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a b s t r a c t

This study examines the systemic risk caused by major events in the international energy market (IEM)
and proposes a management strategy to mitigate it. Using the tail-event driven network (TENET)
method, this study constructed a tail-risk spillover network (TRSN) of IEM and simulated the dynamic
spillover tail-risk process through the cascading failure mechanism. The study found that renewable
energy markets contributed more to systemic risk during the Paris Agreement and the COVID-19
pandemic, while fossil energy markets played a larger role during the Russia-Ukraine conflict. This
study identifies systemically important markets (SM) and critical tail-risk spillover paths as potential
sources of systemic risk. The research confirms that cutting off the IEM risk spillover path can greatly
reduce systemic risk and the influence of SM. This study offers insights into the management of systemic
risk in IEM and provides policy recommendations to reduce the impact of shock events.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The international energy market (IEM) is a complex system that
plays a vital role in the global economy. However, increasing
financialization and integration of IEM pose new challenges and
risks to system stability, especially during shock events, such as
epidemics, wars, or natural disasters. Recently, the systemic risk of
IEM has largely been caused by three major shock events: the
COVID-19 pandemic, the Russia-Ukraine conflict, and extreme
weather (Chen et al., 2023b; Rawtani et al., 2022; Uddin et al., 2021;
Wang et al., 2022c; Xiong and Chen, 2022). The collapse of IEM will
seriously threaten economic activity and cause huge losses for
different industries. Thus, developing an effective risk management
strategy is critical.

Accurately identifying the source and transmission path of
systemic risk is the key to preventing systemic risk. Tail risks due to
shock events continue to accumulate and spillover in the IEM and
systemic risks arise from this (Baum€ohl et al., 2022; Bucci et al.,
2019; Fang et al., 2018; Shahzad et al., 2022a). Especially with the
integration of IEM continuing to expand, the tail-risk spillover of
y Elsevier B.V. on behalf of KeAi Co
IEM exhibits characteristics of high correlation, high dimension,
dynamic, and nonlinear. As a result, the tail-risk spillover of a single
energymarket is increasingly likely to result in a domino effect. The
spillover path (i.e., static structure) and spillover process (i.e., dy-
namic process) of tail risk have become the decisive factors for the
generation of systemic risk. However, few studies have fully
captured these features of tail-risk spillovers. Against this back-
ground, we explore the systemic riskmanagement strategies of IEM
during shock events from a new perspective: the static structure
and dynamic process of tail-risk spillovers.

This study explores systemic risk management strategies for
IEM in the context of the Paris Agreement (an agreement to address
extreme climate), the COVID-19 pandemic, and the Russia-Ukraine
conflict. Furthermore, policy recommendations are explored to
mitigate the impact of future shock events. We established the IEM
by selecting 16 major energy markets classified as renewable or
fossil. First, we used the tail-event driven network risk (TENET)
method (H€ardle et al., 2016) to construct the tail-risk spillover
network (TRSN) of IEM, as well as to capture highly correlated,
high-dimensional, and nonlinear tail-risk spillover paths. Then, the
dynamic spillover process of tail risk in TRSN was modeled based
on the cascading failure mechanism, to capture the dynamic char-
acteristics of tail-risk spillover. Finally, whereas the shock events
have an overall impact on IEM, there are differences in the impact
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on these two types of markets. Given the rapid development of
renewable energy markets and their replacement targets for fossil
energy markets (Boubaker and Omri, 2022; Zhou et al., 2022), we
also compared and analyzed the independent and interactive
relationship between the renewable energy markets and the fossil
energy markets during shock events.

This study contributes significantly to the existing literature in
four key aspects. Firstly, considering the growing frequency of black
swan events in recent years, it is crucial to adopt more targeted
approaches to risk management and control for different event
types. In response to this need, we conduct a comparative study on
the systemic risk characteristics of the IEM across different types of
shock events. Our findings reveal divergent reactions and sensi-
tivities between the renewable energy market and fossil energy
market, as well as variations in the methods of risk spillover during
different shock events. These insights enable the IEM to adoptmore
precise risk management strategies tailored to specific shock event
types.

Second, this paper represents an attempt to simulate and
quantify the dynamic process of tail-risk spillover in the IEM using
the cascading failure mechanism. By employing this innovative
approach, we conduct a quantitative analysis of the systemic risk
contribution (SRC) of each energy market and assess the overall
systemic risk level (OSR). These quantitative assessments provide
valuable information for effective systemic risk management
within the IEM during shock events.

Third, a distinct and noteworthy finding of this study is the
identification of SM as potential risk receivers. This discovery em-
phasizes the need for market regulators to prioritize risk manage-
ment efforts within these identified risk receiver markets, ensuring
robust measures are in place to safeguard their stability and
resilience.

Finally, we simulate and quantify the impact of different regu-
latory strengths on the OSR within the IEM. Notably, our findings
indicate that strengthening the regulation of risk spillover paths
holds great importance. Taking timely regulatory actions to address
tail-risk spillover paths significantly reduces the risk level and risk
contribution within the IEM.

This study makes significant contributions to the literature by
conducting a comparative analysis of systemic risk characteristics
in the IEM during different shock events, quantifying tail-risk
spillover dynamics through the cascading failure mechanism, and
evaluating the impact of regulatory strengths on the OSR. These
contributions enhance our understanding of risk management,
inform policy decisions, and provide valuable insights for stake-
holders operating within the IEM. The remainder of this paper is
structured as follows. Section 2 provides a literature review. Section
3 provides the methods and data sources used in this study. Section
4 presents the empirical results and analysis. Section 5 presents the
conclusions and insights.

2. Literature review

Systemic risk has aroused widespread concern in the academic
community. More specially, Kaufman and Scott (2003) proposed
the definition of systemic risk as an entire system's risk caused by
the domino effect of a single individual suffering from risk.
Furthermore, Schwarcz (2008) defined systemic risk from the
perspective of contagion, i.e., a series of financial institutions or
systems suffering a chain of losses due to crisis events, which will
lead to extreme asset price fluctuations in the financial market.
With the continuous financialization and integration of the energy
sector, coupled with the link between different energy types and
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geographical market segments, the systemic risk of the IEM is
constantly increasing (Ji et al., 2020b).

