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a b s t r a c t

Gas chromatography-mass spectrometry (GC-MS) is an extremely important analytical technique that is
widely used in organic geochemistry. It is the only approach to capture biomarker features of organic
matter and provides the key evidence for oil-source correlation and thermal maturity determination.
However, the conventional way of processing and interpreting the mass chromatogram is both time-
consuming and labor-intensive, which increases the research cost and restrains extensive applications
of this method. To overcome this limitation, a correlation model is developed based on the convolution
neural network (CNN) to link the mass chromatogram and biomarker features of samples from the
Triassic Yanchang Formation, Ordos Basin, China. In this way, the mass chromatogram can be auto-
matically interpreted. This research first performs dimensionality reduction for 15 biomarker parameters
via the factor analysis and then quantifies the biomarker features using two indexes (i.e. MI and PMI) that
represent the organic matter thermal maturity and parent material type, respectively. Subsequently,
training, interpretation, and validation are performed multiple times using different CNN models to
optimize the model structure and hyper-parameter setting, with the mass chromatogram used as the
input and the obtained MI and PMI values for supervision (label). The optimized model presents high
accuracy in automatically interpreting the mass chromatogram, with R2 values typically above 0.85 and
0.80 for the thermal maturity and parent material interpretation results, respectively. The significance of
this research is twofold: (i) developing an efficient technique for geochemical research; (ii) more
importantly, demonstrating the potential of artificial intelligence in organic geochemistry and providing
vital references for future related studies.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Biomarker, also known as “molecular fossil”, refers to the
compound that originates from living organisms and presents some
typical features (Peters et al., 2007). By investigating biomarkers,
petroleum geochemists can extract information such as age, parent
material type, sedimentary environment, and thermal maturity of
organic matter from hydrocarbon fluids and deposits, which pro-
vides important references for hydrocarbon generation potential
assessment, thermal maturity evaluation, and oil-source correla-
tion. Biomarker analysis is regarded as one of the most
. Su).
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representative achievements in modern petroleum exploration
(Kaufman et al., 1990; Isaksen and Bohacs, 1995).

Gas chromatography-mass spectrometry (GC-MS) is the main
approach for evaluating biomarkers (Seifert and Moldowan, 1978;
Lin and Abbas, 1990; Peters et al., 2007). It can identify and quantify
typical biomarkers by separating the organic mixture with the
chromatograph and determining molecular structures of com-
pounds with the mass spectrometer. Mass chromatogram, as the
primary data produced by GC-MS, displays itself as a fluctuating
curve, with each hump (peak) representing an individual com-
pound and the peak area (or height) representing the corre-
sponding compound content. Therefore, various biomarker
features are associated with different shapes of mass chromato-
grams. Mass chromatograms of sterane (m/z¼ 217) and terpane (m/
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z ¼ 191) frequently used in the geochemical analysis are presented
in Fig. 1a and b.

However, it is hard to directly apply such mass chromatograms
to evaluation and investigation related to petroleum exploration,
because most petroleum explorationists are not proficient in
handling such data that need to be processed and interpreted by
technicians of organic geochemistry or analytical chemistry. The
typical analysis process includes labeling peaks, identifying com-
pounds, calculating peak areas, and summarizing the analysis re-
sults (Fig. 2), which will eventually produce the parameters that
can characterize the biomarkers, such as C29aaaS/(SþR), Ts/
(TsþTm), and Ga/C30ab. With the current approach and technique,
the wide application of GC-MS is constrained due to its high
dependence on geochemical/chemical professionals. In this
context, it is crucial to develop a method that can directly and
automatically investigate and extract information of interest from
mass chromatograms such as thermal maturity and parent material
type of organic matter.

Linking the mass chromatogram and the corresponding
biomarker feature is, in essence, an issue of supervised learning,
which can be addressed by applying the convolution neural
network (CNN) (Koeshidayatullah et al., 2020). The deep neural
network is incredibly competent to capture the variation pattern of
massive data (Reichstein et al., 2019) and performs better than
conventional data analysis methods (Bergen et al., 2019), which
makes it one of the cutting-edge techniques for probing geological
problems, including thin section analysis (Koeshidayatullah et al.,
2020), solid mineral deposit prediction (Li et al., 2020a; Zhang
et al., 2021a), elemental regularity analysis of underground water
(Yu et al., 2020), geophysical prospecting (Ho, 2009), and engi-
neering geology (Wei et al., 2021). Nonetheless, its application in
organic geochemistry is still rare.

