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a b s t r a c t

Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon
production in petroleum engineering. Recent deep learning technique has been receiving more interest
due to the great potential to deal with pore pressure prediction. However, most of the traditional deep
learning models are less efficient to address generalization problems. To fill this technical gap, in this
work, we developed a new adaptive physics-informed deep learning model with high generalization
capability to predict pore pressure values directly from seismic data. Specifically, the new model, named
CGP-NN, consists of a novel parametric features extraction approach (1DCPP), a stacked multilayer gated
recurrent model (multilayer GRU), and an adaptive physics-informed loss function. Through machine
training, the developed model can automatically select the optimal physical model to constrain the re-
sults for each pore pressure prediction. The CGP-NN model has the best generalization when the physics-
related metric l¼ 0:5. A hybrid approach combining Eaton and Bowers methods is also proposed to build
machine-learnable labels for solving the problem of few labels. To validate the developed model and
methodology, a case study on a complex reservoir in Tarim Basin was further performed to demonstrate
the high accuracy on the pore pressure prediction of new wells along with the strong generalization
ability. The adaptive physics-informed deep learning approach presented here has potential application
in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Formation pore pressure is one of the most important reservoir
parameters during hydrocarbon exploration and development, and
it is critical for the analysis of multiphase fluid flow behaviors, well
stability, and rational design of drilling plans (Agrawal et al., 2011;
Dutta, 2002; Zhang, 2011). Accurate prediction of formation pore
pressure can help optimize well structure design, improve me-
chanical drilling speed, maintain reservoir integrity, and subse-
quently enhance oil/gas recovery and production efficiency (Najibi
et al., 2017; Opara and Onuoha, 2009). Besides, the accurate pre-
diction of pore pressure values is also in favor of de-risking drilling
accidents and reducing operation costs.
y Elsevier B.V. on behalf of KeAi Co
Conventional methods to predict pore pressure are usually
developed based on physical models. Hottmann and Johnson
(1965) were probably the first researchers to apply numerical
methods to predict pore pressures. They proposed a method to
estimate pore pressure directly using intersection plates based on
the geology and drilling experience in Miocene and Oligocene
shales in Upper Texas and Southern Louisiana Gulf Coast. Their
results showed that the porosity and the sonic transit time became
smaller with depth. The values conforming to the normal trend line
were hydrostatic pressures, while the anomalous values deviating
from the normal trend line were abnormal pore pressures. By
studying the functional relationship between the pore pressure and
the anomalous values, the intersection plot was then established.
This intersection plate can directly read out the pore pressure at a
certain depth. However, this method is purely empirical and is only
suitable for a specific area (Zhang, 2011). Most commonly, the Eaton
method (Eaton, 1975) based on the mechanism of under-
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compaction has been widely applied for predicting formation pore
pressure (Keshavarzi and Jahanbakhshi, 2013; Zhang, 2011; Zhang
and Yin, 2017). The Eaton method is an effective stress method
that establishes a relationship between the sonic transit time, re-
sistivity, and pore pressure (Bowers, 1995). It usually requires the
establishment of a normal compaction trend line. In the original
Eaton equation, it is difficult to determine the normal shale re-
sistivity under hydrostatic pore pressure conditions (Bowers, 1995;
Zhang, 2011). Zhang proposed a fast method to calculate the
compaction trend based on the relationship between the measured
resistivity and the burial depth of the formation at normal pressure
(Zhang, 2011). Based on the Eaton method, Bowers considered that
the causes of anomalous high pressure were mainly under
compaction and fluid expansion, and he proposed a loading model
and an unloading model for these two mechanisms, respectively
(Bowers, 1995, 2001). The method has been proved and applied
well in high-pressure areas such as the Gulf of Mexico and the
North Sea.