Recently, black swan events have occurred frequently, and the
external environment of the IEM has undergone major changes (Ji
et al., 2023). Systemic risk poses a significant threat to the IEM,
and developing effective systemic risk management strategies has
become a top priority for researchers (Kerste et al., 2015; Zhou
et al., 2022). Shock events can trigger systemic risk in the IEM,
and the impact of different shock events on the IEM varies (Chen
et al., 2023a; Ji et al., 2018a, b; Ouyang et al., 2021; Xia et al.,
2019). Since the signing of the Paris Agreement, there has been
an unprecedented adjustment in the global energy structure. The
Paris Agreement has promoted the development of the renewable
energy market and the growth of spillover effects (Liang et al.,
2022; Pham et al., 2023). This point is confirmed by Chen et al.
(2022) through the Diebold-Yilmaz spillover index. In contrast to
the Paris Agreement's promotion of energy transition, the COVID-
19 pandemic and the Russia-Ukraine conflict have exacerbated
the risk of supply chain disruptions in the global energy market,
causing intense turbulence in the IEM (Alam et al., 2023; Corbet
et al., 2020; Cui et al., 2023; Hsu et al., 2023; Wu et al., 2023).
The COVID-19 pandemic has significantly increased the risk spill-
over effect in the energy market (Hanif et al., 2023; Thompson,
2022; Wang et al., 2022b), and its impact on the energy market is
greater than that of the financial crisis (Hosseini, 2020; Liu et al.,
2021b). Anwer et al. (2022) modeled the systemic risk of the en-
ergy commodity market during the COVID-19 pandemic, finding
that the systemic risk of the energy commoditymarket experienced
a sudden increase to a gradual stabilization process. Moreover, the
outbreak of the Russia-Ukraine conflict has led to fluctuations in
the prices of the IEM, especially the prices of crude oil and natural
gas (Huang et al., 2022; Zhang et al., 2023). At the same time, the
conflict has promoted the substitution of renewable energy for
fossil fuels and accelerated the transformation of the energy
structure (Deng et al., 2022; Mohammed et al., 2022). Despite the
extensive literature on the impact of a single shock event on the
energy market, there is a lack of comparative analysis on the sys-
temic risk of the IEM during these three major shock events.
Additionally, there is a lack of research that combines the static
structure and dynamic process of tail risk to explore systemic risk
management strategies. Addressing these gaps can provide valu-
able insights into effective risk management in the energy market.

During the occurrence of shock events, the risk spillover within
a single energy market and the inter-market spillover network
structure have become important conditions for the outbreak of
systemic risk (Ghosh et al., 2020; Reboredo, 2015; Shiferaw, 2019;
Vacha and Barunik, 2011). Many scholars have investigated sys-
temic risk through the inter-market spillover network structure.
They mostly construct spillover networks of energy markets in
terms of the mean or volatility using methods such as the Granger
causality test (Billio et al., 2012; Geng et al., 2017; Sharma et al.,
2022), generalized variance decomposition based on VAR models
(Diebold and Yilmaz, 2014; Duppati et al., 2023; Liu et al., 2022;
Papiez et al., 2022), GARCH family models (Ahmad et al., 2018; Lee
et al., 2023; Liu et al., 2017b), and wavelet analysis (Boubaker and
Raza, 2017; Hanif et al., 2022; Shahzad et al., 2022b). They then
examine spillover effects using complex network analysis methods.
For example, Furuoka et al. (2023) constructed a risk transmission
network between energy and agricultural markets during the
Russia-Ukraine conflict period based on an improved VAR model.
Ha (2022) identified the shock process of the energy market during
the COVID-19 pandemic using an improved VAR model and
network analysis methods. Although these methods effectively
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capture the static network structure of spillover, they mostly
examine the correlation between two markets in an isolated
environment. More importantly, these methods cannot capture the
tail-risk spillover between markets. However, systemic risk is often
driven by tail risk resulting from shock events (Wang et al., 2018).
During shock events, the tail risk appears in the IEM, and it
dynamically spreads through spillover paths, leading to systemic
risk in the IEM (Corbet et al., 2020; Shahzad et al., 2018;Wang et al.,
2022d). Therefore, compared to the mean and volatility spillovers,
studying the systemic risk of the IEM during shock events through
tail-risk spillover is more valuable. Systemic risk arising from tail-
risk spillovers between energy markets has recently attracted
increasing attention; various methods have been developed to
measure and analyze this type of risk. Among them, DCoVaR
(Adrian and Brunnermeier, 2016), SRISK (Brownlees and Engle,
2016) and SES (Acharya et al., 2017) are representative methods.
For instance, Liu et al. (2017a) investigated tail-risk spillovers be-
tween energy markets using CoVaR, defining this risk as the sys-
temic risk between a pair of markets. However, these methods
mainly consider local interdependence and lack the ability to cap-
ture nonlinear tail-risk spillovers, which may underestimate risk
spillovers in highly correlated market systems (Hautsch et al.,
2015).

To address this limitation, the Copula model and its derivative
models have been widely used to study the nonlinear risk trans-
mission mechanism (Chen et al., 2023a; Ji et al., 2019, 2020a; Liu
et al., 2017a; Mensi et al., 2022). For example, Reboredo (2015)
applied the Copula model to examine the systemic risk between
the oil market and renewable energy markets, finding time-varying
and symmetric tail dependencies between the two. Liu et al.
(2021a) examined the risk relationship between oil prices and ex-
change rates through four tail dependencies. However, the Copula
model has limitations in describing the time-varying nature of the
nonlinear risk conduction relationship.

The TENET method is an effective means of addressing this
limitation, which combines the single-index model (SIM) and
complex network methods (H€ardle et al., 2016). The TENETmethod
has beenwidely applied to solve the problem of variable dimension
and nonlinear characterization (Fan et al., 2018;Wang et al., 2022a).
In this study, we used the TENET method to obtain the level and
static structure of tail-risk spillovers in the IEM.

In terms of studying the dynamic mechanism of risk spillovers,
dynamic network models with random walk assumptions have
been widely used to capture the dynamic process of risk spillover
(Gai and Kapad, 2019; Huang et al., 2021). However, previous
studies have argued that random walk assumptions cannot fully
explain the economic significance of the risk spillover mechanism
and may lead to inaccurate measurements of risk spillovers
(Acemoglu et al., 2015; Wang et al., 2022d). To address this, some
scholars have applied the cascading failure mechanism to study the
risk contagion and spillover in financial markets (Watts, 2002),
including banks (Pichler et al., 2021) and stock markets (Squartini
et al., 2018). We simulate the dynamic process of tail risk propa-
gation in the IEM through all possible tail-risk spillover paths based
on the cascading failure mechanism, thus deriving the SRC of each
energy market and the OSR of the IEM.

Our study fills a gap in the literature by providing a compre-
hensive analysis of the systemic risk of the IEM during shock
events. We accurately assess tail-risk spillover strength and struc-
tures while simulating the dynamic spillover process. Our analysis
considers the distinct features of renewable and fossil energy
markets and compares the systemic risk during three different
shock events. Our study makes significant contributions to the
existing literature by providing a nuanced assessment of the IEM's
systemic risk.
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3. Methodology and data sources

3.1. TRSN construction method in IEM

In this study, the TENET method is employed to measure the
level of tail-risk spillovers in the IEM, and the TRSN for the IEM is
constructed. To capture the time-varying network structure of the
IEM during the sample period, a sliding window approach is used,
with a window length and interval of 84 and 1 trading day,
respectively, resulting in a total of 2507 windows. The construction
of the TRSN consisted of two steps. First, SIM is utilized to measure
the conditional value at risk (CoVaR) for each energy market. Sec-
ond, the level of tail-risk spillovers among the energy markets is
measured to construct the TRSN for the IEM.

