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a b s t r a c t

Picking velocities from semblances manually is laborious and necessitates experience. Although various
methods for automatic velocity picking have been developed, there remains a challenge in efficiently
incorporating information from nearby gathers to ensure picked velocity aligns with seismic horizons
while also improving picking accuracy. The conventional method of velocity picking from a semblance
volume is computationally demanding, highlighting a need for a more efficient strategy. In this study, we
introduce a novel method for automatic velocity picking based on multi-object tracking. This dynamic
tracking process across different semblance panels can integrate information from nearby gathers
effectively while maintaining computational efficiency. First, we employ accelerated density clustering
on the velocity spectrum to discern cluster centers without the requirement for prior knowledge
regarding the number of clusters. These cluster centers embody the maximum likelihood velocities of the
main subsurface structures. Second, our proposed method tracks key points within the semblance vol-
ume. Kalman filter is adopted to adjust the tracking process, followed by interpolation on these tracked
points to construct the final velocity model. Our synthetic data example demonstrates that our proposed
algorithm can effectively rectify the picking errors of the clustering algorithm. We further compare the
performances of the clustering method (CM), the proposed tracking method (TM), and the variational
method (VM) on a field dataset from the Gulf of Mexico. The results attest that our method offers su-
perior accuracy than CM, achieves comparable accuracy with VM, and benefits from a reduced
computational cost.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Velocity analysis serves as a crucial step in seismic data pro-
cessing. Taner and Koehler (1969) first proposed picking normal
moveout (NMO) velocity from the dominant semblance trend in
velocity spectral. In the case of Taner and Koehler (1969), sem-
blances serve to measure NMO gather flatness. Generally speaking,
picking velocity from the velocity spectrum is a time-consuming
task. It requires an expert to visually examine a large number of
semblance panels. With the increasing quantity of seismic data,
K. Lu).
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researchers have gradually developed automatic velocity analysis
algorithms.

Toldi (1989) proposed one of the first automatic velocity analysis
methods. It aimed to maximize the stacking power along the
moveout curves to obtain the best velocity model, which was
represented by possible interval velocities. Based on this method, a
series of methods adopted a similar idea to optimize the objective
function defined on semblance for automatic velocity analysis
(Symes and Carazzone, 1991; Mulder and ten Kroode, 2002, Symes,
1998). Moreover, Fomel (2009) further developed this method. It
could be solved using a variational approach by taking the problem
of automatic velocity picking on semblance spectra as a ray-tracing
problem. Almarzoug and Ahmed (2012) studied the performance of
this approach with real seismic data. A further extension of the
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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method to the case of non-hyperbolic moveout was presented by
Zhang et al. (2014). Machine learning (ML) based methods were
also proposed for velocity picking. Waheed et al. (2019) performed
automatic velocity picking based on the DBSCAN (density-based
spatial clustering of applications with noise) algorithm. Wang et al.
(2022) proposed an unsupervised clustering intelligent velocity
picking method based on the Gaussian mixture model (GMM) and
provided uncertainty analysis as quality control.

With the development of neural networks (LeCun et al., 2015),
deep neural networks (DNN) had already been successfully applied
in geophysics, such as seismic data processing (Zhu et al., 2019) and
seismic interpretation (Wrona et al., 2021). Araya-Polo et al. (2018)
used a calculated semblance cube as the input feature for deep
learning to perform velocity picking. Biswas et al. (2018) adopted a
recurrent neural network (RNN) to calculate stacking velocity
directly from seismic data. Zhang et al. (2019) combined the you
only look once (YOLO) (Redmon et al., 2016) and long short-term
memory (LSTM) (Graves et al., 2013) to construct an algorithm for
automatic velocity picking. Wang et al. (2021) designed and
compared two different neural networks: classification and
regression networks, for the extraction of root mean square ve-
locity from semblance data. The limitations of deep learning (DL)-
basedmethodswere that thesemethods required a large amount of
high-quality labeled data for training. Additionally, when applied to
unseen data, additional transfer learning was needed, and the
training process was also time-consuming.