Besides, other methods such as Bayesian statistics (Oughton
et al., 2018; Zhang et al., 2022), inversion method of geophysical
anisotropic elastic parameter (Chen et al., 2023; Chen and Zong,
2022), and layer velocities interpreted from seismic data (Boer
et al., 2006; Dutta, 2002) are also developed for pore pressure
forecast. More methods have been proposed recently (Wessling
et al., 2013; Yu et al., 2014; Gao et al., 2021; Zhang, 2011; Zhang
and Yin, 2017; Gutierrez et al., 2006; Lopez et al., 2004), and they
are extremely helpful in improving the accuracy of pore pressure
prediction. However, the integrated model based on various pet-
rophysical data still faces some challenges: (1) the establishment of
normal trend lines and the determination of constant coefficients
are highly influenced by human factors with great uncertainty
(Bowers, 1995; Eaton, 1975); (2) a single model may be applicable
only to a single formation, but is not suitable for pore pressure
prediction in complex formations (Wang and Wang, 2015); (3)
high-precision prediction methods for predicting pore pressure
directly from high-dimensional data (e.g., seismic data) before
drilling are still relatively scarce (Opara and Onuoha, 2009; Sayers
et al., 2002).

Recently, the success of deepmachine learning in a broad aspect
of science and engineering topics (LeCun et al., 2015; Oprea et al.,
2022; Jin et al., 2022; Ye et al., 2022) has shown its great poten-
tial in petroleum industry on the prediction of pore pressure.
Weinzierl and Wiese (2021) used multidimensional rock physical
properties for machine learning training to predict pore pressure.
Huang et al. (2022) calculated pore pressure after machine training
of logging and drilling parameters to predict effective stress and
compared the prediction results of machine learning methods such
as random forest, support vector machines, and multilayer per-
ceptron neural networks. Matinkia et al. (2022) used an optimized
deep learning model trained on log data to predict formation pore
pressure and compared the prediction results with previous
traditional physical methods. An increasing number of researchers
are using machine learning methods to find nonlinear mapping
relationships between real drilling and logging parameters and
anomalous pore pressures (Farsi et al., 2021; Matinkia et al., 2022;
Li et al., 2023). These studies have led to great success in the
application of machine learning to pore pressure prediction.

However, the direct application of higher dimensional data such
as seismic data to the pore pressure prediction problem is still quite
challenging, especially in making it highly generalizable. Moreover,
literature review indicates that most of the studies focus on sand-
stone and shale formations, with less research on pore pressure in
carbonate rocks. It also shows more focus on real drilling and log-
ging parameters, and less research onmachine learningmethods to
predict pore pressure from seismic data. However, pre-drill pore
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pressure prediction is often very important. Considering the
complexity of pore pressure prediction in carbonate rocks, machine
learningmethods have significant advantages in complex nonlinear
modeling, and thus it is of great significance to study its application.
This research proposes a machine learning method for direct pre-
diction of pore pressure from seismic data under physical model
constraints based on carbonate rock data from the Tarim Basin.

The main structure of the work is organized as follows: We first
introduce the adaptive physics-informed deep learning model in
Section 2. The new 1D convolution pyramid pooling (1DCPP)
model, a multilayer GRU neural network and an adaptive physics-
informed constraint method will be described in detail. Methods
for evaluating the performance of prediction results are also
introduced. The associated seismic attribute data and pore pressure
prediction workflow are described in Section 3. Section 4 presents
the result and discussion, including data pre-processing, physical
regularization optimization, comparison of test results, regional
pressure distribution, and some shortcomings. Finally, the conclu-
sions are presented, and more data details are provided in
Appendix A and B.

2. Physics-informed deep learning model

In this work, we present a physics-informed deep learning
model named CGP-NN. As shown in Fig. 1, CGP-NN contains a new
1DCPPmodel, a multilayer GRU neural network and a new adaptive
physics-informed constraint method.

First, in the 1DCPP model, 1D convolution focus on extracting
the features of the high-dimensional parameters. Then, the features
are transformed into a vector feature by the pyramid pooling
technique. Finally, a multilayer GRU network concentrates on pre-
diction of pore pressure. During the training process of the multi-
layer GRU, the adaptive physics-informed constraint method
automatically selects the most appropriate physical model as a
constraint based on the error variation among the predicted values,
the calculated values of the physical model and labeled values. In
the following, we describe the CGP-NN model in detail.