3.1.1. Calculation of CoVaR
First, we calculated the value at risk (VaR) for each energy

market. Chao et al. (2015) found that the logarithmic return Xi;t of
market i has a linear effect on the regression of macro variables
with a lag of one period:

Xi;t ¼ai þ giMt�1 þ εi;t (1)

whereMt�1 represents themacroscopic variable lagging one period
and εi;t is the random error termwith a zero mean. From Eq. (1), we
selected the quantile level of t¼ 0:05, and performed sliding
regression on the logarithmic returns of each energy market
through linear quantile regression and the sliding windowmethod
to obtain the VaR of market i in window s, recorded as VaRi;s
(Adrian and Brunnermeier, 2016; H€ardle et al., 2016).

Next, based on the VaR of each market, we use the SIM to
measure the CoVaR of each energy market and identify the static
structure of tail-risk spillovers in the IEM. The SIM more fully
considers the influence of other energy markets in the IEM:

Xi;t ¼ g
�
bTi Ri;t

�
þ εi;t (2)

where Ri;t ¼ ðX1;t ;X2;t ;/;Xi�1;t ;Xiþ1;t ;Xiþ2;t ;/;Xn;tÞT is the loga-
rithmic return vector of n�1 markets, except for market i, bi is the
corresponding single-index parameter vector, and gð ,Þ is an un-
known smooth function, which represents all possible nonlinear
interactions of other n�1 markets on market i. We then performed
a quantile regression of t¼ 0:05 on Eq. (2) to obtain the CoVaR of
market i in window s, which is denoted as CoVaRi;s, as follows:

CoVaRi;s≡bg�bbT
i
~Ri;s

�
(3)

where ~Ri;s ¼ ðVaR1;s;VaR2;s;/;VaRi�1;s;VaRiþ1;s;VaRiþ2;s;/;VaRn;sÞ.

3.1.2. Network construction
The tail-risk spillover relationship of the IEM in window s is

calculated as follows:

bDij~Ri;s
≡
vbg�bbT

i Ri;s
�

vRi;s
jRi;s¼~Ri;s

¼ bg 0�bbT
i
~Ri;s

�bbi (4)

where bDij~Ri;s
¼ ðbDs

ij1; bDs
ij2;/;bDs

iji�1;
bDs
ijiþ1;

bDs
ijiþ2;/;bDs

ijnÞ is the mar-

ginal effect measured by gradient at Ri;s ¼ ~Ri;s. We defined the DIC

of market j to market i in window s as: DICs
ijj ¼

���bDs
ijj
���, i; j¼ 1;2;/;n,

isj, where
���bDs

ijj
��� is the absolute value of bDs

ijj. We then constructed

an n� n weighted adjacency matrix As with DICsijj as an element:
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As ¼

0
BBBBBBBBBB@

0 jbDs
2j1j jbDs

3j1j L jbDs
nj1j

jbDs
1j2j 0 jbDs

3j2j L jbDs
nj2j

jDs
1j3j jbDs

2j3j 0 L jbDs
nj3j

M M M O M
jDs

1jnj jbDs
2jnj jbDs

3jnj L 0

1
CCCCCCCCCCA

n�n

(5)

The TRSN of the IEM is constructed by matrix As, and the
network is a directed weighted network. The network nodes are
the 16 energy markets that make up the IEM, the edges of the
network are the tail-risk spillover paths, and the direction of the
edges is the tail-risk spillover direction.
3.2. Dynamic tail-risk spillover process in IEM

3.2.1. Cascading failure process modeling of tail-risk spillover
Whereas markets possess inherent resilience against risks, they

can also accumulate risks.When cumulative risk surpasses a critical
threshold, external risks can affect the market, turning it into a
failure market. Such markets produce tail risks that quickly prop-
agate, leading to failures in related markets and potentially
inducing a domino effect throughout the entire IEM system,
creating systemic risk. In the process of cascading failures resulting
from risk spillover, if the aggregated intensity of risk spillover from
a given market exceeds its own VaR, the market is classified as a
failure market (Huang et al., 2012). According to the tail spillover
risk network, we performed a sliding-window analysis with a fixed
length of 84 days. Taking window s as an example, as long as the
total DIC TRi;sðNÞ received by market i at step N exceeds its VaR,
market i will generate tail risk and become a failure market. The
change of its risk state is as follows:

Mi;sðNþ1Þ¼Mi;sðNÞ þ Di;sðNÞ (6)

where N represents the step of tail-risk spillover,Mi;sðNÞ represents
the risk status of energy market i at step N, and Di;sðNÞ represents
the tail risk of market i caused by external risks. The calculation
results are given by Eqs. (7) and (8):

Di;sðNÞ ¼
�
VaRi;s;TRi;sðNÞ � VaRi;s

0; TRi;sðNÞ<VaRi;s
and (7)

TRi;sðNÞ¼
Xm
q2Qi

Wq;sðNÞ*
���bDs

ijq
��� (8)

where Qi is a set of m markets that spill risk to market i in step N,
which is determined by the TRSN obtained above, and Wq;sðNÞ is a
binary variable used to judge whether market q is a failure market
and whether it will spill risk to market i, calculated as follows:

Wq;sðNÞ¼
�
1;Mq;sðNÞ �Mq;sðN�1Þ ¼ VaRq;s
0;Mq;sðNÞ �Mq;sðN�1Þ¼ 0 (9)

To elucidate the cascading failure process of tail-risk spillover,
we present a straightforward TRSN comprising six energy markets
that pertain to both the renewable and fossil energy sectors, as
depicted in Fig. 1.

As demonstrated in Fig. 1(a), at each step of the dynamic pro-
cess, a failure market will release its tail risk through all the
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spillover paths to other markets, returning to the state of Fig. 1(b)
once the risk is released. The spillover path frommarket k tomarket
g acts as a bridge for transmitting tail risk between the renewable
and fossil energy markets.

We note that a market may be repeatedly affected by tail risks in
various steps and become a failure market (simulating a complex
dynamic process close to reality). For example, market e in Fig. 1(a)
is a failure market in steps 4 and 5. In more complex cases,
convergence can take a long time and require substantial
computing resources. To simplify calculations and avoid an indef-
inite continuation of the process, a pragmatic termination mecha-
nism is adopted: regulators will tighten supervision on paths with
multiple spillover risks. If a path overflows risks multiple times, its
risk resistance will be considerably increased. In this study, we set a
path to be affected, and the overflow risk no longer due to risk
resistance after r times of impact, where r¼ 3. If a risk spillover
path has overflowed risks more than three times, the tail risk will
no longer spill through that path.