The CNN method builds the correlation model between the
known data (independent variables, and in this case, mass chro-
matograms) and labels (dependent variables, and in this case,
biomarker features), which can achieve classification, regression, and
prediction of unknown data. Our initial idea is to apply machine
learning to the dataset of the conventional biomarker parameters
(e.g. Ts/(TsþTm) and Ga/C30ab), and yet this practice seems to be
similar to existing chemometrics methods in terms of the analysis
performance (Zumberge, 1987; Pan et al., 2017). Therefore, it is more
straightforward to apply artificial intelligence techniques in inter-
preting the original mass chromatogram, which can automatically
interpret biomarker features, eliminate numerous time-consuming
and labor-intensive steps in conventional methods, and more
importantly, improve the profundity and accuracy of the research.
Fig. 1. The mass chromatograms for (a) m/z ¼ 217 and (b) m/z ¼ 191, with involved typical b
Basin.
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For instance, the proposed method in this paper introduces extra
information, like the baseline shape of the mass chromatogram, into
the analysis, thereby contributing to good analysis performances
(Fig. 3).

2. Geological background

The Ordos Basin is one of the most important onshore petro-
liferous basins in China (Fig. 4a). Tectonically, it is located in the
western part of the North China craton, with stable internal
structures and rarely developed faults (Yang et al., 2006; Liu et al.,
2019). It consists of six major structural units, namely the northern
Yimeng Uplift, the southern Weibei Uplift, the eastern Jinxi Flexure
Belt, the western Tianhuan Depression and thrust belt, and the
central wide Yishan Slope (Li et al., 2020b).

The Triassic Yanchang Formation is divided into ten members
according to sedimentary cycles and lithological features (named as
Chang 10e1 from bottom to top) (Fig. 4b). This formation is the
sedimentary product of a complete lacustrine transgression and
regression cycle (Yang, 2004; Qu et al., 2020; Zhang et al., 2021b).
The Chang 7 member is a set of organic-matter-rich mudstone and
shale with a thickness up to 20�60 m, and it is interpreted to be
formed during the peak development of the lake (Li et al., 2020b).
This set of source rocks is featured by high organic matter abun-
dance, in which the shale is mostly of Type I and II1 organic matter,
with a TOC range of 8.0%�16.0%, where the mean value is 13.8%,
while the mudstone is mainly of Type II1 and II2 organic matter,
with a TOC range of 2.0%�6.0%, where the mean value is 3.7%. The
vitrinite reflectance (Ro) is in the range of 0.8%�1.0% for both
mudstone and shale (Yang et al., 2016), suggesting high thermal
maturity. In addition, controlled by the secondary sedimentary
cycles, smaller-scale sources are also developed to different degrees
in other members (Fig. 4b), particularly in the Chang 9 member (Li
et al., 2012; Yang et al., 2017; Zou et al., 2017). Numerous tight and
low-permeability oil reservoirs are developed in the good source-
reservoir rock assemblage formed by high-quality Chang 7 and
Chang 9 source rocks as well as widely distributed Yanchang For-
mation deltaic deposits (Zou, 2014).

3. Dataset preparation and model training

3.1. Sample types, pre-treatment, and GC-MS

A total of 108 core samples are collected, including 74 sandstone
samples and 34 mudstone samples. These samples are first cleaned
using distilled water, then fully dried, and grounded into 80-mesh
iomarkers in the mudstone sample collected at the depth of 2041 m in Well G21, Ordos