2.1. 1DCPP model

Previous studies (Dong et al., 2016; Huang et al., 2017; Matinkia
et al., 2022; Li et al., 2023; Szegedy et al., 2015) have proved that
CNN is capable of effectively extracting important features of pa-
rameters, and integrating from shallow local features to obtain
deeper high-dimensional features. Different CNN models have
nearly identical characteristics and processing methods, with the
key difference being the dimensionality of the input data and how
the convolution kernel slides through the data. The 1D-CNN model
can achieve feature extraction and regression analysis of samples
directly by adjusting the convolutional kernel size and shift direc-
tion compared to the other models. Therefore, the 1D-CNNmodel is
capable of avoiding the complex operations required to construct
and process multidimensional samples.

Classical CNN models use multiple fully connected layers after
the convolutional layers, which leads to a dramatic increase in the
number of trainable parameters, the amount of computer compu-
tation and the required storage space. In this work, the pyramid
pooling method (He et al., 2015) is adopted to solve this problem,
which helps avoid the repeated computation of the convolutional
features. We define a new network structure with a pyramid
pooling layer, which can extract the maximum value from a certain
direction along a fixed window range for the parameter features
given by the earlier convolutional layers. The pyramid pooling
operation is an extension of the maximum pooling operation. Un-
like traditional maximum pooling layers, the same set of



Fig. 1. Framework of the CGP-NN model.
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convolutional feature parameters can be pooled multiple times by
pyramid pooling. The feature parameters of the 1DCPP structure is
generated from a window of input data, which can be described by
the following equations:

ck ¼ f ðw , xk:kþh�1 þ bÞ (1)

c¼ ½c1; c2;/;cn�hþ1� (2)

bc0 ¼ ½maxfc1; c2;/;cmg;maxfcm; cmþ1;/;c2mg;/;� (3)

bc 00 ¼ �
max

�
c1; c2;/;cp

�
;max

�
cp; cpþ1;/;c2p

�
;/;

�
(4)

bc¼ bc04bc 00
4;/;4bc 000/ (5)

where xk:kþh�1 is the concatenation of the input data xk; xkþ1;

/; xkþh�1; w, h, b are a filter, a window, and a bias term, respec-
tively; f is a non-linear function such as the hyperbolic tangent; ck is
a feature generated from a window of data xk:kþh�1; c is a feature
map generated from each window of data fx1:h;x2:hþ1;/; xn�hþ1:ng;
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bc0 is the first maximum pooling operation for c, based on the pool

sizem; bc 00
is the second maximum pooling operation for c, based on

the pool size p; bc is the feature that concatenates bc0;bc 00
;/;bc 000/;4 is

the concatenation operator.
The schematic diagram of the 1DCPP model is illustrated in

Fig. 2, which contains three 1DCPP structures. In this convolution
pyramid pooling structure, the data matrix of 8*5 uses a convolu-
tion operation: 3 filters, 3 kernels and 1 stride, where the filters
represent the number of parametric features to be extracted, kernel
is the window size of the filter, and stride is the magnitude of each
filter shift, respectively. The result of the convolution operation of
each filter will generate 1 feature vector after the action of the
activation function. Therefore, 3 filters will generate 3 feature
vectors with dimension 6*1. Then, pyramid pooling techniques of
size 2*1 and 3*1 are used on these 3 feature vectors respectively. In
this way, multiple sets of pooled vectors with different features are
obtained. Finally, the data vector for training can be obtained by the
flatten and concatenate operations. The 1DCPPmodel combines the
advantages of 1DCNN (Kim, 2014; Zhao, 2019) and spatial pyramid
pooling (He et al., 2015), which is capable of extracting parametric
features from high-dimensional seismic data and thus enhancing



Fig. 2. The schematic diagram of a 1DCPP model (hyper-parameters: numbers of filters ¼ 3, kernel size ¼ 3, stride ¼ 1, pool size ¼ 2, 3).
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the learning efficiency of the CGP-NN model as well as saving
computational resources.