3.2.2. Measurement of SRC and OSR based on a cascading failure
mechanism

The SRC of a market is defined as the average total loss incurred
by the entire system due to the dynamic risk spillover process
caused by tail risks in that market (Mezei and Sarlin, 2018; Wang
et al., 2022d). Taking market i as an example, we recorded the
SRC of market i in window s as SRCi;s. Its calculation process is
shown in Eqs. (10)e(12). Market i was set to be a failure market at
the beginning, and the rest of the markets initially had no tail risk:�
Mi;sðN¼ 0Þ ¼ VaRi;s
M�i;sðN¼ 0Þ¼ 0 (10)

In the dynamic risk spillover process, the number of failure markets
in step N was recorded as FMiðNÞ, and the total tail risk increased in
step N was recorded as TVaRiðNÞ. Then, the total loss of the IEM
system after the dynamic process was calculated and expressed as

TotalVaRi;s ¼ PNend
N¼0TVaRiðNÞ, where Nend is the step at the end of

the cascading failure. The total number of markets that have failed
in the dynamic process was calculated and recorded as TFMi;s ¼PNend

N¼0FMiðNÞ. The SRC of the final market i in this window is
calculated as follows:

SRCi;s ¼
TotalVaRi;s

TFMi;s
(11)

The higher the SRCi;s of market i, the more SRC this market has,
and the more important it is in the system. If all markets in the IEM
have high SRC values, then the IEM may suffer a financial crisis.
Furthermore, we measure the OSR of the IEM over the window by
aggregating the SRC values of all energy markets in the IEM:

OSRs¼
Xn

i¼1
SRCi;s (12)

where OSRs represents the OSR of the IEM inwindow s and n is the
total number of markets included in the IEM, and n¼ 16 in this
study.

3.3. Data sources

We identified 16 energy indices that form the IEM and can be
categorized into the renewable energy and fossil energy markets



Fig. 1. Illustration of the cascading failure process of tail-risk spillover. (a) Illustrates the dynamic process of market i's tail-risk spillover through the TRSN, with the failure markets
in step N marked in yellow. (b) Shows a market not subjected to tail risk, where the market state is determined by the total received DIC (TR) and the market's VaR value (VaR). (c)
Represents a failure market that suffers from tail-risk spillovers and has tail risk, as TR exceeds the VaR. (d) Presents a market that experiences tail-risk spillovers, but does not fail,
as TR is lower than the VaR.
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(Table 1). To investigate the renewable energy market, we selected
12 market indices from the NASDAQ OMX Clean Energy Index,
representing biofuel, solar energy, wind energy, geothermal, fuel
cell, developer, energy storage, smart grid, green IT, energy man-
agement, advanced materials, and water energy markets
(M1eM12). For the fossil energy market, we obtained indices from
the West Texas Intermediate Crude Oil Futures, Rotterdam Coal
Futures, Bloomberg Natural Gas, and S&P Equity Commodity En-
ergy Index, corresponding to the crude oil, coal, natural gas, and
integrated fossil energy markets (M13eM16), respectively.

We incorporated macro variables, such as the NASDAQ Com-
posite Index, MSCI Global Index, VIX Panic Index, and gold futures,
to represent the world market. Our sample period was from
November 5, 2012, to November 4, 2022, with 2591 daily obser-
vations. We calculated the daily logarithmic returns of the 16 en-
ergy market indices and used the logarithmic returns of the four
macro variables lagging by one period for regression. Data was
sourced from Investing.com and Yahoo Finance.
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4. Empirical results and analysis

4.1. Static structure analysis of tail-risk spillover in the IEM

4.1.1. TRSN analysis in the IEM from 2012 to 2022
This study employed sliding-window technology to compute

the network density of the TRSN within the IEM. Subsequently, an
analysis was conducted to explore the evolving characteristics of
the number of tail-risk spillover paths in the IEM throughout the
sample period (Fig. 2). Network density, denoting the ratio of
connections existing among the nodes within a network, serves as
an indicator of the presence of tail-risk spillover paths. The results
reveal that the network density of TRSN exhibited fluctuations
corresponding to the temporal impact intervals of recognized shock
events.

For example, the mid-2014 collapse of international oil prices,
the instability observed in the Middle East during the first half of
2015, the signing of the Paris Agreement in April 2016, the United

http://Investing.com


Table 1
Descriptive statistics.

Variables Mean Std.Dev. Maximum Minimum

Biofuel (M1) 0.00018 0.01926 0.13393 �0.18196
Solar energy (M2) 0.00097 0.02088 0.12051 �0.19333
Wind energy (M3) 0.00059 0.01673 0.09154 �0.13283
Geothermal (M4) 0.00013 0.01745 0.18254 �0.13391
Fuel cell (M5) 0.00067 0.03506 0.21616 �0.20746
Developer (M6) 0.00035 0.01020 0.08701 �0.16520
Energy storage (M7) 0.00027 0.01531 0.08296 �0.09074
Smart grid (M8) 0.00022 0.01229 0.09436 �0.14951
Green IT (M9) 0.00049 0.01502 0.28891 �0.10608
Energy management (M10) 0.00031 0.01390 0.13957 �0.13891
Advanced materials (M11) 0.00026 0.01413 0.08166 �0.12100
Water energy (M12) 0.00030 0.00985 0.08759 �0.10335
Crude oil (M13) 0.00003 0.04248 0.48641 �0.50965
Coal (M14) 0.00035 0.02405 0.32622 �0.53688
Natural gas (M15) �0.00061 0.05752 1.76738 �1.83066
Integrated fossil energy (M16) 0.11977 0.01726 0.15058 �0.22542
NASDAQ Composite Index 0.00048 0.01263 0.08935 �0.13149
MSCI Global Index 0.00021 0.00889 0.08059 �0.09997
VIX Panic Index �0.00016 0.07859 0.29983 �0.76825
Gold futures �0.00020 0.00971 0.05802 �0.09810

Fig. 2. Evolution of network density in the TRSN. The Paris Agreement, the COVID-19
pandemic, and the Russia-Ukraine conflict are colored yellow, whereas other shock
events are shown in gray.
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States' withdrawal from the Trans-Pacific Partnership in early 2017,
and OPEC's implementation of production cuts in the latter half of
2018 are noteworthy instances. Furthermore, the emergence of the
COVID-19 pandemic towards the end of 2019 and the Russia-
Ukraine conflict in early 2022 further influenced the dynamics of
the IEM. Notably, during these periods of shock events, the number
of tail-risk spillover paths experienced significant increases,
reaching local peaks, and subsequently declining to local troughs.