Another way to deal with the problem of velocity estimation is
to use local event slopes. Local event slopes measured on prestack
seismic reflection data could be directly mapped to seismic veloc-
ities and all other moveout parameters (Fomel, 2007). Zhang et al.
(2015) proposed a local event slope-mapped velocity spectrum
with the histogram analysis algorithm. A further extension of the
method was proposed by Zhang and Lu (2016), who developed an
accelerated clustering algorithm for automatic velocity estimation.
However, how to incorporate information from nearby gathers for
velocity picking remains an open problem. Decker and Fomel
(2022) proposed a variational approach for picking velocity fields
from semblance volumes. This approach used spatially adjacent
information for determining optimal surfaces from semblance-like
volumes, but it was computationally expensive.

In this paper, we propose a novel method for automatic velocity
picking based on multi-object tracking. The dynamic tracking
process through different semblance panels efficiently incorporates
information from nearby gathers without manual intervention.
First, the accelerated density clustering algorithm (Zhang and Lu,
2016) is performed on each semblance panel to obtain the cluster
centers, which correspond to the maximum likelihood velocities of
the main subsurface structures. Second, we take the cluster centers
on the initial semblance panel as the key points to start tracking.
ZNCC (zero mean normalized cross correlation) and the Hungarian
algorithm (Kuhn, 1955) are applied to match the key points on
adjacent semblance panels. Furthermore, the Kalman filter
(Kalman, 1960) is adopted to obtain the optimal estimate of the
location of the key points on the next semblance panel. The
tracking process is repeated until the key points are tracked to the
last semblance panel. Consequently, the interpolation of these
tracked points obtains a relatively high-accuracy stacking velocity
model. With synthetic and field data examples, we demonstrate the
performance of the proposed method. The remaining sections of
this article are structured as follows: Section 2 details the theory
underpinning our method; in Section 3, we present our experi-
mental results; Section 4 contains a discussion on the method's
robustness against noise and the impact of outliers on our tracking
process; finally, Section 5 concludes the paper.
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2. Methods

In this section, we illustrate the process of multi-object tracking
for velocity picking, as shown in Fig. 1. We select an initial velocity
spectrum and use the cluster points obtained by the accelerated
density clustering algorithm proposed by Zhang and Lu (2016) as
the initial points to start tracking along the profile. The Hungarian
algorithm (Kuhn,1955) and zeromean normalized cross correlation
(ZNCC) (Stefano et al., 2005) are used together to search the posi-
tion of the tracking points on the next velocity spectrum. At the
same time, we also set some criteria to stop tracking certain points
and add new points to be tracked. Because the tracking process is a
dynamic process, we use the Kalman filter to obtain the optimal
estimation of the tracking point position. Our tracking algorithm
can accurately pick the velocity along the seismic horizon. Table 1
summarizes the important employed notation. First, in Section
2.1, we give a brief review of the accelerated density clustering al-
gorithm (Zhang and Lu, 2016) used in our work. Thenwe explain in
detail the process of the proposed multi-object tracking method
using ZNCC and Hungarian algorithm in Section 2.2, and Kalman
filtering process is introduced in Section 2.3.
2.1. Accelerated density clustering

In this section, we give a brief review of the accelerated density
clustering algorithm (Zhang and Lu, 2016) used in our work. Den-
sity clustering is proposed to deal with general data distribution
models by Rodriguez and Laio (2014). The advantage of density
clustering is that we do not need to know the prior information of
the number of clusters. The cluster centers can be determined by
modeling the local density ri and the minimum distance di from
points of higher density for each point i. The simple cutoff local
density ri and the minimum distance di of data point i are defined
as follows:

ri ¼
X
j

l
�
dij � dc

�
(1)

di ¼ min
j:rj > ri

�
dij

�
(2)

where dij is the distance between point i and point j, dc is the cutoff
distance, and lð ,Þ is a function that satisfies

lðxÞ¼
�
0 x � 0
1 x � 0 (3)

Cluster centers are picked as points with relatively large ri and
di. We can identify centers by observing rapid change in b, which is
the product of r and d. However, it is completely infeasible to
directly apply density clustering algorithm to seismic data (Zhang
and Lu, 2016), so Zhang and Lu (2016) proposed an accelerated
density clustering algorithm. An estimate of the local density is
obtained by applying the 2D histogram analysis method to the
mapped zero-offset time and stacking velocity:

r¼Hðl1; l2Þ¼mðl1; l2Þ (4)

where l1 and l2 represent the discretized zero-offset time and the
discretized stacking velocity, respectively. Hðl1; l2Þ denotes the 2D
histogram function and mðl1; l2Þ denotes the number of local event
slopes mapped zero-offset time and stacking velocity that together
fall into the bin represented by l1; l2. More details about the
accelerated density clustering algorithm could be found in Zhang
and Lu (2016).