Moreover, a 1DCPP model can consist of multiple 1DCPP struc-
tures. Multiple combinations of kernels and strides can be achieved
with different 1DCPP structures. In this case, it will be 3 structures
in the 1DCPP model with 1 stride. Then the data features can be
trained by multilayer GRU after connecting the data features
through the concatenate layer and the pooling layer.
2.2. Multilayer GRU method

The depth-dependent pore pressure prediction problem can be
considered as a typical time series problem, while the seismic data
can be viewed as a set of multivariate time series sample data. GRU
is capable of handling these forecasting problems (Cho et al., 2014;
Chung et al., 2014). The training result of GRU is similar to the result
of LSTM (Hochreiter and Schmidhuber, 1997), but it will greatly
simplify computer operations. A basic GRU unit consists of an up-
date gate and a reset gate, which can be described by the following
equations:

zt¼ sigmoidðWz , xt þUz , ht�1Þ (6)

rt¼ sigmoidðWr , xt þUr , ht�1Þ (7)

~ht ¼ tanhðW , xt þUðrt 1ht�1ÞÞ (8)
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ht ¼ð1� ztÞ ,ht�1 þ zt,~ht (9)

where zt is an update gate; rt is a reset gate; ~ht is a candidate
activation; ht is the activation at time t; Sigmoid function is a
function that ranges from 0 to 1; Wz, Wr, Uz, Ur are the weight pa-
rameters of each gate; xt is the input value at time t; ht-1 is the
previous activation which is a hidden state at time t-1; the symbol
1 is the Hadamard product, which is the multiplication of the
corresponding entries in the operation matrix.

Fig. 3 shows a multilayer GRUmodel to predict the value of pore
pressure. The parametric features of 1DCPPmodel are passed to the
first GRU layer. Each layer of GRU receives the information from the
previous adjacent layer, and the value of pore pressure can be
predicted after the training of L-layer GRU. Usually, the GRU model
can better extract nonlinear features as the number of layers in-
creases. However, a GRU model with 2e4 layers is proposed to
prevent overfitting problems and increased computer computation.

2.3. Adaptive physics-informed loss function

Loss function is used to evaluate the inconsistency between the
predicted value of the model and the real value. Usually, it is a non-
negative real-valued function shown as follows:

Lmse ¼ 1
N

XN
i¼1

�
Pipred � Piactu

�2
(10)

where Lmse is the mean-squared loss function; N is the number of



Fig. 3. The structure of multilayer GRU model.
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samples; Pipred; P
i
actu are the predicted and actual values of the i-th

sample respectively.
The robustness of the model will be better if the loss function is

smaller. However, one of the problems is that the training process
only seeks the minimum number loss value, leading to overfitting
of the training data. Overfitting can lead to a decrease in the
generalization ability of the model.

Physics-informed training method is an effective way to in-
crease the generalization prediction performance of the training
model. By using physics-informed training, the trainable parame-
ters are penalized by a large update step if the predicted values are
far from the corresponding physical metrics. This means that
physics-informed training suppresses the overfitting problem of
training data by providing a solution with physical constrains. The
physics-informed loss function can be denoted by Eq. (11):

Lphy ¼
1
N

XN
i¼1

�
Pipred � Piphy

�2
(11)

where Lphy is the physics-informed loss function;N is the number of
samples; Pipred; P

i
phy are the predicted values and physics metrics of

the i-th sample respectively. The minimum sum of the mean-
squared loss and the physics-informed loss represents the most
optimal model training result.

It is well known that different theoretical models are applicable
to different stratigraphic conditions. However, no single theoretical
model can be applied to meet all stratigraphic conditions. In this
work, two theoretical methods of pore pressure prediction are used
as adaptive physical regularities, namely Eatonmethod and Bowers
method. The pore pressure obtained by Eaton method can be
expressed as

Peaton ¼
�
rover � ðrover � rwÞ

	
Dtn
Dt


n�
gH (12)

where rover is the overburden stress gradient, g/cm3; rw is the
hydrostatic pore pressure gradient, g/cm3; Dtn is the compressional
transit time in shales at the normal pressure, us/ft; Dt is the
compressional transit time obtained from the logs, ms/ft; n is the
Eaton index, which usually sets to 3; g is the acceleration of gravity,
m/s2; H is the depth of the prediction point, m. The pore pressure
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predicted by Bowers method can be shown as

Pbowers ¼ sv �
�vp � vml

A

�1
B

(13)

where sv is the overburden stress, MPa; vp is the compressional
velocity at the prediction point, km/s; vml is the compressional
velocity in the ground surface, km/s; A, B are the experience co-
efficients of the study area.