The observed increase in the number of tail-risk spillover paths
during shock events can be attributed to two main reasons. First,
the drastic macroeconomic changes that occur during shock events
cause a rapid deepening of the actual correlation between energy
markets. This deepening of the actual correlation leads to the
spread of tail risk throughout the IEM, resulting in a significant
increase in tail-risk spillover paths (Li et al., 2019). Second, the
“herd effect” and information asymmetry in the IEM intensify
during shock events. Negative impact events may cause investors to
irrationally sell related market assets, increasing the transmission
of risks in the IEM, thus leading to an increase in tail-risk spillover.
Positive events can also disrupt the inherent supply and demand
patterns in different markets. For example, whereas the Paris
Agreement has made related transactions in renewable energy
more active, investment in fossil fuels has shown a significant
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reduction trend. The combined effect leads to an increase in the
number of tail-risk spillover paths.

In the aftermath of a shock event, the tail risk of the IEM
temporarily subsides with the implementation of preventive
measures and market self-regulation. This temporary reduction in
the number of tail-risk spillover paths also aids in restoring market
stability, with a two-waymechanism at play. Notably, the COVID-19
pandemic may have a lasting impact on the IEM. It has disrupted
demand patterns, highlighted supply chain vulnerabilities,
impacted investment decisions, and prompted policy and regula-
tory changes. Fig. 2 reveals that the overall level of the number of
tail-risk spillover paths in the IEM since the outbreak of the COVID-
19 pandemic has been lower than prior to it and continues to
exhibit a downward trend.

Studying the importance of energy markets in the TRSN can aid
in the formulation of investment strategies and risk prevention
measures. Eigenvector centrality (EC) is a common metric used to
gauge the importance of a market in the spillover network. It
considers both the number and quality of connections of a node.
Nodes with high eigenvector centrality are considered influential
and have connections to other important nodes in the network. We
utilized EC to study the time-series characteristics of the impor-
tance of each energy market, as illustrated in Fig. 3. Our findings
indicate that the importance of each market in the network dis-
played time-varying characteristics. Thus, investment strategies
and risk prevention measures must be adjusted promptly to fit the
time-varying attributes of the energy market. Furthermore, the EC
metrics exhibited differing fluctuation patterns, indicating that
various markets respond differently to distinct shock events. The
solar energy market (M2), fuel cell market (M5), and crude oil
market (M13) are more important in the network, with greater
fluctuations in their EC values, indicating that they are more sen-
sitive to shock events.

The solar energy market (M2) and fuel cell market (M5) are
widely recognized as the most promising new energy sources. The
International Renewable Energy Agency reports that the solar and
fuel cell markets are rapidly developing and offer several advan-
tages, including high efficiency, low harmful gas emissions, and
long service life. These energy sources are of strategic importance
in renewable energy, particularly in this era of accelerating energy
transformation. In contrast, the crude oil market (M13) belongs to
the fossil energy markets and has triple attributes of commodities,
finance, and politics. Because of geopolitics, unique pricing system,
and unbalanced supply and demand patterns, The crude oil market
is highly sensitive to various risk factors, resulting in its high overall
risk levels and vulnerability to shock events (Baek, 2023; Lee et al.,
2023; Liu et al., 2023).

Tail risks have the potential to spread through several critical
risk spillover paths, which may have far-reaching systemic conse-
quences. It is important to identify the paths with the highest DIC
and frequency of occurrence, which can guide risk management
strategies. To identify the critical tail-risk spillover paths, we used a
specific method to summarize the risk spillover paths with the top
3 DIC in each window, and the top 15 paths with the highest fre-
quency of occurrence were counted (Table 2).

Table 2 indicates that most of the critical tail-risk spillover paths
connect the same type of energy market, such as the path fromM2
toM5. However, paths that can spill over tail risks in different types
of energy markets may have more profound effects on the IEM, as
exemplified by the path from the biofuel market (M1) to the inte-
grated fossil energy market (M16). Biofuels have the potential to
replace fossil energy for production, processing, heating, and power
generation, which is impossible for other renewable energy sour-
ces. Consequently, the spillover path between the biofuel market
and the integrated fossil energy market serves as a bridge for the



Fig. 3. Evolution of the importance of energy markets in the TRSN. The vertical axis signifies the EC of distinct energy markets.

Table 2
Critical tail-risk spillover paths.

Ranking Energy market category Edges Energy market category Number of edges

1 Renewable M2 / M5 Renewable 713
2 Fossil M16 / M13 Fossil 342
3 Renewable M10 / M8 Renewable 306
4 Renewable M1 / M5 Renewable 209
5 Renewable M1 / M16 Fossil 203
6 Fossil M16 / M5 Renewable 187
7 Renewable M3 / M5 Renewable 185
8 Fossil M16 / M1 Renewable 168
9 Renewable M10 / M13 Fossil 143
10 Fossil M13 / M15 Fossil 131
11 Fossil M16 / M15 Fossil 129
12 Renewable M9 / M1 Renewable 107
13 Renewable M2 / M3 Renewable 105
14 Fossil M15 / M13 Fossil 104
15 Fossil M14 / M13 Fossil 100
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transmission of tail risks between the renewable energy market
and the fossil energy market.

4.1.2. TRSN analysis of IEM during shock events
In this section, we focus on the network structure of the tail-risk

spillover in the IEM during the shock events. Thus, we analyzed the
characteristics of the spillover paths and market nodes in the TRSN
during the shock events. As listed in Table 3, we used 167 sliding
windows as a group (the last group contains 169 windows), divided
2507 sliding windows into 15 periods, and summed the DIC of the
167 sliding windows in each period to yield 15 more representative
TRSNs. The start and end dates of each period are the end dates of
each sliding window. We denote these 15 periods by D1 to D15.
Among them, D5 and D6 are the periods when the Paris Agreement
was passed and officially implemented. Next, D11 and D12 are the
early and late stages of the outbreak of the COVID-19 pandemic.
Finally, D14 and D15 are the early and late stages of the Russia-
Ukraine conflict.

Table 3 illustrates that the number of edges in the 15 periods
surpassed 100, and the clustering coefficients exceeded 0.7, indi-
cating substantial interconnectedness among the energy markets.
The average DIC in the IEM was significantly elevated during the
occurrence of shock events, whereas other features of the spillover
paths remained relatively unchanged before and after the shock
events. This implies that shock events primarily cause an increase
in the DIC and do not significantly alter the structure of risk
spillover.