Fig. 2. The conventional processing workflow of the mass chromatogram is complex, time-consuming, and labor-intensive, typically, including (a) correlating the peaks of a
measured spectrum to the corresponding compound, according to the standard spectrum; (b) calculating the area of each peak via integration; (c) preparing the analysis report.
Only an extremely small part of the typical tasks is presented above, and in most cases nearly 100 peaks need to be identified and calculated via integration for a single sample.
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powders. Subsequently, the powder samples are put through the
Soxhlet extraction for 72 h using the trichloromethane as the sol-
vent, and alkanes are separated via chromatography. The alkane
analysis is performed via the GC-MS/MS method using the Agilent
7890A gas chromatography system connected in series with the
5975C mass spectrometer. The carrier gas is helium, and the
chromatographic column is the HP-5MS elastic quartz capillary
column (30 m � 250 mm � 0.25 mm). The ion source temperature is
230 �C, the inlet temperature is 250 �C, the quadrupole tempera-
ture is 150 �C, and the filament current is 35 mA. Heating is pro-
gramed as holding at the initial temperature of 100 �C for 2 min,
then heating to 300 �C at a rate of 3 �C/min, and holding at 300 �C
for 20 min. The mass chromatograms of terpane (m/z ¼ 191) and
sterane (m/z ¼ 217) are exported from the Agilent MassHunter
Workstation. All preparation and analysis are completed at the
State Key Laboratory of Oil and Gas Reservoir Geology and Exploi-
tation of the Southwest Petroleum University.
3.2. Labeling samples (factor analysis)

The supervised learning approach, including the CNN method,
requires a set of known labels for the algorithm to probe the cor-
relation between the data (independent variables) and labels
(dependent variables). In this research, the labels are the biomarker
features of the samples, such as thermal maturity and parent ma-
terial types. However, it is challenging to find individual indicators
that can sufficiently represent the biomarker features. For instance,
Ro is a reliable indicator for thermal maturity, but it is only appli-
cable to mudstone samples, which are not abundantly sampled in
most commercial oil fields. Biomarker parameters that can char-
acterize biomarkers are composite and thus cannot be directly used
for machine learning.

Given the above mentioned, this research performs
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dimensionality reduction and combination on 15 typical biomarker
parameters via the factor analysis (Table 1) (Rubinstein et al., 1975;
Seifert and Moldowan, 1978, 1980, 1986; Huang and Meinschein,
1979; Sieskind et al., 1979; Moldowan et al., 1985; Connan et al.,
1986; Kruge et al., 1990; Grande et al., 1993; Grice et al., 2001;
Peters et al., 2007). The resultant factor scores are used as the
values of the labels representing various biomarker features. The
nomenclature of the compounds of interest is shown in Table 2.

The factor analysis, derived from the principal component
analysis (PCA), is an important multivariate statistical analysis
method, and it has been extensively applied in various disciplines
including chemometrics (Park and Tauler, 2020). It groups param-
eters according to their variation patterns and develops a
comprehensive representation (namely the factor score) of multi-
ple parameters in the form of their linear combination. In this pa-
per, the factor analysis is performed using the IBM SPSS Statistics
according to the correlation matrix; the common factor extraction
criterion is set as the eigenvalue above one; the rotation is imple-
mented using the Varimax (max variance) with Kaiser Normaliza-
tion; the factor score is obtained via regression.
3.3. Construction and processing of the dataset

3.3.1. Mass chromatogram digitalization
The mass chromatograms of terpane (m/z ¼ 191) and sterane

(m/z ¼ 217) are the most important biomarker mass chromato-
grams, and most of the current classic and important biomarker
parameters are built based on them. Due to the limited sample
quantity, an appropriate width of the mass chromatogram fed to
CNN is required to ensure the robustness and significance of sta-
tistics. The main parts of sterane (m/z ¼ 217) and terpane (m/
z ¼ 191) mass chromatograms are separated from the whole mass
chromatograms (Fig. 5), including the interval from the left side of



Fig. 3. The mass chromatogram contains abundant information, and yet the feature extraction based on the conventional method is limited. For instance, as the thermal maturity
grows (from (a) to (c)), the baseline of the spectrum is gradually elevated and becomes increasingly irregular, besides the variations of the biomarker peaks. This is because the
relevant biomarker is gradually degraded underground due to high temperature, which reduces the biomarker abundance and relatively expands the baseline morphology (namely
the effects of noise signals). The conventional parameter system cannot characterize such variations, which thus cannot be compared among samples. However, with the original
mass chromatogram used as the input, the CNN method can fully incorporate such features, and this helps to improve the robustness of research.
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the C27 rearranged sterane (20S) peak to the right side of the C29
sterane (aaa20R) peak and the interval from the left side of the Ts
peak to the right side of the C30ba peak, respectively. These sepa-
rated main parts are believed to preserve most biomarker infor-
mation of the two types of mass chromatograms.