Fig. 1. The flowchart of the proposed method.

Y.-H. Wang, W.-K. Lu, S.-B. Jin et al. Petroleum Science 21 (2024) 903e917
2.2. Key points tracking using ZNCC and Hungarian algorithm

By modeling the estimations of velocity and the location of each
sample in a seismic gather into a Gaussianmixturemodel and using
the accelerated density clustering algorithm, we can obtain the
cluster center point representing the maximum likelihood velocity
of themain subsurface structures. However, these cluster points are
not continuous in the seismic line direction, and there may be
outlier cluster center points. Therefore, we propose a multi-target
key point tracking algorithm based on ZNCC and the Hungarian
algorithm.

ZNCC is a common cross correlation calculation method in
template matching. In image processing applications, ZNCC is more
robust than NCC (normalized cross correlation) because it subtracts
the mean value in the window and can resist changes in brightness.
For a template T ðx; yÞ with a subimage F ðx;yÞ, ZNCC is defined as
follows:

ZNCCðT ;F Þ¼ 1
n

X
x;y

ðT ðx; yÞ � mT ÞðF ðx; yÞ � mF Þ
sT sF

(5)

where n is the total number of elements in T , x, y denote the row
and column index, mT , mF are themean value of T , F , and sT , sF
are standard deviation of T , F . In our case, the template T ðx; yÞ is
a patch of the current velocity spectrum Si with the size w� w
centered on the tracking point pi;j, and the subimage F ðx; yÞ is the
next velocity spectrum Siþ1.

Fig. 2 displays how to use ZNCC to calculate the position of the
tracking points on the velocity spectrum corresponding to the next
CMP (common midpoint). Denote the current velocity spectrum as
Si, and for each tracking point pi;j on Si, we extract a patch with the
size w�w centered on the tracking point pi;j and calculate the
ZNCC values of the patch with respect to the next velocity spectrum
Siþ1. We set an appropriate threshold b and a search radius r. The
point with the largest ZNCC value s among all the points whose
distance to pi;j is less than r is selected as the tracking point piþ1;j on
Siþ1 if s> b.

However, using only ZNCC to track points poses two problems.
(1) During the tracking process, there may be new key points to be
tracked, but using ZNCC cannot find them. (2) The tracking process
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is susceptible to the choice of the threshold b it is easy to track the
wrong points if b is too small or to lose the tracked points prema-
turely if b too large. Therefore, we need to use the cluster points
obtained from accelerated density clustering on each velocity
spectrum to aid key point tracking bymatching clustering points on
adjacent velocity spectra. Specifically, we calculate the distance
from the current tracking point to the cluster points on the next
velocity spectrum, and use the Hungarian algorithm to determine
which cluster points on the next velocity spectrum match the
current tracking point.

The Hungarian algorithm is used to solve the assignment
problem, a fundamental combinatorial optimization problem. Its
formal definition is given as follows (Ramshaw and Tarjan 2012):
Given two sets A and B together with a weight function W : A �
B/R, find a mapping f : A /B such that the cost function

XN
i¼1

Wðai;biÞ for ai2A ; bi2B

s:t:N ¼ minðjA j; jB jÞ; f ðaiÞ ¼ bi
(6)

is minimized. In our case, the set A is the set of tracking points on
the current velocity spectrum, and the set B is the set of cluster
points on the next velocity spectrum. The weight function W is the
Euclidean distance matrix between the tracking point and the
cluster point. The Hungarian algorithm can find the optimal
assignment of the tracking points to the cluster points, and the
cluster points that are not assigned to the tracking points are
considered as new key points when they are far enough from the
existing key points.

The Hungarian algorithm solves the assignment problem in
polynomial time. It is based on the theorem: If a row or a column of
the cost matrix adds or subtracts a number at the same time, the
optimal assignment of the new cost matrix is still the optimal
assignment of the original cost matrix. It is a greedy algorithm, and
the optimal assignment of the cost matrix is obtained by iteratively
finding the minimum element in each row and subtracting it from
the row, and then finding the minimum element in each column
and subtracting it from the column. The process is repeated until all
the elements in the cost matrix are non-negative. The assignment
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of the cost matrix is obtained by finding the zero elements in the
cost matrix. Python library scipy. optimize provides a Hungarian
algorithm implementation (Virtanen et al., 2020).

