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a b s t r a c t

Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop
drilling. The complex and changeable geological environment in the drilling makes lithology identifi-
cation face many challenges. This paper studies the problems of difficult feature information extraction,
low precision of thin-layer identification and limited applicability of the model in intelligent lithologic
identification. The author tries to improve the comprehensive performance of the lithology identification
model from three aspects: data feature extraction, class balance, and model design. A new real-time
intelligent lithology identification model of dynamic felling strategy weighted random forest algo-
rithm (DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase
resistivity are the logging while drilling (LWD) parameters that significantly influence lithology identi-
fication. The comprehensive performance of the DFW-RF lithology identification model has been verified
in the application of 3 wells in different areas. By comparing the prediction results of five typical li-
thology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate
and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and
feasible in different geological environments. The DFW-RF model plays a truly efficient role in the real-
time intelligent identification of lithologic information in closed-loop drilling and has greater applica-
bility, which is worthy of being widely used in logging interpretation.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Real-time intelligent lithology identification is the essential
early work of downhole closed-loop intelligent steering drilling
technology. It is used to sense the drilling formation environment
to provide the basis for intelligent decision-making in the drilling
operation. The lithology identification effect directly affects the
intelligent development process of downhole closed-loop drilling
technology (Zhao et al., 2021; Wu et al., 2022; Xie et al., 2022).

Traditional lithology identification methods mainly include the
cross-plot method (Zhou et al., 2016; Baisakhi and Rima, 2018), the
probability statistics method (Phillip et al., 2017), and the cluster
analysis method (Wang et al., 2018; Amjad and Chen, 2020).
Although these lithology identification methods are simple in
principle and easy to operate, the judgment results have intense
y Elsevier B.V. on behalf of KeAi Co
subjectivity and time lag, which is challenging to meet the demand
for real-time intelligent identification of closed-loop drilling. In
recent years, the rapid development of artificial intelligence tech-
nology has provided a new technical approach to solving the
problem of real-time intelligent lithology identification. Many
scholars have applied various intelligent information processing
technologies to lithology identification, including but not limited to
Support Vector Machines (Al-Mudhafar, 2017), Naïve Bayes (Rosid
et al., 2019), Random Forests (Zou et al., 2021) and Neural Net-
works (Xu M.H. et al., 2022). These methods are now becoming the
primary method to obtain logging lithology information quickly
and accurately. Jorge et al. (2018) used a Support Vector Machine to
identify lithology types automatically. Karimzadeh and Tangestani
(2021) combined the Principal Component Analysis and the Sup-
port Vector Machine to realize the effective identification of li-
thology. Liang et al. (2022) established a Support Vector Machine
model based on simulated annealing optimization to realize rapid
and intelligent lithology identification. Dong et al. (2022) estab-
lished a logging discrimination model for carbonate based on the
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Fisher discriminant method. Ren et al. (2022) combined the K-
means algorithm, Fuzzy theory and Decision Tree algorithm and
proposed a Fuzzy Decision Tree model for lithology identification.
Abdelhakim et al. (2020) used a Random Forest algorithm to clas-
sify lithology automatically and analyzed the importance of
different variables in lithology classification. Stephen et al. (2019)
proposed a complex lithology identification method based on a
rough set-Random Forest algorithm, which has higher discrimi-
native stability than the traditional Random Forest method. Wu
et al. (2021) constructed a lithology identification method based
on a Long Short-Term Memory (LSTM) recurrent neural network
that can extract and learn the characteristics of lithologic deposi-
tional sequences. Miao et al. (2021) considered the spatial inter-
dependence between sediments and the spatial coupling between
logging data and proposed a spatial deep recurrent neural network
lithology classifier. Zeng et al. (2020) analyzed the correlation be-
tween different logging series and the actual depth accumulation
effect. They established a quantitative lithology identification
method based on attention-based bidirectional gated recurrent
unit neural networks. Li et al. (2021) used the Extreme Learning
Machine (ELM) of semi-supervised learning mode to classify li-
thology. Alzubaidi et al. (2021), Polat et al. (2021) and Becerra et al.
(2022), used the core image as input, and the Convolution Neural
Network (CNN) was used to extract the image features of rock slices
for lithology classification. Merembayev et al. (2021), Sun et al.
(2021), Zhang et al. (2022) and Kumar et al. (2022) compared the
performance of machine learning methods such as Naive Bayes,
Support Vector Machine, Decision Tree, Random Forest, Gradient
Boosting Decision Tree and Artificial Neural Network in formation
lithology identification. Reviewing the previous research results
shows that the research on applying artificial intelligence tech-
nology to lithology identification has been profound and extensive.
However, there are still some areas for improvement in the current
research that is difficult to overcome. For example, the Support
Vector Machine method's classification effect is too dependent on
kernel function and penalty parameters selection. The Random
Forest method has a multi-value bias. The neural network method
is slow in convergence and has poor visualization and
interpretability.

From the current research, although many artificial intelligence
algorithms can be applied to lithology identification, there is still
much room for improvement in the applicability and comprehen-
sive performance of the model. The adaptability between datasets
and algorithms is critical of lithology intelligent identification
technology. Further research needs to use the massive logging data
more effectively and construct a lithology identification method
with a high recognition rate and computational efficiency that can
be applied to various complex geological environments. This paper
examines the problems of difficulty extracting feature information,
the low recognition accuracy of thin-layer, and the limited appli-
cability of the model in lithology identification. A new lithology
identification model of dynamic felling strategy weighted random
forest algorithm is established to realize real-time intelligent and
accurate lithology identification while drilling.