Because the exported data formats are different for varied
models and brands of GC-MS systems, it is ideal to use universal JPG
files as the input data. Although the CNN method can efficiently
analyze image data, most area of the input image is empty (with no
effective information), because only the curve in the mass chro-
matogram is the information of interest. Given this, converting the
curve of the mass chromatogram into one-dimensional data can
effectively reduce the proportions of ineffective and redundant
data and may result in higher implementation efficiency of the
algorithm.

The curve displayed in the image can be well converted into
one-dimensional data by scanning pixels in a column-wise manner
and recording the Y-coordinates of the curve according to a pre-
specified gray threshold (Fig. 5a). Considering the widths of the
used mass chromatograms, the lateral pixel count for sterane is set
as 900, and that for terpane is set as 400. Correspondingly, the input
data fed to CNN is a first-order tensor composed of 1300 elements
(Fig. 5b).

The dataset with data and labels is constructed by correlating
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the first-order tensor set to the factor scores obtained in Section 3.2.
Subsequently, the ranking of the dataset is sufficiently disorganized
by randomly re-arranging. The first 70% of the data are used for
training the CNN model, while the rest 30% are used for testing the
interpretation capacity of the CNN model.
3.3.2. Normalization
Normalization of data is a necessary step before machine

learning so that the differences of data in dimensions and magni-
tudes are eliminated to speed up the model training and improve
accuracy (Rojas, 1996; Anysz et al., 2016). The Min-Max normali-
zation (Eq. (1)) is performed in this paper, which converts all data
into the range between zero and one.

x0 ¼ x�minðxÞ
maxðxÞ �minðxÞ (1)

where x and x0 are the original and normalized data, respectively;
minðxÞ and maxðxÞ are the minimum and maximum of the same
type of elements for the whole dataset, respectively.

The label values (i.e. the obtained factor scores) are also
normalized.



Fig. 4. (a) Distributions of source rocks and locations of sampling wells in the study area (modified from Li et al. (2012) and Yang et al. (2016)). (b) The stratigraphic column, source-reservoir-cap rock assemblage (modified from Qu et al.
(2020) and Zhang et al. (2021b)).
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Table 1
Biomarker parameters used in this research and their geochemical implications.

Biomarker parameters m/z Major geochemical implications References

C29abb/(aaaþabb) 217 Maturity Seifert and Moldowan (1986)
C29aaaS/(SþR) 217 Maturity
C30ba/C30ab 191 Maturity Seifert and Moldowan (1980)
Ts/(TsþTm) 191 Maturity Seifert and Moldowan (1978)
C30*/C29Ts 191 More complex, but related to maturity Peters et al. (2007)
C30*/C30ab 191 More complex, but related to maturity
C27/C27�29 sterane 217 Parent material types Huang and Meinschein (1979) and Moldowan et al. (1985)
C28/C27�29 sterane 217 Parent material types
C29/C27�29 sterane 217 Parent material types
Rearranged sterane/sterane 217 Clay-rich environment? Rubinstein et al. (1975) and Sieskind et al. (1979)
C24TET/C30ab 191 Salinity? Connan et al. (1986) and Grice et al. (2001)
Ga/C30ab 191 Salinity
SC19e26TT/C30ab 191 More complex, mainly maturity or salinity? Kruge et al. (1990) and Grande et al. (1993)
C23TT/C30ab 191 More complex, mainly maturity or salinity?
C29ab/C30ab 191 Anoxic carbonate or marl environment Peters et al. (2007)

Note: "?" indicates that the relevant knowledge has not been fully confirmed.

Table 2
Nomenclature of related biomarkers.