In brief, using Hungarian algorithm and ZNCC for tracking re-
quires the following three steps:

1. The Hungarian algorithm is used to match each current tracking
point pi;j to the cluster center ciþ1;j on the next velocity spec-
trum. If ciþ1;j is the cluster center assigned to pi;j and the dis-
tance

���pi;j � ciþ1;j

��� between two points is less than the specified
threshold r, the matching point ciþ1;j will be set as the tracked
point piþ1;j.
Algorithm 1. Key points tracking
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2. For tracking point pi;j without an assigned clustered point, we
extract a patch with the size w�w centered on the tracking
point pi;j and calculate the ZNCC of the patch with respect to the
next velocity spectrum Siþ1, which denoted as Score. The new
tracking point piþ1;j should satisfy: piþ1;j ¼ argmax

kp�pi;jk< r
ðScore½p�Þ,

s.t. Score½piþ1;j�> b, where b is a predefined threshold.
3. For unassigned cluster points, if the minimum distance to all

tracking points is greater than the specified threshold value de,
they will be set as new key points to be tracked.

The above algorithm could be summarized as Algorithm 1.



Table 1
Summary of the important employed notation.

Symbol Description

Si The i-th velocity spectrum
pi Tracked key points on the i-th velocity spectrum
Ci The set of cluster centers of Si
w Patch size
b; r:de Threshold parameters
M The number of velocity spectrum (also the number of CDPs)
x Mean variable of the Kalman filter
V Covariance matrix of the Kalman filter
A State transition matrix of the Kalman filter
H Observation matrix of the Kalman filter
pi;j The j-th tracked point on the i-th velocity spectrum, pi;j2pi
ci;j The j-th cluster center on the i-th velocity spectrum, ci;j2Ci
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2.3. The optimal estimation of the tracked key points

Kalman filter is widely used in many fields such as communi-
cation (Battistelli et al., 2018), navigation (Cooper and Durrant-
Whyte, 1994), guidance (Penizzotto et al., 2015) and control (Lee
and Ricker, 1994). It uses the observed data of the system at each
moment to provide a more accurate estimate of the state of the
system. When the noise contained in the observed data of the
system is assumed to obey the Gaussian distribution, the Kalman
filter can obtain the optimal estimation of the system state
(Kalman,1960). According to Humpherys et al. (2012), if the process
and measurement covariance are known, the Kalman filter is the
best linear estimate in the sense of minimum mean square error,
regardless of the Gaussian nature of the noise.

In our case, our key points tracking process requires the esti-
mation of two state variables: (1) Mean variable x. It defines on the
four-dimensional state space ðt; v; _t; _vÞ that contains the location of
the key point ðt; vÞ on the velocity spectrum and their respective
velocities ð _t; _vÞ in image coordinates. (2) Covariance matrix V. It
defines the uncertainty of the state variable x and is a 4� 4 diagonal
matrix, with larger numbers in the matrix indicating greater un-
certainty and can be initialized with any value. We use a standard
Kalman filter with constant velocity motion and linear observation
model, where we take the location of the key point ðt; vÞ as direct
observations of the object state.

The Kalman filter works by two-phase process. For the predic-
tion phase, the Kalman filter produces estimates of the current state
variables x and V. Once the tracked points (including noise) is ob-
tained using Algorithm 1, these estimates are updated based on a
weighted average, with greater weight given to estimates with
Fig. 2. Extract a patch with the size w � w centered on each tracking point an
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greater certainty. The filter performs recursively and in real time,
using only the present input measurements and the state calcu-
lated previously and its uncertainty matrix.

In the prediction phase, the Kalman filter will predict the state
variables x and V at step s based on the previous state variables at
step s� 1:

xs¼Axs�1 (7)

Vs ¼ AVs�1A
T þQ (8)

where xs�1 ¼ ½ts�1; vs�1; _ts�1; _vs�1�T; A is the state transitionmatrix;
Q is the noise matrix of the system, representing the reliability of
the whole system, which is usually initialized to a very small value.
In our case, the state transition matrix A is a 4� 4 matrix with the
following form:

A¼

2
664
1 0 Ds 0
0 1 0 Ds
0 0 1 0
0 0 0 1

3
775 (9)

where Ds is the time interval during the dynamic tracking process
between two consecutive velocity spectrum and is set to 1 in our
implementation.