To more clearly obtain the network structure characteristics of
tail-risk spillovers during shock events, we further constructed a
more streamlined TRSN. Specifically, we extracted six TRSN in the
three periods of the Paris Agreement, the COVID-19 pandemic, and
the Russia-Ukraine conflict. The edges smaller than the average DIC
were deleted, and finally six TRSN with more research value during
the three major shock events were obtained (Fig. 4). The direction
of the edge in the TRSN indicates the direction of tail-risk spillover,
the size of the node is the size of the tail-risk spillover effect of each
market (measured by the weighted degree), and the thickness of
the edge indicates the size of the DIC.

Fig. 4 shows the importance of tail spillover paths and the po-
sition of individual energy markets in the network during major
shock events.

Paris Agreement (D5, D6): D5 shows that the largest risk spill-
over effect is the integrated fossil energy market (M16), and the
strongest tail-risk spillover path is the path from the fuel cell
market (M5) to the solar energy market (M2). By D6, the Paris
Agreement was officially implemented, and people increased their
investment in the renewable energy market. The status of the fossil
Table 3
Characteristics of spillover paths in the TRSN over 15 periods.

Period Number of edges

D1 03/08/2013e11/01/2013 133
D2 11/04/2013e07/03/2014 145
D3 07/07/2014e02/25/2015 144
D4 02/26/2015e10/16/2015 153
D5 10/19/2015e06/07/2016 140
D6 06/08/2016e01/26/2017 154
D7 01/27/2017e09/18/2017 174
D8 09/19/2017e05/09/2018 163
D9 05/10/2018e12/28/2018 173
D10 12/31/2018e08/20/2019 170
D11 08/212019e04/09/2020 165
D12 04/10/2020e12/01/2020 124
D13 12/02/2020e07/22/2021 121
D14 07/23/2021e03/14/2022 151
D15 03/15/2022e11/04/2022 115

1451
energy market in the network decreased, while the renewable
energy market increased.

COVID-19 pandemic (D11, D12): D11 shows that the tail-risk
spillover effect of each market has a negligible difference, which
indicates that the outbreak of the COVID-19 has caused a systemic
impact on the IEM. By D12, in the late stage of the COVID-19
outbreak, the tail-risk spillover effects of various markets were no
longer balanced, showing the characteristics of risk concentration
again. The risk spillover path between the fuel cell market (M5) and
solar market (M2) remained the strongest.

Russia-Ukraine conflict (D14, D15): Fossil fuel energy has always
been the core of international geopolitics. The crude oil price
fluctuated violently during the Russia-Ukraine conflict and the
global energy supply was seriously affected (Khan et al., 2023). D14
and D15 show that the risk spillover effect in the early stage of the
Russia-Ukraine conflict mainly appeared in the fossil energy mar-
ket and fuel cell market. It shows that the tail risk of the energy
market during the Russia-Ukraine conflict was first transmitted in
the fossil energy market and fuel cell market, gradually spreading
to the entire IEM.

4.2. Dynamic process analysis of tail-risk spillover in IEM

4.2.1. Evolution of SRC in IEM from 2012 to 2022
We obtained the SRC of 16 energy markets in the dynamic

process of tail-risk spillover and studied its evolution from 2012 to
2022 using the sliding-window method. In Fig. 5, most of the en-
ergymarkets have an SRC ranging from 0.5 to 1. Furthermore, when
a market has a high SRC, it maintains a relatively high level for
several months, indicating the momentum effects of the market
with a high SRC. In the renewable energy market (M1eM12), the
SRC of the fuel cell market (M5) is 1.5. Although its SRC has not
experienced extreme values, it has always been at a relatively high
level. In contrast, the developer market (M6) and water energy
market (M12) have a lower SRC close to 0. Furthermore, the SRC of
the fossil energy market (M13eM16) is higher than the renewable
energy market. The development and use of the renewable energy
market are still in its early stages, and there is a considerable gap in
production and use compared to the well-established fossil energy
market. Moreover, the fossil energy market is more financially in-
tegrated and more responsive to macroeconomic conditions than
the renewable energy market.

To gain further insights, we investigated the top 15 values of SRC
and their occurrence periods, which are listed in Table 4. Our results
reveal that the extreme values over 2.5 were all generated by the
biofuel market (M1) and integrated fossil energy market (M16)
during the COVID-19 pandemic (Table 4). Considering that SRC can
Average DIC Clustering coefficient Average path length

9.946 0.811 2.414
12.189 0.845 1.419
9.734 0.862 0.562
12.951 0.869 2.664
10.580 0.833 1.377
12.585 0.868 0.892
10.058 0.908 0.888
13.501 0.907 1.256
11.307 0.922 0.535
10.767 0.892 0.678
12.881 0.914 1.653
11.555 0.816 2.365
9.094 0.789 6.466
8.905 0.857 0.752
14.756 0.746 2.336



Fig. 4. TRSN of the IEM during major shock events.

Fig. 5. Heatmap of the SRC of the energy markets. Red indicates a high SRC, and blue
indicates a low SRC.
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reflect the risks that a market has during this period and the sys-
temic risk growth of the energy market, the COVID-19 pandemic
has seriously deteriorated the external business environment and
internal economic fundamentals of the IEM (Szczygielski et al.,
2021). The extreme values were secondarily distributed during
the signing of the Paris Agreement, mainly generated by the crude
oil market (M13). As the first global agreement on climate change,
the Paris Agreement has promoted the development of the
1452
renewable energy market, but also yielded turmoil in the fossil
energy market.
4.2.2. OSR and systemically important markets in IEM during shock
events

First, we studied the OSR and its evolution in the IEM by
aggregating the SRC of 16 energy markets, thus obtaining a
macroscopic analysis of the systemic risk of the IEM. Fig. 6 shows
that the OSR is mainly between 1 and 4: a date with an OSR greater
than 4 is a high systemic risk day. The fluctuation in the OSR cor-
responds to the impact range of the shock events, which is similar
to the evolution characteristics of the TRSN in Fig. 2 There may be
two reasons for this volatility feature: (1) the risk environment may
degrade the fundamentals of the energy market development,
making the energymarket vulnerable to unstable factors, especially
shock events. (2) Shock events cause the DIC of the IEM to rise,
increasing the OSR (Abuzayed et al., 2021; Carlomagno and Albagli,
2022; Gai and Kapad, 2019).

Then, we analyzed the OSR of the IEM during the three shock
events of the Paris Agreement, COVID-19 pandemic, and Russia-
Ukraine conflict. These three periods are marked in light blue in
Fig. 6. During the period of the Paris Agreement, there were fewer
days with high systemic risk, which exceeded 4 only at the two
nodes of the adoption and formal implementation of the Paris
Agreement. During the COVID-19 pandemic, the OSR of the IEM
soared to a peak of 9.3 in the sample period. Subsequently, with
market recovery and the reduction of risks, the OSR dropped to



Table 4
Extreme value and occurrence period of SRC.