Abbreviations Full names Abbreviations Full names

C27aaa S 5a(H),14a(H),17a(H)eC27 sterane (20S) TT Tricyclic terpane
C27abb R 5a(H),14b(H),17b(H)eC27 sterane (20R) TET Tetracyclic terpane
C27abb S 5a(H),14b(H),17b(H)eC27 sterane (20S) Ts 18a(H)eC27 trisnorhopane
C27aaa R 5a(H),14a(H),17a(H)eC27 sterane (20R) Tm 17a(H)eC27 trisnorhopane
C28aaa S 24-methyl-5a(H),14a(H),17a(H)eC28 sterane (20S) C29ab 17a(H), 21b(H)eC29 norhopane
C28abb R 24-methyl-5a(H),14b(H),17b(H)eC28 sterane (20R) C29Ts 18a(H), 21b(H)eC29 norneohopane
C28abb S 24-methyl-5a(H),14b(H),17b(H)eC28 sterane (20S) C30* 17a(H)eC30 rearranged hopane
C28aaa R 24-methyl-5a(H),14a(H),17a(H)eC28 sterane (20R) C29ba 17b(H), 21a(H)eC29 norhopane
C29aaa S 24-ethyl-5a(H),14a(H),17a(H)eC29 sterane (20S) C30ab 17a(H), 21b(H)eC30 hopane
C29abb R 24-ethyl-5a(H),14b(H),17b(H)eC29 sterane (20R) C30ba 17b (H), 21a(H)eC30 hopane
C29abb S 24-ethyl-5a(H),14b(H),17b(H)eC29 sterane (20S) Ga Gammacerane
C29aaa R 24-ethyl-5a(H),14a(H),17a(H)eC29 sterane (20R)

Fig. 5. (a) Workflow to convert the mass chromatogram into a first-order tensor. (b) The spectrum ranges for m/z ¼ 217 and m/z ¼ 191 used in this research and the final input for
the CNN model. Each red dot in the image is converted into a corresponding number.
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3.4. CNN architecture introduction

CNN is considered an important step forward for neural network
technology (Lecun et al., 1998) and is one of the most important
757
deep learning models. It has great capacities of feature extraction
and generalization and presents the analysis accuracy even higher
than those of manual works for some datasets (Niu and Suen, 2012;
Lin et al., 2020). Compared with the conventional neural network,



Fig. 6. The overall architecture of 1D-CNN.
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the local connectivity and weight-sharing characteristics of CNN
effectively reduce themodel parameter quantity (Lecun et al., 1998)
and improve the model trainability. Since the input data of this
research is a first-order tensor, the 1D-CNN structure is adopted,
which includes the input layer, convolution layer, pooling layer,
fully-connected layer, and output layer (Fig. 6).
3.5. CNN training

The model of this paper is constructed based on Python (v3.7.6)
and TensorFlow (v2.0.0) and the calculation is performed on a PC
with Intel Xeon E5-2678 v3 CPU and NVIDIA GeForce RTX 2080 Ti
GPU.
Table 3
Factor score coefficient matrix.

Serial number Biomarker parameters MI PMI

1 C30*/C29Ts 0.195 0.041
2 C30*/C30ab 0.139 �0.004
3 C29abb/(aaaþabb) 0.231 0.188
4 C29aaaS/(SþR) 0.273 0.036
5 C30ba/C30ab �0.083 0.116
6 Ts/(TsþTm) 0.24 �0.029
7 C27/C27�29 sterane �0.038 �0.349
8 C28/C27�29 sterane �0.03 0.065
9 C29/C27�29 sterane 0.074 0.376
10 Rearranged sterane/sterane 0.118 �0.214
11 SC19�26TT/C30ab �0.083 �0.024
12 C24TET/C30ab 0.024 0.04
13 Ga/C30ab �0.015 �0.028
14 C23TT/C30ab �0.075 �0.029
15 C29ab/C30ab �0.16 0.136
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The hyper-parameters of the neural network greatly affect the
training and interpretation performances of the model (Du et al.,
2021; Li et al., 2021), which typically includes the architecture
complexity (the layer quantity of the model), epoch, and optimizer
type. Generally, a model with a more complex network structure
can fit amore complicated variation pattern, and yet is also prone to
over-fitting and thus accuracy compromising. Therefore, the hyper-
parameters shall be set scientifically and properly. Nonetheless, the
practice is mostly empirical or based on a trial-and-error manner,
since no thorough insights have been gained at present for setting
hyper-parameters (Pan et al., 2010; Zhu et al., 2012). Given this, it is
meaningful to test the effects of typical hyper-parameters,
including layer quantity, epoch quantity, batch size, and optimizer
type.