In the update phase, the Kalman filter will update the state
variables x and V at step s based on the observation data. The up-
date phase is described as follows:

ys ¼ ps �Hxs (10)

Q s ¼ HVsHT þ R (11)

K ¼ VsHTQ�1
s (12)

xs¼ xs þ Kys (13)

Vs ¼ðI� KHÞVs (14)

where ps is the tracked points at step s with only observed state
variables ps ¼ ðt;vÞ; R is the noise matrix of the observation and can
be initialized randomly;H is the observationmatrix. In our case, the
observation matrix H is a 2� 4 matrix, and xs is a vector. They have
the following form:
d calculate the ZNCC value of each patch with the next velocity spectrum.



Fig. 3. Synthetic velocity model. White dashed line indicates the location of CDP 520.
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H ¼
�
1 0 0 0
0 1 0 0

�
; xs ¼ ½ts; vs; _ts; _vs�T (15)

Eq. (12) calculates the Kalman gain K for estimating the
importance of the error ys. Eqs. (13) and (14) update the state
variables x and V. The Kalman filtering algorithm is summarized in
Algorithm 2.

In summary, our method uses the velocity spectrum as input,
and accelerated density clustering is performed to obtain the
cluster centers on each velocity spectrum. Then, we select the
cluster center point on the initial velocity spectrum S0 as the key
point and start to use the tracking algorithm (Algorithm 1) to obtain
the position of the key point on the next velocity spectrum. Because
the noise in the velocity spectrum may cause deviation to the
tracked key point position, we use the Kalman filtering algorithm to
update the obtained key point position, retain all the tracked key
points, and continue to track until the end. The overall tracking
algorithm is summarized in Algorithm 3. When all key points are
tracked, interpolation is performed to build the effective velocity
model. Piecewise cubic Hermite interpolating polynomial (PCHIP)
(Fritsch and Butland, 1984) is adopted as the interpolation function.

Algorithm 2. Kalman filtering
3. Experiments

To demonstrate the effectiveness of the proposed method, we
apply it on synthetic and field data sets. Stacking velocity model is
908
automatically estimated in both cases, and NMO correction is per-
formed with the estimated velocity. We illustrate our tracking
process through a synthetic data example in section 3.1 and
compare the effects of the clustering method (CM) (Zhang and Lu,
2016), the proposed tracking method (TM), and variational method
(VM) (Decker and Fomel, 2022) on the field data set in section 3.2.
Our work is implemented on a workstation with 13th Gen Intel(R)
Core(TM) i9-13900K CPU and 128 GB RAM.
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3.1. Synthetic example

Our synthetic velocity model is shown in Fig. 3. The size of the
synthetic model is 800� 800, where the lateral direction x and the
depth direction z were spaced 10 m apart (dx ¼ 10 m, dz ¼ 10 m).
2D const density acoustic wave equation is adopted to do the for-
ward modeling, and finite difference is used during calculation.

Algorithm 3. Density clustering aided optimal key points tracking
A 20 Hz Ricker wavelet is deployed in our modeling with 350
shots in total. The source position corresponding to the first shot is
10 m, the depth is 10 m, and the shot spacing is 20 m. The depth of
the receiver is 10 m, and it is located on the right side of the shot
point. Theminimum offset is 10m, the receiver spacing is 10m, and
909
the number of receivers per shot is 99. The time sampling interval
of single shot recording is 1 ms, and the recording length is 2.7 s.

Fig. 4(a) shows a single synthetic CMP gather, with the cluster
center points obtained by the CM depicted in Fig. 4(b). Detailed
insight into the dynamic tracking process is offered in Fig. 5, where
the key points on CDP 705 are tracked using our algorithm, thus
deriving the tracking points on CDP 706. By leveraging information
from adjacent gathers, our tracking algorithm successfully identi-
fied the key points missed by the clustering algorithm on CDP 706,
thereby demonstrating its effectiveness.
The tracking results are illustrated in Fig. 6, where the seismic

data is overlaid with clustering points for clarity. The clustering
points' positions denote the location of the automatic velocity
picking, which ideally should align with the reflection surface's



Fig. 4. (a) The stacked image using NMO-corrected CMP gathers by our TM. (b)
Interpolated velocity model by TM. (c) The stacked image using NMO-corrected CMP
gathers by CM. (d) Interpolated velocity model by CM.
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position. Hence, this display method serves as an effective means of
evaluating the accuracy of the obtained clustering points.