2. Data preprocessing method

2.1. Feature selection method

Before performing the lithology identification task, using
feature selection technology to select LWD parameters sensitive to
lithology information can reduce the number of features, decrease
the model's learning difficulty and computational cost, and
improve the model's generalization ability. This paper uses the
minimum Redundancy Maximum Relevance algorithm (mRMR)
1136
(Peng et al., 2005) to mine the correlation between LWD informa-
tion and lithology categories. Taking mutual information (Hjelm
et al., 2018) as the calculation criterion, the LWD parameter set
with the most significant correlation with the lithology category
and the least redundancy among LWD parameters is selected as the
lithology identification feature. The principle of the mRMR algo-
rithm is as follows:

max
fr2F�Fm�1

2
4Iðfr; cÞ� 1

m� 1

X
fo2Fm�1

Iðfr ; foÞ
3
5 (1)

where F represents the original LWD parameter set, m denotes the
number of LWD parameters in the LWD parameter set, I (fr, fo) in-
dicates the mutual information between the LWD parameter fr and
the LWD parameter fo, c is the lithology category, and I (fr, c) refers
to the mutual information between the LWD parameter fr and the
lithology category c.

Equation (2) is the mutual information between LWD parame-
ters. Eq. (3) is the mutual information between LWD parameters
and lithology categories.

Iðfr; foÞ¼∬ pðfr; foÞlog pðfr; foÞ
pðfrÞpðfoÞdfrdfo (2)

Iðfr; cÞ¼∬ pðfr; cÞlog pðfr; cÞ
pðfrÞpðcÞdfrdc (3)

where p (fr) represents the probability density of the LWD param-
eter fr, p (fo) denotes the probability density of the LWD parameter
fo, p (fr, fo) indicates the combined probability density of the LWD
parameter fr and the LWD parameter fo, p(c) is the probability
density of the lithology c, and p (fr, c) refers to the combined
probability density of the LWD parameter fr and the lithology c.

2.2. Thin-layer sample data processing method

In the process of lithology identification, the geological envi-
ronment is complex and changeable, and many thin-layer are
difficult to identify. Because the number of samples in the thin-
layer is far less than that in other formations, the characteristic li-
thology information in the thin-layer is scarce. The lithology
identification model does not learn enough about the thin-layer,
which leads to the accuracy of model identification always being
biased towards other rock formations with sufficient samples, and
the identification effect of the thin-layer is unsatisfactory. The
Synthetic Minority Oversampling Technique (SMOTE) (Chawla
et al., 2002) is used to process thin-layer sample data to solve the
problem of scarcity of thin-layer feature information. According to
the similarity of thin-layer sample data in the feature space, the
number of thin-layer samples is expanded by linear interpolation.
The calculation steps of the SMOTE oversampling method are as
follows:

Assume that the original sample dataset is T, in which the non-
thin-layer sample dataset is Tmajority, and the number of samples is
M; the thin-layer sample dataset is Tminority, and the number of
samples is N; the sampling ratio is P (P is a positive integer not less
than 1).

Step 1. For each thin-layer sample xi, calculate the Euclidean
distance from xi to all the samples in the thin-layer sample
dataset, and obtain the k near neighbor samples of sample xi
(k > P), which are denoted as yj (j ¼ 1,2, …,k).
Step 2. Select P nearest neighbor samples from the k near
neighbor samples of xi, and then calculate the newly generated



T. Yan, R. Xu, S.-H. Sun et al. Petroleum Science 21 (2024) 1135e1148
thin-layer sample xnew according to Eq. (4), where rand(0,1)
represents a random number between 0 and 1.

xnew ¼ xi þ randð0;1Þ �
�
yj � xi

�
ðj ¼ 1;/; PÞ (4)
Step 3. Repeat step 2, and then add all the newly generated thin-
layer samples xnew to the Tminority to obtain the thin-layer
sample dataset after SMOTE oversampling.

3. Lithology identification algorithm

3.1. The dynamic felling strategy weighted random forest algorithm

This paper aims to develop a lithology identification model for
downhole closed-loop intelligent drilling. The model's input data is
real-time LWD data, and the output result is lithologic type. In
addition to high-quality data preprocessing techniques, the selec-
tion of identification algorithms is crucial to the accuracy and speed
of lithology identification. Random Forest (RF) (Breiman, 2001) is
an ensemble classification algorithm based on the decision tree.
The algorithm has good tolerance to noise and outliers, has high
prediction accuracy, and is suitable for lithology identification.

The generalization error of the RF algorithm is expressed as Eq.
(5). The correlation and classification intensity of the decision tree
in the RF algorithm are the main factors that affect the lithology
identification effect of the model. The upper bound of the gener-
alization error of the RF algorithm is positively correlated with the
correlation of any two decision trees in the forest and negatively
correlated with the classification intensity of each decision tree.
The stronger the classification strength and the smaller the corre-
lation between decision trees, the smaller the upper limit of the
generalization error of themodel and the lower the error rate of the
RF model.

MarðQ ;VT Þ ¼ aveðVT Þ � E* � r
�
1� s2

�

s2
(5)

where E* denotes the generalization error of the RF algorithm, r
refers to the average correlation of decision trees, and s indicates
the overall classification strength of the decision tree.

To effectively reduce the upper limit of model generalization
error and improve the accuracy and efficiency of model identifi-
cation, this paper designs a dynamic felling strategy weighted
random forest algorithm from the perspectives of reducing the
correlation between decision trees and improving the influence of
decision trees with good classification effect.

The dynamic felling strategy is adopted to reduce the correlation
between decision trees. Calculate the correlation of the confusion
matrix between two decision trees from Eq. (6). The two decision
trees will be retained if the correlation is less than 70%. If the cor-
relation is greater than 70%, the decision trees need to be cut down.
According to the AUC values of the two decision trees, the decision
tree with the lower AUC value should be cut down. The other de-
cision tree is retained for the next iteration. Only the decision trees
with weak correlation remain in the forest through the dynamic
felling strategy. It can be seen from Eq. (5) that reducing the cor-
relation between decision trees can improve the accuracy of the
random forest model.

Simða;bÞ ¼ a,b
kak � kbk (6)

where Sim(a, b) represents the confusionmatrix similarity between
the decision tree a and the decision tree b, a$b indicates the dot
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product of the confusion matrix of the decision tree a and the
confusion matrix of the decision tree b, kak is the length of the
confusion matrix of the decision tree a, kbk is the length of the
confusion matrix of the decision tree b.