The interpretation performance is assessed using the average
absolute error (MAE, Eq. (2)) and the coefficient of determination
(R2, Eq. (3)):

MAE¼ 1
m

Xm

i¼1

jyi � pij (2)

R2¼ 1�

Pm

i¼1
ðyi � piÞ2

Pm

i¼1
ðyi � yÞ2

(3)

wherem is the quantity of the output results; yi is the actual result
of the i-th sample; pi is the corresponding interpretation; and y is
the average of the actual results.



Fig. 7. Histograms of MI (a) and PMI (b) of the collected samples (after normalization).

Fig. 8. Four CNN models with varied architectures used for testing, and Models A, B, C,
and D are found with ascending architecture complexity.

Fig. 9. Scatter-box plots showing the differences of the interpretation performances among
the X-axis are consistent with those in Fig. 8.

K.-M. Su, J.-G. Lu, J. Yu et al. Petroleum Science 21 (2024) 752e764

759
4. Results and discussion

4.1. Geochemical characteristics of the samples (based on factor
analysis)

The factor analysis extracts four common factors from the
original 15 biomarker parameters. In other words, the original pa-
rameters are combined to form four comprehensive parameter
groups. The cumulative variance percentage stands for the ratio of
the information reflected by the four common factors to that con-
tained by the original data, and it reaches 79.751% (Table S1), which
indicates satisfactory dimensionality reduction. The factor loading
matrix (Table S2) shows:

(1) The original parameters related to Factor 1 are C23TT/C30ab,
SC19�26TT/C30ab, and C24TET/C30ab.

(2) The original parameters related to Factor 2 are C29aaaS/
(SþR), Ts/(TsþTm), and C30*/C29Ts.

(3) The original parameters related to Factor 3 are C27/C27�29
sterane and C29/C27�29 sterane.

(4) The original parameters related to Factor 4 are C28/C27�29
sterane and C30ba/C30ab.

According to the current understandings of organic geochem-
istry (Peters et al., 2007), the original parameters related to Factor 2
are the typical parameters for thermal maturity; those to Factor 3,
for parent material types (i.e. aquatic organisms or terrestrial
higher plants). In contrast, it is tricky to determine the meanings of
Factors 1 and 4. Factor 1 presents a positive correlation with the
abundance of the tricyclic terpane, which is influenced by both
the CNN models with varied architectures: (a) MAE and (b) R2. The letters listed below



Fig. 10. Scatter-box plots showing the differences of the interpretation performances among the CNN models with varied optimizers: (a) MAE and (b) R2.

Fig. 11. Scatter-box plots showing the differences of the interpretation performances among the CNN models with varied epoch quantities: (a) MAE and (b) R2.
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water salinity and thermal maturity (Kruge et al., 1990; Grande
et al., 1993). Thus, it is hard to assign a deterministic geochemical
significance to Factor 1. As for Factor 4, unfortunately, we have no
clues on its deterministic geochemical significance. Given this, we
have to discard Factors 1 and 4. Nonetheless, we believe that the
proposed CNN method is effective and valid if it can well capture
the information on the thermal maturity and parent material type
of the samples since these are important geochemical parameters
for source rock evaluation.

For the convenience of discussion, scores of Factors 2 and 3 are
named maturity index (MI, Eq. (4)) and parent material type index
(PMI, Eq. (5)), respectively. These two indexes are used as the labels
for training the CNN model, and their values are normalized into
the range from zero to one. The signs of the factor loadings
(Table S2) show that for MI, zero indicates low maturity and one,
high maturity; for PMI, zero demonstrates the dominance of
aquatic organisms, and one, the dominance of terrestrial higher
plants. It should be noted that these indexes indicate relative values
within the specific sample set.

MI¼
Xn

j¼1

ajxj (4)
760
PMI¼
Xn

j¼1

bjxj (5)

where j is the serial number of the biomarker parameter (Table 3); n
is the number of the biomarker parameters, which is 15 in this
research; a and b are the factor score coefficients for MI and PMI,
respectively (Table 3); x is the value of the corresponding
biomarker parameter (Table S3).

The MI and PMI distributions of our sample set both follow the
Gaussian distribution, and they are yet both somewhat left-skewed
(Fig. 7).