As can be seen from Fig. 6(a), the cluster centers obtained by the
CM are not continuous along the reflector, and there are still some
outliers, as shown by the arrow in the figure. In contrast, the key
points tracked by the proposed method can effectively improve the
problems of discontinuity and outliers, as shown in Fig. 6(b). Fig. 7
displays the comparison of NMO correction results by different
methods. It can be seen that the NMO-corrected CMP gather using
the velocity picked by TM is flatter than that using the CM, espe-
cially at the position indicated by the red dashed line, which shows
Fig. 5. The dynamic tracking process. The key points on CDP 705 were tracked using a tracki
ZNCC matching, and points 3, 4, 5 are tracked by Hungarian algorithm.
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that our method can pick up stacking velocity more accurately. The
reason why the CM fails is that it does not find the shallow cluster
centers, which leads to the inaccurate interpolation velocity at the
shallow part. However, the tracking-based method can track the
key points that should exist at the shallow layer by incorporating
the information of previous gathers to obtain more accurate ve-
locity. Fig. 8 shows the stacked image using NMO-corrected CMP
gathers and the corresponding interpolated velocity model. From
the position indicated by the white arrow, it can be seen that due to
the inaccurate velocity obtained by CM, the corresponding stacking
results have low resolution in the shallow layer and obvious edge
effects. The tracking method can capture shallow velocity well, and
even at the edges, it has good stacking results.
3.2. Field example

To validate the performance of the proposed method on real
seismic data, we select the Gulf of Mexico data set (Claerbout and
Black, 2001) available in Madagascar package (Alkhalifah et al.,
2006). Fig. 9 displays the tracked points and cluster center points
on the velocity spectrum of different CDPs. It can be seen that the
tracked points are better distributed along the high value of the
velocity spectrum than the clustered points, and it follows the
dominant trends in the semblance and is more closely and
continuously distributed.

As shown in Fig. 10, the tracked points can be better distributed
along the geological horizon compared with the cluster points. As
illustrated in Fig.11(a), CM fails to find the cluster centers exceeding
2.4 s, which results the error in the picking velocity, especially at
the deep area. It can be seen from Fig. 11 that the velocity picked by
TM and VM is more consistent with the dominant trend of the
velocity spectrum, and the NMO corrected gathers are flatter (as
indicated by the red dotted lines). Fig. 12 shows the enlarged
content of the green rectangular box in Fig. 11. It can be seen that
the events of TM and VM at the positions indicated by the red ar-
rows are flatter than those of CM, showing the comparable per-
formance between TM and VM. Fig. 13 shows the velocity models
ng algorithm to obtain the tracking points on CDP 706. Points 1, 2, and 6 are tracked by



Fig. 6. (a) The cluster centers obtained by CM. (b) The key points tracked by the proposed TM.

Fig. 7. Comparison of NMO correction results by different methods. (a) The red dashed line represents the velocity picked by CM. The solid white line represents the velocity picked
up by our TM. (b) Single CMP gather from the synthetic seismic data. (c) NMO-corrected CMP gather using the velocity picked by CM. (d) NMO-corrected CMP gather using the
velocity picked by the TM.
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obtained by the three methods and the corresponding NMO stack
results. The vertical red dotted line on the stack result corresponds
to the CMP gather in Fig. 11. We zoom in the area in the cyan box to
display in the upper right corner of figure. It can be seen that the
seismic events of TM and VM methods are more focused and
continuous. At the same time, it can be seen from Table 2 that TM
takes less time comparedwith VM. This shows that our method can
achieve excellent performance with higher computational
efficiency.