The AUC is an index to measure the performance of the classi-
fication learner, with values ranging from 0.5 to 1.0. A model with
better overall performance has an AUC value close to 1. The AUC is
the area under the receiver operating characteristics (ROC) curve
that represents the trade-off between TPR and FPR, given by Eqs. (7)
and (8). The lithology identification results can be divided into four
cases: true positive (TP), false positive (FP), true negative (TN), and
false negative (FN).

TPR¼ TP
TP þ FN

(7)

FPR¼ FP
TN þ FP

(8)

The result of lithology identification by RF algorithm is equal
weight voting for all decision tree identification results, which will
lead to the decision tree with good lithology identification effect
being unable to play a better role. In contrast, the decision treewith
a poor lithology identification effect will hurt the identification
results. Therefore, this paper evaluates the identification effect of
each decision tree based on the out-of-bag data, OOB. According to
the identification accuracy of OOB, the decision tree in the random
forest is weighted to vote. By setting the weights, the voting power
of the decision tree with a good identification effect is improved,
and the influence of the decision tree with a poor impact on the
lithology identification results is reduced. The weight calculation
method is shown in Eq. (9):

MarðQ ;VT Þ ¼ aveðVT Þ �wi ¼
OOBcorrectðiÞ
countðOOBÞ (9)

where wi is the weight of decision tree i, OOBcorrect(i) indicates the
correct number of samples predicted by the i decision tree in the
OOB, and count (OOB) represents the overall sample size of the OOB.
3.2. Construction of lithologic identification model

According to the principle of the dynamic felling strategy
weighted random forest algorithm, a real-time intelligent identi-
fication model of lithology based on closed-loop drilling (DFW-RF)
is constructed, as shown in Fig. 1.

The implementation process of the DFW-RF lithology identifi-
cation model is as follows.

Step 1: Preprocess the original LWD dataset. The mRMR algo-
rithm performs feature selection, and the thin-layer data is
processed by SMOTE sampling technology. After preprocessing,
70% of the data are randomly selected to form a training dataset,
and the remaining data constitute a test dataset. The training
dataset is used to learn the relationship between independent
and dependent variables. The testing dataset evaluates the
model's ability to predict unknown data points. The stratified
random sampling method ensures that different lithology types
are uniformly distributed in the training and testing datasets.
Step 2: The Bootstrap sampling technique extracts n training
subset from the training dataset. Each training subset has the
same capacity as the training dataset. Every time the data that is
not extracted is recorded as out-of-bag data (OOB).
Step 3: n training subsets are generated into n decision trees,
and the initial random forest is formed. Calculate each decision



Fig. 1. DFW-RF lithology identification model.
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tree's confusion matrix and AUC value in the initial random
forest.
Step 4: Calculate the correlation of the confusion matrix be-
tween two decision trees in the initial random forest. The two
decision trees will be retained if the correlation is less than 70%.
If the correlation is greater than 70%, cut down the decision tree
with a lower AUC value, and keep the other decision tree for the
next iteration. After the calculation, the remaining decision trees
will form a new random forest.
Step 5: The weight of each decision tree in the new random
forest is calculated according to the test accuracy of the out-of-
bag data. Input the test dataset, and vote the classification result
of the decision tree by weight to obtain the lithology classifi-
cation result.

The performance of the model is evaluated using the accuracy
rate. The accuracy rate, defined by Eq. (10), measures the percent-
age of correctly identified samples.

Accuracy rate¼ TP þ TN
TP þ FP þ FN þ TN

(10)
1138
4. Model training

4.1. Training data analysis

This paper selected 6 wells in area A with typical structural
characteristics and sedimentary environment in X oilfield as the
model training research objects. Each well has complete LWD data
and named lithology information. LWD parameters obtained from
the field include gamma ray (GR), caliper (CAL), 2 MHz phase re-
sistivity, 400 kHz attenuation resistivity, compensated neutron log
(CNL), density (DEN), and acoustic (AC). The depth range of the
logging section in the experiment is 4204.43~4320.81 m. According
to the coring and logging data, the primary lithologies drilled in
these 6 wells within the depth range of the selected logging section
are sandstone, dacite, limestone, and mudstone. The upper part is
interbedded with sandstone and mudstone of equal thickness; the
middle is mainly composed of dacitewith thin limestone layers; the
lower part is interbedded with unequal thickness of mudstone and
sandstone. The LWD data of 6 wells were sampled at equal depth
intervals of 0.125 m in the selected logging section 931 sample
points were obtained from each well, with a total of 5586 sample
points. The samples of sandstone, dacite, limestone, and mudstone
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accounted for 31.59%, 31.08%, 4.00%, and 33.33%, respectively, in the
total sample points. Some LWD data are shown in Table 1.

Boonen et al. (2005), Sun et al. (2019) and Xu T. et al. (2022)
found that the variation laws of formation petrophysical parame-
ters obtained by logging while drilling and wireline logging are the
same. This information can be effectively used for geological eval-
uation. Thewireline logging is measured after the casing is running.
Due to the time problem, the logging value measured by wireline
logging will be affected by mud invasion. Compared with wireline
logging, LWD measures simultaneously during the drilling and
records the geological information when the bit is drilled through
the formation. At this time, the borehole has not collapsed obvi-
ously, and the invasion of mud into the formation is shallow or even
negligible, so the LWD data can better reflect the information of the
original formation (Li et al., 2023; Han et al., 2023; Sui et al., 2022).
In addition to real-time and accuracy, LWD technology can save
much drilling time and reduce drilling costs. Reasonable use of
LWD data helps realize real-time intelligent identification of li-
thology information with high efficiency and low cost.