4.2. Determination of the model structure and hyper-parameters

Due to the randomness of the neural network algorithm, the
model may produce slightly different results for different runs (Wei
et al., 2021). TakingMI as an example, training and interpretation of
each model are all repeated 30 times, and the interpretation per-
formance of each time is recorded. By doing so, we manage to
obtain the distribution characteristics of MAE and R2 of different
models and optimize the CNN model structure and hyper-
parameter setting.

CNN models with varied architectures (Fig. 8) present different



Fig. 12. Comparison between the interpreted (scattered dots in blue) and actual (broken lines in red) values of the samples in the testing set. For observation convenience, the
samples are rearranged along the X-axis, with the ascending Y values. The results of three rounds of training and interpretation are shown in subfigures (a)�(f), respectively. The
data are sufficiently shuffled for each round to avoid discrepancies in the interpretation performance caused by the potential differences between the training and testing sets.

Fig. 13. Since the automatically interpreted maturity (MI) and the actual analysis
maturity (Ro, %) appear to be correlated, it is possible to determine the Ro of uniden-
tified samples from the MI.
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interpretation performances (Fig. 9). Generally, the multi-layer
models C and D present the interpretation accuracy considerably
higher than those of the single-layer models A and B. Moreover,
properly expanding the size of the model (i.e. the kernel quantity)
can improve the interpretation robustness, which is manifested as
the considerably narrowed distribution ranges of MAE and R2 as
indicated by the comparison between Models A and B. However,
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this has no notable contributions to improving interpretation ac-
curacy. Given the above analysis, a multi-layer CNN model is
preferred for this research.

The various optimizers for CNN models tested in this research
can all deliver relatively satisfactory interpretation performances,
except the RMSprop optimizer (Fig. 10). However when the
computation time is nearly equal to that of other optimizers, the
Adagrad optimizer (Duchi et al., 2011) can produce the best inter-
pretation results (in model D, SGD is 13 s, Adam is 12 s, RMSprop is
13 s, Adagrad is 13 s).

The interpretation performance of the CNN model varies with
the epoch quantity (Fig. 11), and the relatively good interpretation
performance occurs with 1000 epochs (R2 averages 0.87). With
more epochs, the interpretation is not further improved, and
instead, R2 gradually declines, which in most cases suggests over-
fitting (Chuang et al., 2000).

To sum up, the preferred structure and hyper-parameters of the
CNN model are determined: the multi-layer CNN structure (i.e.
Model D in Fig. 8), the Adagrad optimizer, 1000 epochs and batch
size of 32.

4.3. Automated analysis performance and error analysis

With the above-determined model structure and hyper-
parameters, the CNN model is trained using the mass chromato-
grams of sterane (m/z ¼ 217) and terpane (m/z ¼ 191) of the 76
samples in the training set. Then, the data of 32 samples are used
for performance presentation and model validation.



Fig. 14. Automated interpretation results using the proposed CNN model for the publicly-reported mass chromatograms. The corresponding sample attributes are (a) Hilba C-1
Source rock 2760�2795 m (Xiao et al., 2019); (b) Fahdene Fm. (Hallek and Montacer, 2021); (c) Chang 6�Chang 10 members of the Yanchang Fm. (Bai et al., 2013a); (d) Well
Feng189 (Bai et al., 2013b). No modification is made to the images, except for eliminating the markers added by their authors. It is seen that low image quality does not affect the
analysis of the CNN model. It should be noted that the results produced by the CNN method are relative values, applicable to the used specific dataset. Therefore, to produce the
results of globally universal value needs to build a dataset with a gargantuan volume on a global basis, which obviously requires joint efforts of researchers from all over the world.
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The differences between the interpreted and actual scores are
shown in Fig. 12. The results for three rounds of training and
interpretation are presented to avoid the interpretation perfor-
mance discrepancy attributed to inappropriately dividing the
samples into the training and testing sets. The data are shuffled in
each round. No considerable discrepancies are found among the
results of the three rounds (the distributions of MAE and R2 values
are consistent with each other) and therefore the interpretation
performance of the model is robust.