Ranking Window period Market SRC Ranking Window period Market SRC

1 11/09/2019e03/13/2020 M1 2.905 9 10/22/2015e02/16/2016 M13 1.867
2 11/09/2019e03/13/2020 M16 2.897 10 10/20/2017e02/14/2018 M13 1.862
3 11/28/2019e03/24/2020 M1 2.838 11 11/06/2015e03/02/2016 M13 1.860
4 11/28/2019e03/24/2020 M16 2.735 12 10/16/2017e02/08/2018 M13 1.855
5 11/04/2015e02/29/2016 M13 2.221 13 11/25/2019e03/19/2020 M2 1.799
6 10/29/2015e02/23/2016 M13 1.965 14 10/26/2015e02/18/2016 M13 1.786
7 12/27/2014e04/13/2015 M13 1.955 15 11/23/2015e03/17/2016 M13 1.775
8 11/25/2019e03/19/2020 M16 1.923

Fig. 6. Evolution of the OSR in the IEM. The vertical axis signifies the OSR value.
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below 4. During the Russia-Ukraine conflict, half of the OSR values
of the IEM exceeded 4, and the proportion of high systemic risk
days was the highest among the three shock events analyzed.

The evidence shows that the impact of the COVID-19 pandemic
on the IEM was rapid and extreme, and worldwide production and
economies came to a standstill during the COVID-19 outbreak.
Furthermore, the shock of the Russia-Ukraine conflict is lasting. The
Russia-Ukraine conflict is essentially the result of the interaction
between energy trade patterns and geopolitics, the negative impact
of intense geopolitical conflicts triggered by energy is profound and
long-lasting (Qin et al., 2023). Additionally, energy is an industry
that is highly sensitive to geopolitical factors. The Russia-Ukraine
conflict and various subsequent sanctions and counter-sanctions
will cause continuous turmoil in the IEM (Thompson, 2022). The
impact of the Paris Agreement on the IEM has been more gradual.
This may be because the Paris Agreement is not a crisis event, it is
more of an increase in the demand for the renewable energy
market. Furthermore, the energy transition is gradual and slow,
thus not yielding extreme and lasting shocks to the IEM.

The OSR of the IEM has shown a downward trend since October
2022. Combined with the downward trend of the network density
during the same period in Fig. 2, it shows that reducing the number
of tail-risk spillover paths will help maintain market stability.

Additionally, to more effectively control and prevent systemic
risk to the IEM during shock events, it is highly important to focus
on the market with high SRC during shock events. Suchmarkets are
one of the main reasons for systemic risk in the IEM during shock
events (Xiong and Chen, 2022), referred to as systemically impor-
tant markets (SM).

Tomore clearly obtain the OSR and SM of the IEM in each period,
the total sample time was divided into 15 segments using the
method described in section 4.1.2; the total OSR of the IEM in each
period and the ranking of the SRC of each energy market was
calculated. The corresponding numbers indicating the total OSR of
the IEM for each period are presented in brackets in Table 5. The last
column of Table 5, titled "AVG," presents the ranking of the average
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SRC of each energy market during the three major shock events.
Table 5 and Fig. 5 indicate that the highest peak of the OSR in the

IEM occurred during the COVID-19 pandemic and the total OSR
during the Russia-Ukraine conflict period was the highest level in
the sample period. This can be attributed to the higher proportion
of high systemic risk days observed during the Russia-Ukraine
conflict compared to the other shock events analyzed. Thus, we
identified SM during the shock events as.

� Paris Agreement: biofuel market (M1), fuel cell market (M5),
and crude oil market (M13).

� COVID-19 Pandemic: biofuel market (M1), solar energy market
(M2), fuel cell market (M5), and crude oil market (M13).

� Russia-Ukraine Conflict: fuel cell market (M5), crude oil mar-
ket (M13), coal market (M14), and natural gas market (M15).

The renewable energy market was more affected by the Paris
Agreement and COVID-19 pandemic, whereas the fossil energy
market was more affected by the Russia-Ukraine conflict. The fuel
cell and crude oil markets ranked highest in terms of the average
SRC values during the three major shock events, indicating that
they were all SM during the three shock events.

In this study, unlike previous research conclusions that the SM is
the main risk spillover, the SM may also be the main risk receiver.
Specifically, both the fuel cell and the crude oil markets were
mainly risk receivers in the critical risk spillover paths (Table 2).
Furthermore, as the tail-risk spillover path was relatively stable
across different periods, we recommend that market regulators
continue to focus on the SM and their main tail risk sourcemarkets.
Combining Table 2 and Fig. 4, the solar energy market (M2), biofuel
market (M1), integrated fossil energy market (M16), and wind
energy market (M3) were the main sources of tail risk in the fuel
cell market. Furthermore, the integrated fossil energy market was
the main source of tail risk in the crude oil market.
4.2.3. Robustness check
Previously, we simulated the dynamic process of tail-risk spill-

over through the TRSN and cascading failure mechanism, selecting
the termination mechanism of r¼ 3. To test the robustness of the
conclusion, we changed the value of r and analyzed the situation of
the IEM systemic risk under different termination mechanisms. We
set r to 1, 2, 3, 5, and 7, which indicates that if a risk spillover path
has repeated overflow times greater than r, the path will be su-
pervised by market regulators and will no longer spill tail risks.
Fig. 7 shows the evolution of the OSR in the IEM when r has
different values.

Fig. 7 shows that the fluctuation trend of the OSR under different
r was basically the same. With the increase in r, the OSR of the IEM
also increased. The more extreme the OSR value, the more dramatic
the increase. For example, the maximum value of the OSR during
the COVID-19 pandemic was approximately 16. When the r values
were 1 and 2, the OSR of the IEM falls within 4, indicating that if a



Table 5
OSR of the IEM and SRC ranking of each energy market in the 15 periods.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 AVG

(295) (339) (256) (437) (423) (391) (360) (366) (376) (409) (475) (373) (329) (473) (536)

M1 10 15 3 3 4 3 4 11 4 9 3 3 4 6 5 3
M2 2 3 2 8 5 4 5 3 2 2 2 2 2 9 10 5
M3 4 4 6 4 6 6 12 8 13 10 12 12 10 7 6 7
M4 7 6 12 7 8 12 11 9 11 14 11 9 9 5 9 8
M5 1 1 1 2 2 1 1 2 1 1 4 4 1 1 1 1
M6 15 16 15 15 16 14 15 16 15 15 16 14 16 14 16 15
M7 14 5 10 12 13 10 6 4 9 4 7 8 5 10 8 10
M8 9 10 11 14 11 8 14 14 12 13 13 13 11 13 15 13
M9 8 12 13 10 14 15 7 6 6 5 8 10 15 15 12 14
M10 5 8 7 9 12 5 9 12 7 8 9 6 13 11 11 9
M11 11 7 8 13 10 13 13 7 5 7 10 11 12 12 13 12
M12 16 13 16 16 15 16 16 15 16 16 15 15 14 16 14 16
M13 6 11 9 1 1 7 3 1 3 6 1 5 8 4 3 2
M14 13 9 14 11 9 11 8 13 14 12 14 16 7 3 4 11
M15 3 2 4 6 7 2 2 5 8 3 6 7 6 2 2 4
M16 12 14 5 5 3 9 10 10 10 11 5 1 3 8 7 6

Fig. 7. Evolution of the OSR in the IEM at different r values. The vertical axis signifies
the r value.