Based on the LWD data of the 6 wells in Block A of X oilfield, box
plot analysis was performed on sandstone, dacite, limestone, and
mudstone samples. As shown in Fig. 2, due to the different physical
and chemical properties of various lithologies, there are specific
differences in the numerical response laws of different LWD pa-
rameters. In GR, the higher the intensity of gamma rays emitted by
the decay process of radionuclides in the rock, the greater the GR
value. The average GR value of dacite is the highest, followed by
mudstone, sandstone, and limestone, with the lowest average GR.
Observing the 2 MHz phase resistivity and the 400 kHz attenuation
resistivity, it can be seen that the electromagnetic wave resistivity
while drilling from limestone-dacite-sandstone-mudstone shows a
changing law from large to small. In CNL and DEN, mudstone has
the highest CNL but low DEN and limestone have the lowest CNL
but high DEN. In AC, mudstone shows a high AC value, and lime-
stone shows a low AC value. The differences in the LWD data sta-
tistics of various lithologies indicate that different lithologies are
separable based on LWD data. However, only rough qualitative li-
thology identification results can be obtained only through statis-
tical analysis of data, and lithology cannot be accurately and
quantitatively identified. This kind of method cannot real-time
intelligently identify lithology during drilling, so it is vital to
study further the lithology identification method that can be used
while drilling.
4.2. Determine lithologic identification characteristic parameters

This paper uses the mRMR feature selection algorithm to select
LWD parameters for lithology identification of 6 wells in Block A of
X oilfield. According to Eqs. (2) and (3), the mutual information
between LWD parameters and lithology categories are calculated.
Then bring the calculated mutual information into Eq. (1) to get the
mRMR score of each LWD parameter, as shown in Fig. 3.
Table 1
Partial LWD data.

Sample point number GR, API CAL, cm 2 MHz phase resistivity, U$m 400 kHz a

1 48.49 25.49 7.66 6.92
2 50.52 25.10 7.04 6.50
3 49.32 25.14 7.61 6.67
4 49.38 25.27 8.01 6.93
« « « « «

5583 88.53 27.41 1.54 1.52
5584 88.67 28.22 1.43 1.36
5585 86.58 28.27 1.60 1.50
5586 87.44 26.18 1.04 1.19

1139
As displayed in Fig. 3, GR, 2 MHz phase resistivity, 400 kHz
attenuation resistivity, and CNL are more sensitive to lithology of
block A of X oilfield. GR reflects rock mineral skeleton character-
istics and sedimentary information, with an mRMR score of 0.3949,
contributing the most to lithology identification. The 2 MHz phase
resistivity and 400 kHz attenuation resistivity reflect the compre-
hensive electrical characteristics of rocks and fluids at different
detection distances during drilling, and the mRMR scores are
0.2234 and 0.1093, respectively. Attenuation resistivity and phase
resistivity canmeet themeasurement accuracy when the resistivity
is low. Still, when the formation resistivity is greater than 20 U,m,
the measurement accuracy of attenuation resistivity is extremely
low. At this time, the 2 MHz phase resistivity measurement is more
accurate. The CNL reflects the ability of the formation to store fluids,
and the mRMR score is 0.1378. Compared with the above LWD
parameters, the CAL, DEN, and AC have lower contribution rates to
lithology identification.

The mRMR algorithm determines the correlation between LWD
parameters and lithology categories, but the number of character-
istic parameters is not determined. Too few characteristic param-
eters cannot fully obtain lithologic characteristics, and too many
characteristic parameters will increase the burden of model
training. Therefore, the number of characteristic parameters needs
to be determined through experiments. Firstly, according to the
mRMR score, the LWD parameters are sorted, and the LWD pa-
rameters sensitive to lithology are preferentially selected. Then,
lithology identification is carried out through different numbers of
characteristic parameters. Finally, the optimal number of charac-
teristic parameters is determined according to the lithology iden-
tification results of the DFW-RF model under the different number
of characteristic parameters. The lithology identification result of
the DFW-RF model with the different number of characteristic
parameters is displayed in Fig. 4.

According to the experimental results in Fig. 4, it can be seen
that feature selection has a great influence on the identification
effect of the lithologic identificationmodel.With the increase in the
number of characteristic parameters, the accuracy of lithology
identification of the DFW-RF model is constantly improved, but it
also takes more training time. With the increase of characteristics,
the information on lithologic characteristics is more abundant,
which is beneficial for distinguishing different lithology types.
However, with the increase in the number of characteristics, the
calculation cost of the model increases exponentially, and the
training time is significantly prolonged. Comparing the lithology
identification results with the different number of characteristic
parameters, when the number of characteristic parameters is less
than four, the lithology identification accuracy rate of the training
dataset and the testing dataset is lower than 76%. When the
number of characteristic parameters is greater than four, the ac-
curacy rate of lithology identification in the training dataset is
98.02%~98.13%, and that in the testing dataset is 96.12%~96.39%.
However, the training time of the model is longer. The training time
ttenuation resistivity, U$m CNL, % DEN, g/cm3 AC, ms/m Lithology category

21.50 2.31 201.03 Sandstone
19.79 2.28 210.20 Sandstone
20.55 2.25 210.19 Sandstone
21.01 2.25 211.30 Sandstone
« « « «

27.46 2.11 276.82 Mudstone
27.81 2.04 260.04 Mudstone
26.40 2.17 249.45 Mudstone
27.71 2.17 347.77 Mudstone



Fig. 2. Box plot of LWD parameters.

Fig. 3. LWD parameter mRMR score.