Then, the adaptive physics-informed loss function of different
pore pressure theoretical prediction methods (shown in Eq. (11))
can be written as Eq. (14):

Lphy ¼
1
N

XN
i¼1

h
min

����Pipred � Pieaton
���; ���Pipred � Pibowers

����i2 (14)

where Pieaton; P
i
bowers are predicted values of the i-th sample by

Eaton method and Bowers method, respectively. At each iteration
of training, the adaptive physics-informed loss function will seek
the closest prediction to one of the three theoretical pore pressure
prediction methods by using the algorithm in Table 1. Finally, the
adaptive physics-informed loss function can be described as

Lloss ¼ argmin
�
Lmse þ lLphy

�
(15)

where l is a hyperparameter representing physics-related metrics.
2.4. Evaluating prediction performance

The coefficient of determination (R2) is used to evaluate the
performance of the prediction results (Tjur, 2009), which can be
expressed as Eq. (16):

R2¼ 1�

PM
i¼1

�
Pture � Ppred

�2
PM
i¼1

ðPture � PmeanÞ2 þ K:epsilonðÞ
(16)

where Pture, Ppred, Pmean are the actual pore pressure values of the
formation, the model prediction values, and the average of the
actual pressure, respectively; M is the number of the samples;



Table 1
Algorithm of the adaptive physics-informed loss function.

Algorithm: the pseudocode of adaptive physics-informed loss function

Input: the predicted values Ppred, the physical model: Peaton, Pbowers

1. Calculate the values of a, b, where a ¼
���Pipred � Pieaton

���, b ¼
���Pipred � Pibowers

���
2. Retain the minimum value of a, b
3. Calculate the values of Lloss by using the minimum values
4. Until Lloss is smaller than the specified error
5. End training
Output: the final prediction values
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K.epsilon() is a very small value, and equal to 10�7, in order to
prevent the zero-denominator appearing. The coefficient of deter-
mination measures how well a statistical model predicts an
outcome. The advantages of this method are that it is suitable for
nonlinear correlation between variables, and its values can only
range between 0 and 1. In other words, the closer the value of R2 is
to 1, the better the performance of the prediction model and the
more accurate the prediction results.
3. Data and methodology

3.1. Seismic data

To investigate the validity of the CGP-NN approach, a complex
reservoir in the Tarim Basin was used as a case study. Data of depth
and 11 typical seismic attributes were selected as data inputs for
the original machine learning model (Cibin, 1999; Subrahmanyam
and Rao, 2008). The summary of these seismic attributes is
shown in Table 2. Besides, the statistical description of different
seismic attributes for machine learning is shown in Table 3. The
seismic attributes have been converted to the depth domain data by
a priori processing of drilled well constraints. The lithology of the
studied strata is very complex, with several major sedimentary
groups containing a variety of lithologies. The depth of wells in the
working area reached more than 6000 m.
3.2. Well data

In the oil industry, using data from drilled wells as a constraint is
a good strategy to better predict pore pressures when pre-drill
prediction methods are used. As shown in Fig. 4, three ultra-deep
straight wells (P1eP3) were used as training wells and the
remaining one (P4) was used as a predictive test well. The target
well can test the accuracy of the prediction results by comparing
them with measured pore pressure values after training. Table 4
presents the measured pressure values of these wells.
Table 2
Summary of typical seismic attributes used for machine learning.