Table 7
Change and change ranking of the SRC in energy markets under different r values.

2 / 1 Ranking 3 / 2 Ranking 5 / 2 Ranking 7 / 5 Ranking

M1 128.1 4 109.7 4 210.2 4 209.1 4
M2 147.9 3 129.6 2 248.7 2 248.0 2
M3 93.5 7 82.2 7 157.1 7 156.2 7
M4 72.7 10 63.1 11 119.0 11 118.1 11
M5 212.0 1 179.2 1 347.1 1 346.1 1
M6 10.6 15 9.3 15 18.0 15 17.9 15
M7 86.4 8 73.4 8 138.2 8 137.2 8
M8 45.3 14 38.9 14 72.6 14 72.0 14
M9 55.2 13 48.7 13 95.0 13 94.9 13
M10 76.2 9 65.0 9 121.4 9 120.6 9
M11 62.3 12 53.9 12 102.0 12 101.3 12
M12 6.8 16 5.8 16 10.8 16 10.7 16
M13 150.6 2 124.6 3 233.2 3 231.8 3
M14 71.9 11 63.8 10 120.7 10 119.9 10
M15 124.8 5 107.9 5 204.1 5 203.0 5
M16 116.9 6 102.7 6 195.0 6 194.1 6

Notes: 2 / 1 refers to the reduction value of SRC in each energy market when r¼ 2
/r¼ 1.
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risk spillover path is promptly controlled by regulators after being
attained, the OSR of IEM will be significantly reduced.

Further, we divided the total sample period into 15 periods to
study the impact of different r values on the OSR during shock
events (Table 6). Similar to the characteristics in Table 5, the OSR
during the Russia-Ukraine conflict and COVID-19 pandemic was the
highest among all periods.

The maximum value of the OSR at r¼ 1 was 283, which is the
middle value at r¼ 2 and half of the minimum value at r¼ 7. If
market regulators can manage and control risk spillover paths in a
timely and effective manner, the risks caused by shock events will
be significantly reduced. Finally, we list the SRC changes and the
rankings of changes in energy markets under different r values
(Table 7).

Table 7 indicates that the solar energy market (M2), fuel cell
market (M5), and crude oil market (M13) had the largest change in
the SRC when the risk spillover path was regulated in time. The fuel
cell market (M5) and crude oil market (M13) were the SM; the solar
energy market (M2) was the main source of risk in the fuel cell
Table 6
OSR of the IEM at different r values in 15 periods.

D1 D2 D3 D4 D5 D6 D7

r ¼ 1 160 180 136 236 223 206 186
r ¼ 2 233 267 198 344 332 306 281
r ¼ 3 295 339 256 437 423 391 360
r ¼ 5 410 476 370 611 594 549 509
r ¼ 7 526 612 484 783 765 706 656
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market. Strengthening the supervision of risk spillover paths can
significantly reduce the SRC of the SM; thus, we should manage
both market nodes in the TRSN and the risk spillover paths.
5. Conclusions and policy implications

This study investigates the systemic risk of the IEM from the
perspective of static structure and the dynamic process of tail-risk
spillover. We compare and analyze the characteristics of the IEM
systemic risk during different types of shock events and examined
the development and interconnections between the renewable
energy market and the fossil energy market during these events.
This study enriches the research on the systemic risk of the IEM
during shock events and aids market regulators in effectively
D8 D9 D10 D11 D12 D13 D14 D15

201 195 215 258 218 181 240 283
290 294 319 375 303 257 361 418
366 376 409 475 373 329 473 536
512 529 581 666 509 469 679 766
657 684 753 856 644 608 884 995
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managing the IEM and promoting the development of the energy
sector. The main findings of this study and their corresponding
policy implications are as follows.

First, the impact of various shock events differs in terms of
magnitude and duration. The COVID-19 pandemic, for example, had
a rapid and extreme impact on the IEM, while the Russia-Ukraine
conflict had a more enduring effect. In contrast, the Paris Agree-
ment had a relatively mild influence. Therefore, we suggest that
policymakers adopt tailored plans and strategies to mitigate the
specific risks associated with different types of shock events. By
recognizing the varying impact patterns, policymakers can allocate
resources and design policies that effectively respond to each
event's unique characteristics.

Second, the tail-risk spillover path of the IEM is relatively fixed.
This study highlights the importance of managing tail-risk spillover
paths in the IEM. The tail risk will spread through several key tail-
risk spillover paths during shock events. It indicates that policy-
makers closely monitor these spillover paths during different shock
events, as timely monitoring can significantly reduce the OSR and
the importance of the SM within the IEM. By focusing on risk
spillover paths, policymakers can identify potential vulnerabilities
and take proactive measures to mitigate systemic risks. The man-
agement of risk spillover paths is more important than market
node management.

Third, this study reveals that most critical tail-risk spillover
paths connect the same type of energy markets, indicating that the
diversification of energy sources can reduce the risk of tail-risk
spillovers between markets. Governments can encourage the
development of multiple types of energy markets to avoid over-
reliance on a single market, thereby mitigating the impact of
market fluctuations on the overall IEM. Policymakers should sup-
port the adoption of diversified investment portfolios by market
participants, as this can help mitigate risks associated with specific
energy markets and enhance overall portfolio resilience.

Fourth, our study emphasizes the different reactions and sen-
sitivities of the renewable energy and fossil energy markets to
different types of shock events. Policymakers should consider these
differences and accordingly adjust their management strategies.
For example, during geopolitical conflicts, such as the Russia-
Ukraine conflict, policymakers should pay particular attention to
managing volatility in the fossil energy market. By adopting tar-
geted management strategies that align with the characteristics of
different market types, policymakers can mitigate risks and pro-
mote market stability.

Lastly, we highlight the importance of monitoring SM and its
corresponding tail risk markets. Market regulators should continue
to monitor these markets closely and identify potential sources of
tail-risk spillovers. In doing so, they can implement proactive
measures to prevent and mitigate systemic risks.

This paper enriches previous research on systemic risk in the
IEM during shock events, which will help market regulators
effectively manage the IEM and promote the development of the
energy sector. Admittedly, this study still has some limitations. For
example, more impact events could be included in the research
scope, which may be further explored.
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