Fig. 4. The lithology identification result of DFW-RF model with different number of
characteristic parameters.
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of the model with five characteristic parameters is 12 s longer than
that with four characteristic parameters. When the number of pa-
rameters is four, the comprehensive performance of the DFW-RF
lithology identification model is the best. The accuracy rate of li-
thology identification in the training dataset is 97.99% that in the
testing dataset is 95.54%, and the training time is 19 s. Considering
the model's identification accuracy and training time, four LWD
parameters, GR, 2 MHz phase resistivity, 400 kHz attenuation re-
sistivity and CNL, are selected as the characteristic parameters for
real-time intelligent identification lithology of closed-loop drilling.
4.3. A sampling of thin-layer sample data

The single layer thickness of the sandstone layer, dacite layer
and mudstone layer in the formation drilled in 6 wells are all
greater than 4.00 m, and the single layer thickness of the limestone
layer is only 0.30~0.72 m. The number of limestone samples only
accounts for 4.00% of the total samples. Therefore, it is necessary to
process the sample data of the limestone thin-layer by SOMTE
sampling technology. Table 2 shows the sample capacities of
different lithologies before and after SMOTE sampling.
1140
After sampling, the number of four types of lithologic samples is
balanced. The number of sandstone, dacite, limestone, and
mudstone samples accounted for 24.92%, 24.51%, 24.29%, and
26.28% of the total sample points, respectively. The limestone thin-
layer sample data was expanded from 223 to 1721 after sampling,
and the sample size was boosted by 6.72 times compared with the
original data. Fig. 5 presents the limestone sample capacity before
and after sampling.

SMOTE sampling increases the sample number of the limestone
thin-layer and balances the number of samples of different types of
lithology in the dataset. However, whether SMOTE sampling is



Table 2
The sample capacity of different lithologies before and after SMOTE sampling.

Lithology category Number of samples before sampling Number of samples after sampling

Sandstone 1765 1765
Dacite 1736 1736
Limestone 223 1721
Mudstone 1862 1862
Total 5586 7084

Fig. 5. Limestone sample capacity before and after sampling.
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beneficial to lithology identification needs experimental demon-
stration. Fig. 6 shows the lithology identification results of the
DFW-RF model before and after SMOTE sampling.

As shown in Fig. 6, the identification accuracy rate of limestone
before SMOTE sampling is 58.32%. After SMOTE sampling, the
identification accuracy rate of the limestone is 96.53%, which is
increased by 38.21%. Before and after SMOTE sampling, the iden-
tification accuracy rate of sandstone, dacite and mudstone did not
change significantly. The DFW-RF model lithology identification
results show that the identification accuracy rate of the training
and test datasets has improved by 8.87% and 11.18%, respectively,
after SMOTE sampling. According to the identification results of
Fig. 6. Lithologic identification results of DFW-RF model before and after SMOTE
sampling.
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four lithologies, the DFW-RF model performance in this compara-
tive experiment is mainly due to the improvement of limestone
thin-layer identification accuracy. With the increase in the number
of samples after SMOTE sampling, the training time of the DFW-RF
model increased by 3 s. The experiment proves that SMOTE sam-
pling technology can effectively solve the problem that the model
learns insufficiently about thin-layers due to the scarcity of thin-
layer samples. After sampling, the identification accuracy of thin-
layers is significantly improved, and the overall lithology identifi-
cation effect of the DFW-RF model is also better.

4.4. Analysis of model training results

Classification and Regression Tree (CART) is adopted for all de-
cision trees during DFW-RF model training. The classification cri-
terion is to minimize the Gini index. The grid search algorithm
determines the optimal model parameters (Ghawi and Pfeffer,
2019; Yao et al., 2021). Cross entropy is the loss function to eval-
uate the model's performance. Training dataset training and test
dataset testing are conducted simultaneously. Table 3 shows the
setting values of relevant parameters of the DFW-RF model.
Table 3
Parameter setting values of DFW-RF model.

Model Model parameter

DFW-RF max_features ¼ 4
n_estimators ¼ 58
max_depth ¼ 100
min_samples_split ¼ 2
min_samples_leaf ¼ 1
max_leaf_nodes ¼ None
min_impurity_split ¼ 0



Fig. 8. Lithology identification results of the RF model and the DFW-RF model.
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The training results of DFW-RF model are shown in Fig. 7. The
changing trend of loss value and accuracy rate of the training and
testing datasets are synchronized. After 350 iterations, the loss
value and accuracy rate of the DFW-RF lithology identification
model on the training dataset and test dataset tend to converge.
After training, the final lithology identification accuracy of the
training and test datasets is higher than 95%, which takes 19 s.
Compared with the test dataset, the training dataset contains more
samples, and after 200 times of training, the loss value of the
training dataset is less than 0.1. The final lithology identification
accuracy of DFW-RF model training dataset is 97.99%, 2.45% higher
than that of test dataset, and the final lithology identification ac-
curacy of test dataset is 95.54%.

In order to verify that the Dynamic Felling Strategy Weighted
Random Forest algorithm can effectively improve the performance
of the lithologic identification model, this paper compares the
lithologic identification results of the Random Forest model (RF)
and the Dynamic Felling Strategy Weighted Random Forest model
(DFW-RF). In the contrast experiment, the selection of character-
istic parameters, the processing of sample data and the setting of
model parameters of the RF model are consistent with those of the
DFW-RF model.

Fig. 8 indicates the lithology identification results of the RF and
DFW-RF models. The accuracy rate of lithology identification of the
DFW-RF model is higher than that of the RF model in both training
and testing datasets. The DFW-RF model not only improves the
identification accuracy rate of each lithology but also makes all
kinds of lithology identification effects more stable. The identifi-
cation accuracy rate of the four lithologies is more than 96%, and
the average identification accuracy rate is 96.77%. In comparison,
the identification effect of the RF model on the four lithologies is
quite different. The identification effect of mudstone is outstanding,
and the accuracy rate is 93.77%. The identification effect of lime-
stone is poor, and the accuracy rate is only 82.64%. The average
identification accuracy rate of the four lithologies under the RF
model is 88.04%. The experimental results certificate that the Dy-
namic Felling Strategy Weighted Random Forest algorithm suc-
cessfully improves the accuracy of lithology identification by
reducing the correlation between decision trees and improving the
influence of decision trees with good classification effects.
Although cutting down trees and weighting resulted in the training
time of the DFW-RF model being 6 s longer than that of the RF
model, the sacrifice of a few seconds of training time has exchanged
for a significant improvement in the accuracy and stability of li-
thology identification. In general, the lithology identification
Fig. 7. DFW-RF lithology identification model training results.
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performance of the DWF-RF model is better than that of the RF
model.