The results of manually picked velocities have also been incor-
porated and can be seen in Fig. 14. A total of 250 CMP gathers are
present in the Gulf of Mexico dataset. Starting from the initial
gather, we manually pick every 50th CMP gather, allowing us to
produce the final manually picked velocity model through inter-
polation. The white dashed line shown in Fig. 14(c) marks the
911
location of the manual pick. As evidenced by the regions pointed
out by the white arrows in Fig. 14(b) and (d), the stacking results
derived using the TM are more focused, clearer, and offer a
discernible stratigraphic characterization, surpassing the quality of
stacking results based on manually picked velocities.
4. Discussion

4.1. Noisy synthetic example

In this section, to demonstrate the robustness of our method to
noise, we conducted experiments on synthesized data. For the
forward generated data of section 3.1, we added different levels of
Gaussian noise, and compared the velocity picking results and
stacking results of TMmethod and CMmethod, as shown in Figs. 15



Fig. 8. (a) The stacked image using NMO-corrected CMP gathers by our TM. (b) Interpolated velocity model by TM. (c) The stacked image using NMO-corrected CMP gathers by CM.
(d) Interpolated velocity model by CM.
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and 16. Fig. 15(a)e(c) show the picked velocity by CM with SNRs
(signal-to-noise ratio) of 1, 10, and 50 dB, Fig. 15 (d)e(f) show the
picked velocity by TM with SNRs of 1, 10, and 50 dB.

With the decrease of SNR, the picked velocity value of CM and
TM method in deep areas tends to decrease. However, overall, TM
has better robustness to noise. The picked results are more stable as
the noise level increases.

Fig. 16(a)e(c) show the cluster center points and corresponding
stacking results obtained by the CM with SNR of 1, 10, and 50 dB.
Fig. 16(d)e(f) show the tracked points and corresponding stacking
results obtained by the TM with SNR of 1, 10, and 50 dB. As the SNR
decreases, more outliers appear in the cluster center points ob-
tained by the CM, indicating that the position of its picking velocity
is incorrect, and the tracking points obtained by the TM can still be
well distributed along the reflection layer in the presence of high
noise, indicating the rationality of the picking location. Although
the TM still shows some unreasonable picked points when the SNR
is 1 dB, such as the position indicated by the yellow arrow, the
picked results of TM are still more reasonable than those of CM. As
indicated by the white arrows in Fig. 16, the stacking results ob-
tained by TM are more focused and continuous, and the strati-
graphic characteristics are more obvious.

From the above experiments, we can see that in the case of low
SNR, CMwill generatemore outliers, resulting in inaccurate picking
velocity positions. However, in the case of low SNR, TM can incor-
porate the information of the near gathers to keep the key points of
tracking all the time, so the tracking points can distribute well
along the reflection layer, indicating the better robustness of TM.
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4.2. How to start tracking

The proposed TM has the ability to select any CMP gather as the
starting gather, and initiate tracking in both left and right di-
rections. An inherent risk is the potential for outliers within the
initial CMP gather, which can influence the tracking results. How-
ever, the ability of the tracking algorithm to synthesize information
from nearby traces serves as a counterbalance. Even if the process
begins with outliers, the algorithm will not select tracking points
that correspond to these outliers. This is primarily because the
surrounding gathers do not exhibit velocity spectrum features
similar to that of outliers. By implementing a post-processing
operation to eliminate the tracking set with too few tracked
points, the impact of outliers on the tracking results can be effec-
tively minimized.

As evident in Fig. 17(a), tracking commences from CDP 40,
denoted by the red dashed line. Fig. 17(b) illustrates the resultant
tracking, emphasizing the comparatively smaller number of ele-
ments in the tracking set associated with outliers. Consequently, by
discarding the set of tracking points with elements below a specific
threshold, an enhanced tracking result is achieved, as shown in
Fig. 17(c). It should be noted, however, that despite these im-
provements, the results may still be sub-optimal compared to
initiating the tracking from a CDP free of outliers.

Another technique is to observe the clustering results after
obtaining the results of CM and manually select CMP gathers
without outliers to start tracking. It is a relatively simple technique,
so we recommend using it in practical applications.



Fig. 9. Tracked points and cluster center points on the velocity spectrum of different CDPs. The first row illustrates the cluster points obtained by CM, and the second row illustrates
the tracked points obtained by TM.

Fig. 10. (a) The cluster centers obtained by CM (marked by blue points). (b) The key points tracked by TM (marked by red points).
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Fig. 11. NMO-corrected CMP gathers using different velocity. (a) Velocity picked by different methods. (b) The single CMP gather located at 12.9 km. (c) NMO-corrected CMP gather
using the velocity picked by TM. (d) NMO-corrected CMP gather using the velocity picked by CM. (e) NMO-corrected CMP gather using the velocity picked by VM.

Fig. 12. The enlarged content of the green rectangular box in Fig. 11. From left to right, the results of TM, CM, and VM are sequentially displayed. The events of TM and VM at the
positions indicated by the red arrows are flatter than those of CM. The areas in the white dashed box are the parts with significant differences.