In terms of the two indexes, the interpretation performance of
the model for MI is apparently better than that of PMI. Although
their R2 values are both above 0.8, the distributions of the inter-
preted PMI values (Fig. 12b, d, f) are visually more irregular than
those of theMI interpretation results (Fig. 12a, c, e). We believe that
this is mainly attributed to the labels of the dataset. According to
the factor analysis result (Table S1), MI is dependent on six
biomarker parameters (e.g. sterane C29aaaS/(SþR)), with a variance
contribution of 23.4%; PMI is related to three parameters, with a
variance contribution of 18.5%. These suggest that PMI is intrinsi-
cally prone to more errors than MI, and thus it is natural that the
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CNN model delivers an interpretation performance of PMI that is
inferior to that of MI. Consequently, the future study shall focus on
increasing the number of samples and introducing extra di-
mensions into data analysis.

When the findings of automatic interpretation are compared to
the actual measured maturity (using Ro as a reference), it appears
that there is a correlation between the two, which indicates the
results of automatic interpretation have excellent accuracy (Fig. 13).
In conclusion, the CNN model shows significant promise for
geochemical interpretation of GC-MS data, and it is anticipated that
increasing the amount and quality of data sets would further
improve its performance. We also apply the proposed model to
interpreting the publicly-reported mass chromatograms (Bai et al.,
2013a, 2013b; Xiao et al., 2019; Hallek andMontacer, 2021), and the
results are shown in Fig. 14. The CNN-based automated biomarker
interpretation technique and software are expected to be soon
comprehensively applied in the research of petroleum geology (a
demo software is designed for this research, see the Supplementary
Video).

In the long run, the significance of this method is not only



Fig. 15. The technical principles of the “full-compounds oil-source correlation”, which is the development orientation of our proposed method. The mass chromatogram curves
corresponding to multiple m/z values for a single oil sample are converted into a two-dimensional dataset and fed into the CNN model for deep learning. Theoretically, with
sufficient mass chromatogram curves (importing the mass chromatograms at an identical interval of the m/z value), the converted two-dimensional dataset can fully represent the
features of all compounds in the oil sample. Therefore, it is referred to as the “full-compounds correlation”. However, this goal requires extremely high-quality data.
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providing convenience for relevant studies but also enabling more
in-depth analysis of data from optimized points of view (depths
and dimensions). Due to limited data availability, this research only
uses the mass chromatograms of sterane (m/z ¼ 217) and terpane
(m/z ¼ 191), which should be viewed as a pilot study that can be
followed by much more relevant and detailed research. The future
study obviously can utilize the mass chromatograms for more m/z
values. Themass chromatogram for eachm/zwill be represented by
a row of data, and thus the curves for various m/z values will be
integrated into the form of data in different rows. By doing so, mass
chromatograms of each sample can be converted into two-
dimensional data that can be learned by the CNN model (Fig. 15).
Theoretically, if the number of mass chromatographic curves are
sufficiently large (e.g. importing the mass chromatograms at a
constant m/z interval), the converted two-dimensional data will be
able to fully represent the characteristics of all compounds in the oil
sample, and the full-compounds oil-source correlation will be
realized, which will have profound effects upon the organic
geochemistry.
5. Conclusions

Conventional GC-MS methods are time-consuming, labor-
intensive, and more importantly, of generally poor performance.
They fail to efficiently and comprehensively extract the information
from the mass chromatogram and thus many meaningful features
cannot be interpreted, which to some extent restrains the devel-
opment of the theory and technique of organic geochemistry.

Given this, this research makes tentative efforts to apply the
convolution neural network (CNN) to link the original mass chro-
matogram to the biomarker feature. The mass chromatograms of
the samples collected from the Triassic Yanchang Formation in the
Ordos Basin are used to build the dataset, accompanied by the
automated interpretation of the thermal maturity and parent ma-
terial type features of organic matter.

The significance of this work is not only enabling automatic
interpretation of the mass chromatogram and providing conve-
nience for relevant studies but also presenting a preliminary
attempt for applications of artificial intelligence to organic
geochemistry. The developedmethod is of tremendous commercial
value and is expected to have major effects upon the oil-source
763
correlation and favorable target prediction based on geochemical
data.

Future research will be significantly facilitated by increasing the
quantity and quality of the data.
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