Compared with the RF model, the DFW-RF model proposed in
this paper improves the RF model through dynamic felling and
weighted voting. In order to verify that dynamic felling and
weighted voting positively improve the accuracy of model lithology
identification, the author designed a comparative experiment. The
feasibility and effectiveness of the dynamic felling strategy
weighted random forest algorithm are verified by comparing the
lithology identification results of the RFmodel after dynamic felling
and weighted voting. The lithology identification results of the RF
model after dynamic felling and the RFmodel after weighted voting
are shown in Fig. 9.

Comparing the experimental results of Figs. 8 and 9, it can be
seen that compared with the RF model, the lithology identification
accuracy rate of the RF model after dynamic felling or weighted
voting is significantly improved. The accuracy rate of lithology
identification in training set and testing set is greater than 91.00%.
The average identification accuracy rate of four kinds of lithology in
the RF model after dynamic felling is 4.64% higher than that in the
RF model, and the average identification accuracy rate of four kinds
of lithology in the RF model after weighted voting is 4.10% higher
than that in the RF model. The results show that both dynamic
felling and weighted voting have a positive effect on improving the
lithology identification effect of the RF model. By comparing the
Fig. 9. Lithology identification results of the RF model after dynamic felling and the RF
model after weighted voting.



Fig. 10. The LWD data and logging lithology interpretation results of Well BH7, Well E3 and Well S1.
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Table 4
The characteristic parameter selection and data sampling results of BH7 well, E3 well and S1 well.

Well Lithology identification characteristic parameters Lithology Number of samples before SMOTE sampling Number of samples after SMOTE sampling

BH7 GR Limestone 156 378
2 MHz phase resistivity Mudstone 410 410
DEN Dacite 1119 1119
400 kHz attenuation resistivity Sandstone 427 427

E3 GR Slate 77 77
2 MHz phase resistivity Mudstone 255 255
AC Sandstone 27 76
CNL Shell limestone 10 63

Argillaceous 15 70
S1 GR Siltstone 45 495

2 MHz phase resistivity Shale 520 520
DEN Argillaceous 31 372
AC

Table 5
Model parameter setting.

Model Model parameter

CART splitter ¼ best
max_features ¼ 4
max_depth ¼ 100
min_samples_split ¼ 2
min_samples_leaf ¼ 1
max_leaf_nodes ¼ None
min_impurity_split ¼ 0

RF max_features ¼ 4
n_estimators ¼ 58
max_depth ¼ 100
min_samples_split ¼ 2
min_samples_leaf ¼ 1
max_leaf_nodes ¼ None
min_impurity_split ¼ 0

SVM kernel ¼ RBF
gamma ¼ 0.125
C ¼ 87

BPNN training method ¼ traingd
net.trainParam.epochs ¼ 500
net.trainParam.goal ¼ 1e-5
net.trainParam.lr ¼ 0.05
net.trainParam.time ¼ inf
net.trainParam.min_grad ¼ 1e-10

DFW-RF max_features ¼ 4
n_estimators ¼ 58
max_depth ¼ 100
min_samples_split ¼ 2
min_samples_leaf ¼ 1
max_leaf_nodes ¼ None
min_impurity_split ¼ 0
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lithology identification results of the RF model after dynamic fell-
ing, the RF model after weighted voting and the DFW-RF model, it
can be seen that the DFW-RFmodel combined with dynamic felling
and weighted voting is better than the RF model only with dynamic
felling or weighted voting. The average identification accuracy rate
of the four lithology of DFW-RF model is 8.73% higher than that of
the RF model, which also shows that the combination of dynamic
felling and weighted voting improves the classification perfor-
mance of the RF model more effectively.

The author further analyzes the influence of SMOTE sampling
technology and the Dynamic Felling Strategy Weighted Random
Forest algorithm on lithology identification. Compared with Figs. 6
and 8, it can be seen that the primary function of SMOTE sampling
is to improve the lithology identification accuracy rate of the thin-
layer. However, the identification accuracy rate of other lithologies
with sufficient samples has not been greatly improved. In contrast,
the Dynamic Felling Strategy Weighted Random Forest algorithm
positively impacts the overall lithology identification performance
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of the model. It has significantly improved the identification ac-
curacy and stability of each type of lithology. For lithology identi-
fication, we should not only consider the problem that thin-layer
lithology is challenging to identify but also consider the accuracy
and stability requirements of lithology identification. Therefore,
combining SMOTE sampling technology with the Dynamic Felling
Strategy Weighted Random Forest algorithm is necessary.
5. Field application

To verify the application effect of the DFW-RF model, the DFW-
RF model is used to identify the lithology of the BH7 well in block B
of X oilfield, E3well in the east area of H oilfield and S1well in block
II of S oilfield. By comparing with the actual logging lithology
interpretation results, the lithology identification results of the
DFW-RF model are verified. The experiment was ducted at the
High-Efficiency Drilling and Rock Breaking Technology Laboratory
of Northeast Petroleum University, Daqing. The computing server
adopts the operating system of Red Hat Enterprise Linux Server
Release 6.2, and the processor is Intel Xeon E5-2650. The total
storage capacity is 1.5 PB, with 120 computing nodes and 1920
processor cores. The algorithm is programmed in a Python lan-
guage environment.

Fig. 10 shows the LWD data and logging lithology interpretation
results of BH7well, E3 well and S1 well. All 3 wells were sampled at
equal depth intervals of 0.125m in the selected logging section. The
depth of the selected logging section in Well BH7 ranges from
3875.89~4139.99 m, with a total of 2112 samples. According to the
logging lithology interpretation results, there are 156 limestone
sample points, 410 mudstone sample points, 1119 dacite sample
points and 427 sandstone sample points. The depth of the selected
logging section of Well E3 ranges from 2541.07~2589.16 m, with a
total of 384 samples. According to the logging lithology interpre-
tation results, there are 77 slate sample points, 255 mudstone
sample points, 27 sandstone sample points, 10 shell limestone
sample points and 15 argillaceous sample points. The depth of the
selected logging section ofWell S1 ranges from 2425.10~2499.61m,
with a total of 596 samples. According to the logging lithology
interpretation results, there are 45 siltstone sample points, 520
shale sample points and 31 argillaceous sample points.