Fig. 13. (a) Velocity model determined by TM. (b) Velocity model determined by CM. (c) Velocity model determined by VM. (d) NMO stack of the data using the velocity model from
(a). (e) NMO stack of the data using the velocity model from (b). (f) NMO stack of the data using the velocity model from (c).
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Table 2
Time cost of different methods on Gulf of Mexico data.

Method Time cost

CM 0.94 s
TM 0.94 s þ 4.6 s
VM 10.4 min
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5. Conclusions

In this paper, we present an innovative density clustering-
assisted optimal key points tracking method, specifically designed
for automatic velocity picking. The novelty lies in extending the
concept of object tracking, predominantly applied in computer
vision, to the realm of geophysics. To address the issue of object
tracking on the velocity spectrum, we propose a unique combina-
tion of zero normalized cross-correlation (ZNCC) and the Hungar-
ian algorithms. Further enhancing this method, Kalman filtering
technology, a technique rooted in control theory, is introduced to
optimize the tracking process. Hence, our proposed methodology
represents a cutting-edge intersection of research across computer
vision, automatic control, and geophysics.

The center points determined by the CM represent the highest
Fig. 14. Comparison of the velocity and its stacking results obtained by TM with the manu
magnified in the upper left corner of stacked profile image. (a) The velocity obtained by TM;
manual picking, with six white dashed lines indicating the position of manual picking; (d)

915
likelihood velocity of the primary subsurface structure. Neverthe-
less, this technique does not consider the correlation between
adjacent gathers and may yield inaccurate results, particularly
when SNR is low. While existing velocity picking methods VM from
semblance-like volumes (Decker and Fomel, 2022) incorporate
spatially adjacent information, they are computation-intensive. In
contrast, our tracking-based approach seamlessly integrates infor-
mation from adjacent gathers, offering both high computational
efficiency and robustness to noise.

The CM method obtains inconsistent cluster center points from
adjacent velocity spectra, which may be induced by noise or algo-
rithm parameter settings. At times, some cluster center points may
not be detected, leading to errors in the picking results. Our TM,
however, integrates information from nearby gathers to consis-
tently maintain the key tracking points. This results in robust per-
formance even in areas with a low SNR. Experimental evidence,
both from synthetic and real data, substantiates the efficacy of our
proposed method. However, the proposed method is not without
its limitations. For instance, the tracking process may be influenced
by outliers in the initial CMP gather. As we have suggested, this can
be mitigated by observing the clustering results and manually
selecting CMP gather without outliers to initiate tracking. However,
a possible more robust approach is to select multiple CMP gathers
to start the tracking algorithm separately and then merge the
ally picked velocity and its stacking results. The areas in the cyan and blue boxes are
(b) NMO stack of the data using velocity determined by TM; (c) the velocity obtained by
NMO stack of the data using the manually picked velocity.



Fig. 15. (a) Velocity model obtained by CM at SNR 1 dB. (b) Velocity model obtained by CM at SNR 10 dB. (c) Velocity model obtained by CM at SNR 50 dB. (d) Velocity model
obtained by TM at SNR 1 dB. (e) Velocity model obtained by TM at SNR 10 dB. (f) Velocity model obtained by TM at SNR 50 dB.

Fig. 16. Comparison of the stacked profiles obtained by CM and TMmethods under different SNRs. The areas in the red and blue boxes are magnified in the upper left corner of each
image. (a) The cluster center points and corresponding stacking results obtained by CM at SNR 1 dB. (b) The cluster center points and corresponding stacking results obtained by CM
at SNR 10 dB. (c) The cluster center points and corresponding stacking results obtained by CM at SNR 50 dB. (d) The tracked points and corresponding stacking results obtained by
TM at SNR 1 dB. (e) The tracked points and corresponding stacking results obtained by TM at SNR 10 dB. (f) The tracked points and corresponding stacking results obtained by TM at
SNR 50 dB.
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Fig. 17. (a) The cluster centers obtained by accelerated density clustering. The yellow arrow denotes the location of the outlier point, while the red dashed line indicates CDP 40. (b)
Tracked key points. (c) Post-processed tracked key points.
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tracking results for post-processing. This can effectively reduce the
impact of outliers and make our method more reliable. How to
design such post-processing algorithms is our future research
direction.
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