No. Attributes

1 Instantaneous frequency
2 Instantaneous Q
3 Maximum curvature
4 Oriented filter
5 Reflection intensity
6 Relative acoustic impedance
7 RMS amplitude
8 Sampling point gradient
9 Spectral decomposition
10 Time-lapse
11 Tomography focusing
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3.3. Methodology

The workflow of pore pressure prediction methodology using
seismic data is shown in Fig. 5. The key steps of the method are as
follows:

Step 1. Gathered data. It is necessary to extract the well seismic
track attribute data for deep learning. The summary of typical
seismic attributes used for training and testing are shown in
Table 2. In addition, the small number of pore pressure measure-
ments, as shown in Table 4, do not directly serve as labels for ma-
chine learning. This research uses a hybrid approach that combines
the advantages of Eaton and Bowers methods as learning labels.
This will be explained in detail in section 4.1.

Step 2. Data processing. Different seismic attributes have
different magnitudes and large differences in numerical magni-
tudes, which can seriously affect the machine learning prediction
results. To eliminate these effects, normalization and parameteri-
zation of the data are necessary. Normalization and parameteriza-
tion can speed up the training of the model and improve the
prediction accuracy of the model.

Step 3. Training set, validation set, and test set. Rational division
of data into training set, validation set and test set is effective to
improve the generalization ability of prediction model. In this
study, the data of well P4 is used as the test data, and then an equal
amount of data is randomly selected from Wells P1eP3 as the
validation data and the remaining data as the training data. The
ratio of training set, verification set and test set is about 6.6:1.7:1.7,
which is close to 6:2:2.

Step 4. Pore pressure prediction using machine learning. This
CGP-NN model was used to predict the pore pressure. The 1DCPP
method is used to extract data features, the multilayer GRUmethod
is used for data training, and the adaptive physics-informed loss
function is used for physical regularization optimization.

Step 5. Engineering application. After testing the model with P4
wells, this research generalized the prediction model to the entire
study area. Section 4 will present a comparison of the
Comment

Mean amplitude of the wavelet
Related to attenuation
Maximum curvature of reflectors
Related to the direction and angle
Distinguish between different lithologies
Is an indicator of impedance changes, in a relative sense
Information about the energy content
Reflection waveform
Reflect the amplitude information of different frequency components
Show continuity and discontinuity
Enhance fault texture



Table 3
Statistical description of different seismic attributes for machine learning.

Statistical index Seismic attributes No.

1 2 3 4 5 6 7 8 9 10 11

Minimum 128.67 0.00 �3.37 �21,461.43 �2414.90 0.00 154.20 15.50 0.00 �21,468.00 �6559.60
Median 6455.31 1.22 0.00 �129.38 4.51 0.99 4082.76 162.00 95.00 �124.00 9.09
Mean 7523.17 1.13 �0.02 �9.54 3.19 2148.19 5142.51 183.28 104.38 �9.02 7.46
Maximum 21,569.02 1.57 0.75 19,896.60 3146.98 722,891.56 19,479.13 531.00 255.00 19,902.00 6807.88
Count 7188

Fig. 4. Well relative location distribution. Seismic data from P1 to P3 are used for
training, while P4 is used for predictive test.
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generalization results. Moreover, with the promotion of engineer-
ing applications, it can continuously promote the improvement of
CGP-NN model.
4. Results and discussion

4.1. Pre-processing

4.1.1. Label
Supervisedmachine learningmethods require a large number of

labels, and a small number of pore pressure measurement points
cannot satisfy the training requirements for machine learning.
Table 4
Measured pore pressure over well P1 to P4.

Well P1

Zone Depth, m pp, Psi pp, MPa

N1j 3518.06 7099.37 48.96
N1j 4249.31 10,205.48 70.38
N1j 4277.43 12,643.73 87.19
N1j 4883.68 14,435.76 99.55
E2e3s 5346.18 15,043.11 103.74
E1-2km1 5564.93 15,421.38 106.35
E1-2km2 5630.56 14,322.97 98.77
E1-2km3 5889.93 15,652.39 107.94
E1-2km4 6039.93 12,617.64 87.01
K1bs 6074.31 16,573.98 114.29