According to the lithology identification process of the DFW-RF
model (Fig. 2), the lithology identification characteristic parameters
of BH7, E3, and S1 wells are selected through the mRMR algorithm.
The thin-layer lithology samples of BH7, E3, and S1 wells are pro-
cessed using SMOTE sampling technology. The characteristic
parameter selection and data sampling results are shown in Table 4.

It is concluded from Table 4 that the lithologic identification
characteristic parameters of the BH7, E3, and S1 wells are different.



Fig. 11. Lithology identification accuracy rate and training time of different models. Fig. 12. The F1 scores of each model and the identification accuracy rate of different
lithologies.
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That is because each well is in a different geographical environ-
ment, and the drilled section's sedimentary environment and
structural characteristics differ. Among the seven LWD parameters,
GR and 2 MHz phase resistivity are sensitive to the lithology of the
three wells. Through SMOTE sampling, the thin-layer sample data
of three wells have been expanded to some extent. The single-layer
thickness of themudstone layer, dacite layer, and sandstone layer in
the BH7 well is more than 3.00 m, and the single-layer thickness of
the limestone layer is 0.72~1.44 m. The number of limestone
samples only accounts for 7.39% of the total samples, so processing
the limestone sample data is necessary. After SMOTE sampling, the
number of limestone samples in the BH7 well has been expanded
from 156 to 378. The single-layer thickness of slate in the E3 well is
more than 3.45 m, and that of the mudstone layer is more than
1.55m. The single-layer thickness of the sandstone, shell limestone,
and argillaceous layer is less than 0.50 m. Sandstone, shell lime-
stone, and argillaceous samples account for less than 7.0% of the
total samples. It is necessary to process the sample data of sand-
stone, shell limestone, and argillaceous. After SMOTE sampling, the
number of sandstone, shell limestone, and argillaceous samples in
the E3 well is 76, 63, and 70, respectively. The total number of
samples in the E3 well increased by 157. The single-layer thickness
of the shale layer in the S1 well is more than 1.75 m, the average
thickness of the siltstone layer is 0.40 m, and the average thickness
of the argillaceous layer is 0.33 m. The samples of siltstone and
argillaceous account for less than 7.5% of the total samples,
respectively. The sample data of siltstone and argillaceous need to
be processed. After SMOTE sampling, the number of samples of
siltstone and argillaceous in the S1 well is 495 and 372, respec-
tively. The total number of samples in the S1 well increased by 791.

Input the processed sample data into the DFW-RF model for
lithology identification. At the same time, the lithology identifica-
tion results of the Classification and Regression Tree model (CART),
Random Forest model (RF), Support Vector Machine model (SVM)
and Back Propagation Neural Networkmodel (BPNN) are compared
and analyzed in the experiment. The lithology identification char-
acteristic parameters and sample data input by the abovemodel are
the same as those of the DFW-RF model. The grid search algorithm
determines the optimal value of super parameters. Table 5 shows
the parameter settings of each model. The lithology identification
accuracy rate and training time of each model are shown in.

By comparing the lithology identification accuracy rate and
training time of different models in Fig. 11, it can be seen that the
DFW-RF model has the highest lithology identification accuracy
rate, followed by the BPNN model. The RF model composed of
multiple decision trees is more accurate than the CART model of a
single decision tree in lithology identification. The lithology iden-
tification effect of the SVM model is worse than that of the RF
model but better than that of the CART model. The model with a
simpler algorithm structure has a faster training speed in terms of
training time. The training time of SVM and CART models is short,
followed by RF models, and the training time of BPNN and DFW-RF
models is relatively long.

The training speed of the RFmodel, SVMmodel and CARTmodel
is fast. However, the lithology identification accuracy rate of BH7, E3
and S1 wells is lower than 90.0% in the above model. Under the
BPNN model, the lithologic identification accuracy rate of BH7, E3
and S1 wells is 95.25%, 90.41% and 91.47%, respectively, and the
training time of the model is 9, 5 and 7 s, respectively. The average
identification accuracy rate of three wells under the BPNNmodel is
92.38%, and the average training time is 7.0 s. Under the DFW-RF
model, the lithology identification accuracy rate of BH7, E3 and
S1 wells is 97.92%, 93.61% and 96.04%, respectively, and the model
training time is 11, 6 and 9 s, respectively. The average identification
accuracy rate of the three wells under the DFW-RF model is 95.86%,
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and the average training time is 8.7 s. The average training time of
the DFW-RF model is 1.7 s longer than that of the BPNN model, but
the average lithology identification accuracy rate is increased by
3.48%. The accuracy of lithology identification is more critical for
underground geological guidance. The calculation time of the DFW-
RF model is seconds, which can meet the real-time requirements of
intelligent steering drilling technology, so the comprehensive per-
formance of the DFW-RF model is better.

In order to evaluate the comprehensive performance of different
models, the F1 score is introduced. The F1 score is an index to
measure themodel's comprehensive performance, which considers
both the model's precision rate and recall rate. The value range of
the F1 score is [0, 1], and the higher the F1 score, the higher the
model quality. The calculation method of the F1 score is shown in
Eqs. (11)e(13). The F1 scores of each model and the identification
accuracy rate of different lithologies are shown in Fig. 12.

F1¼2� precision� recall
precisionþ recall

(11)

precision¼ TP
TP þ FP

(12)

recall¼ TP
TP þ FN

(13)

where precision indicates the percentage of real positive samples
that are classified as positive, recall indicates the proportion of
actual positive samples within the samples that are predicted to be
positive.

