of the Itapema
Formation in a reservoir 1 zone, causing a decrease from 63.4% to
53.7% in the prediction accuracy. These two differencesdreservoir
1 and clayey rocks in the Itapema Formation and reservoir 2 and
clayey rocks in the Barra Velha Formationdemerged from facies
with great overlaps between PDFs, demonstrating the capability of
the a priori probability in improving the results qualitatively and
quantitatively by imposing a geological knowledge. Non-reservoir
facies prevail in the structural low (0�2000 m), with the alterna-
tion of clayey rocks and tight carbonates (Fig. 12(a)), while the clean
facies propagate to the lows in Fig. 12(b). This inconsistent model
overestimates the reservoir zones in the field.

We successfully characterized the coquina bank of the Itapema
Formation applying the proposed approach. Coquina banks are
important exploratory targets of many fields in the presalt, so a
large number of studies deal with the depositional and diagenetic
processes that acted on these rocks (Carlotto et al., 2017; Pietzsch
et al., 2018; Barnett et al., 2021; Oliveira et al., 2021). Generally,
Fig. 12. Comparison between classified facies using (a) the proposed approach that rela
conformities and (b) the traditional approach (all facies equally probable). The green line rep
the magenta line is the Base of Salt. Seismic data is courtesy of CGG.
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the coquina bank exhibits a backstepping pattern throughout its
evolution (Oliveira et al., 2021). Barnett et al. (2021) show a seismic
section in the presalt of the Santos Basin after elastic inversion, in
which the authors identified the upper part of the coquina bank
with lower acoustic and shear impedances than the lower part.
They associate this upper interval with the best reservoirs. Our
results corroborate the behavior highlighted by Barnett et al.
(2021), with the upper interval of the coquina bank showing low
acoustic impedance values, reservoir 1 facies, and porosity reaching
20% near Well A.

The magmatic events in the presalt may have been strongly
influenced by faults. These faults, which suffered posterior reac-
tivation, are important in the distribution of the intrusive igneous
rocks of the Santonian-Campanian and Eocene magmatic events
(Zhao et al., 2019). The delineation of intrusive igneous bodies in
the presalt is not straightforwardly interpreted using only seismic
amplitude. Intrusive igneous rocks present positive reflections,
characterized by dikes and sills, saucer-shaped or bowl-shaped.
Sills commonly occur in the presence of faults and may function
in reactivating and vertically segmenting them (Omosanya et al.,
2016). Intrusive igneous rocks tend to present high acoustic
impedance, and this parameter supports its identification (Penna
et al., 2019; Ren et al., 2019). Our approach enabled the genera-
tion of three models based on the generated scenarios to under-
stand the extension of an intruded igneous rock at the carbonate-
salt interface and its relationship to the presence of faults (Fig. 13).

The thickness of the igneous rock thins away from Fault F1,
supporting the geological interpretation that this fault serves as a
conduit for this intrusive layer. The three scenarios in Fig. 13 also
suggest the propagation of the intrusive layer towards the struc-
tural low at the west of Fault F1. When the magmatic event found
contrasting rock mechanical properties between carbonate-salt
unconformity, it flows downwards from the top of Fault F1 into
the relatively low-density surrounding carbonates in a gravity-
driven movement. Outcrops provide examples of sills emplaced
along unconformities (Mudge, 1968; Walker, 1989). Thus, under-
standing the spatial arrangement of the igneous rocks in presalt is
substantial, as Penna et al. (2019) mention that these rocks can
serve as a fluid flow barrier in the injection and production phases.
Because of their significance, other recent studies propose different
methodologies to identify these igneous rocks on seismic volume
(Penna et al., 2019; Vizeu et al., 2021).
7. Conclusions

We presented a three-step approach that employs quantitative
seismic interpretation routines for the porosity modeling of the
tes the clayey a priori probability with the depth of Pre-Jiqui�a and Pre-Alagoas Un-
resents the Pre-Jiqui�a Unconformity, the blue line is the Pre-Alagoas Unconformity, and



Fig. 13. Schematic models defined from realizations equivalent to the percentiles P10,
P50, and P90 for the extension of the igneous intrusion that occurred in the carbonate-
salt interface.
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Brazilian presalt carbonate reservoirs and mapping the igneous
intrusion extension and thickness. To accomplish this, we used the
realizations equivalent to the percentiles P10, P50, and P90 from
ES-MDA stochastic acoustic inversion for Bayesian facies classifi-
cation. After, we derived the porosity modeling using empirical
linear relations between effective porosity and acoustic impedance.
ES-MDA works effectively for stochastic acoustic inversion in a
geologically complex setting such as the presalt interval. The a
priori probability of clayey facies ponderation proposed in the
Bayesian facies classification was able to limit the occurrence of
clayey rocks to structural lows, enabling a good characterization of
the coquina bank. Using acoustic impedance constrained by facies
for porosity modeling was crucial to overcoming the challenge of
multimodality in the distributions of acoustic impedance and
porosity. We estimated that the best porosities are in the upper
interval of the coquina bank, with values reaching 20% near Well A,
while low-porosity zones and tight carbonatesmark the lower part.
The correlation coefficient between observed and estimated po-
rosities is 0.71, which influences the accuracy of the Bayesian
classification of 0.63, illustrating a good result for the presalt sce-
nario. The Bayesian classification was also crucial to understanding
the spatial distribution of an igneous rock occurring in the
carbonate-salt interface. In the percentile P50, the igneous facies hit
rate is 0.94, indicating an excellent thickness estimation of this
facies, with an extension of approximately 3700 m in the west-east
direction. A thinning aspect is observed in the igneous intrusion in
the dip direction, denoting an increase in the distance from the
source conduit.
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