According to the F1 score of different models in Fig.12, the DFW-
RF model has the highest F1 score, followed by the BPNN, RF, SVM,
and CART models. The F1 score of the RF, SVM and CART models in
BH7, E3, and S1 wells are all less than 0.900. The F1 score of the
BPNN model in BH7, E3 and S1 wells are 0.950, 0.906 and 0.908,
respectively, and the average F1 score is 0.921. The F1 score of the
DFW-RF model in BH7, E3 and S1 wells are 0.979, 0.936 and 0.962,
respectively, and the average F1 score is 0.959. The average F1 score
of the DFW-RF model is 3.8% higher than that of the BPNN model,
which indicates that the comprehensive performance of the DFW-
RF model is better than the BPNN model.

By analyzing the F1 score of different lithology under five
models, it is concluded that the DFW-RF model has improved the
identification effects of various lithologies to varying degrees, and
the lithology identification effect of this model is more stable. In the
BH7 well, the F1 score of limestone, mudstone, dacite and sand-
stone under the DFW-RF model has been improved, and the F1
score of four lithology types is more than 0.965. DFW-RF model not
only improves the identification effects of limestone thin-layer in
BH7 well but also effectively solves the problem of low identifica-
tion effects of sandstone by the other four methods. In E3 well, the
five models show good identification effects for mudstones with
sufficient sample data, but the identification effects for other li-
thologies are unstable. The BPNNmodel improves the identification
effect of slate and sandstone in the E3 well, but the F1 score of shell
limestone and argillaceous is still lower than 0.875. Through the
DFW-RF model, the F1 score of shell limestone and argillaceous in
the E3 well has been significantly improved. Compared with the
BPNNmodel, the shell limestone F1 score under the DFW-RFmodel
increased from 0.884 to 0.929. The F1 score of argillaceous is
increased from 0.874 to 0.930. In the S1 well, the F1 score of the
CART model and RF model for siltstone, shale and argillaceous is
lower than 0.900. The SVM model has a better identification effect
on shale but a poor identification effect on thin layers of siltstone
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and argillaceous. The F1 score of siltstone and shale in the BPNN
model is more than 0.920, but the F1 score of argillaceous is only
0.870. The BPNN model is not effective in identifying argillaceous.
Under the DFW-RF model, the F1 score of siltstone, shale and
argillaceous in the S1 well is more than 0.960. The DFW-RF model
can more effectively identify the lithology of siltstone and argilla-
ceous. The lithology identification results of the DFW-RF model in
BH7, E3 and S1 wells show that the DFW-RF model can accurately
and stably identify different lithology types in different geological
environments. The DFW-RF model has good applicability and
popularization, providing technical support for real-time intelli-
gent lithology identification in closed-loop drilling.
6. Conclusion

A real-time intelligent lithology identification model (DFW-RF)
based on a dynamic felling strategy weighted random forest algo-
rithm is developed using common LWD data in oil and gas fields.
Aiming at the problems of LWD information selection and thin-
layer lithology scarcity in closed-loop drilling, the DFW-RF model
adopts the minimum Redundancy Maximum Relevance algorithm
to extract lithology-sensitive LWD parameters and introduces
SMOTE sampling technology to expand the thin-layer lithology
information capacity. At the same time, it also strengthens the
comprehensive performance of the model by cutting down the
decision tree with strong correlation and voting weighted accord-
ing to the classification effect.

Based on LWD data from three wells in different areas, the field
application proves that the DFW-RF lithology identification model
has higher lithology identification accuracy and efficiency than the
Decision Tree model, Random Forest model, Support Vector Ma-
chine model and Back Propagation Neural Network model. The
DFW-RF model shows high accuracy and stability in dealing with
thin-layer lithology identification problems. This model's calcula-
tion time is in the second, which can meet the real-time re-
quirements of intelligent steering drilling technology. Integrating
the DFW-RF lithology identification model into an intelligent dril-
ling system can solve the problems of low intelligence, unstable
identification effect and low accuracy of thin-layer identification in
closed-loop drilling to some extent. As the applicability and
popularization of the DFW-RF model proposed in this paper have
been well proved, this new lithology identification method is also
effective and feasible for other lithology identification, so this
method has high engineering value and application prospects.
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Abbreviation

AUC The index to measure the performance of the
classification learner

a The confusion matrix vector of the decision tree a
a$b The dot product of the confusion matrix of a decision

tree a and the confusion matrix of the decision tree b
kak The length of the confusion matrix of the decision tree a
b The confusion matrix vector of decision tree b
kbk The length of the confusion matrix of the decision tree b
c The lithology category
count(OOB) The overall sample size of the OOB
E* The generalization error of the RF algorithm
fr LWD parameter
fo LWD parameter
F The original LWD parameter set
I(fr, fo) The mutual information between the LWD parameter fr

and the LWD parameter fo
I(fr, c) The mutual information between the LWD parameter fr

and the lithology category c
k Number of adjacent samples
m Number of LWD parameters in the LWD parameter set
M Number of samples in the non-thin-layer sample set
N Number of samples in the thin-layer sample set
OOB Out-of-bag data
OOBcorrect(i) The correct number of samples predicted by the i

decision tree in the OOB
p(fr) The probability density of the LWD parameter fr
p(fo) The probability density of the LWD parameter fo
p(c) The probability density of the lithology c
p(fr, fo) The combined probability density of the LWD parameter

fr and the LWD parameter fo
p(fr, c) The combined probability density of the LWD parameter

fr and the lithology c
precision The accuracy rate of the lithology identification model
P The sampling ratio
recall The recall rate of the lithology identification model
s The overall classification strength of the decision tree
Sim(a, b) The confusion matrix similarity between decision tree a

and the decision tree b
T The original sample data set
Tmajority The non-thin-layer sample data set
Tminority The thin-layer sample data set
wi The weight of the decision tree i
xi The thin-layer sample
xnew The newly generated thin-layer sample
yj The adjacent sample of the thin-layer sample
r The average correlation of decision trees
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