Well P2

Zone Depth, m pp, Psi pp, MPa

N1k 2500 4644.412 32
N1-2k 3518.057 7105.556 48.95728
N1j 3914 11,320.75 78
N1j 4277.432 12,654.74 87.19118
N1j 4850 13,287.22 91.54898
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Therefore, the measurement points need to be expanded into labels
that can be used for machine learning. This study presents a hybrid
approach that combines the Eaton and Bowers methods to estab-
lish machine-learnable labels. As shown in Fig. 6, the prediction
results of the Eaton method are more accurate in the depth interval
of 3000e4250 m, while the Bowers method is more accurate in the
depth interval of 4250e5700 m. The hybrid approach is that these
relatively accurate results are combined as the optimal prediction,
which is more consistent with the actual measured points. Fig. 6
shows the labeling process for well P1, while the other wells are
presented in Appendix A.

4.1.2. Normalization
Normalization can improve the stability of parameter features,

which is helpful to improve the performance of machine learning.
Seismic attributes are processed as input data by the minimum and
maximum normalization approach as shown in equation:

X0 ¼ X � Xmean

Xmax � Xmin
(17)

where X0 is the normalized value of the input data, and Xmean, Xmax,
Xmin correspond to the average, maximum and minimum values of
the input data, respectively. Then the parametric features for CGP-
NN model training are generated after PCA-based parameteriza-
tion. The principal component of the PCA-based method is set to
0.95.

To obtain a prediction model with better generalization capa-
bility, the seismic data for training (P1eP3) are further divided into
training and validation sets. The ratio of training set, verification set
and test set is close to 6:2:2. When the training effect of both
training and validation sets are high and close, we believe that the
Well P4

Zone Depth, m pp, Psi pp, MPa

N1k 2110 3802.612 26.2
N1-2k 3160 6908.563 47.6
N1j 3989 8751.814 60.3
N1j 4609 11,248.19 77.5
N1j 5109 12,830.19 88.4
N1j 5329 14,034.83 96.7
E2e3s 5454 13,062.41 90
E1-2km1 5598 15,457.18 106.5
E1-2km2 5807 12,336.72 85
e e e e

Well P3

Zone Depth, m pp, Psi pp, MPa

N1j 4800 13,134.98 90.5
e e e e

e e e e

e e e e

e e e e



Fig. 5. Workflow of pore pressure prediction using seismic data.
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acquiredmodel has the strongest generalization ability and the best
prediction efficiency.

4.1.3. Parameterization
PCA is a principal components analysis technique that converts

multiple indicators into several composite indicators (Yang et al.,
2004). This makes the data set of parametric features easier to
train and reduces the computational cost. The algorithm of the PCA
method is presented in Table 5 and the results of seismic attributes
data after PCA are illustrated in Fig. 7.

4.2. Developing CGP-NN model

4.2.1. CGP-NN architecture
Fig. 8 details the CGP-NN architecture for this specific case study.

In the structure of 1DCPP, multiple pooling operations are carried
out on multiple parallel convolutional layers, and the concatenate
layer is innovatively used to connect these pooling layers after the
flatten operation. The parametric features of the 1DCPP model
provide the information about the formation near the predicted
point. In this work, we set the kernel window size to 2, 4, 8. And the
data interval along the formation depth is 1 m. Therefore, the
kernel window size 2, 4, 8 correspond to a formation depth of 4, 8,
16 m at the predicted points. Then the data features can be trained
by multilayer GRU network for prediction of pore pressure. These
hyper-parameters are set according to the data parameter
892
characteristics, which are presented in Table 6. The total parameter
numbers for the case study are 133,414.
4.2.2. Physics-informed regularization
To better demonstrate the advantages of the adaptive physical

constraint model, we repeated training using different physical
terms l(0,0.5,1). Additional l(0.2,0.4,0.6,0.8) training results are
presented in Appendix B. l is a hyperparameter representing
physics-related metrics. The different values of l represent the
extent to which physical constraints are involved in machine
learning. A value of zero means no physical constraint is engaged,
while a value of one means that the degree of the constraint is at
maximum.

Fig. 9 shows the prediction accuracy for each l value. The
training set with l ¼ 0 has the highest training accuracy of 0.99.
However, the accuracy of the validation set is not high, which
means the generalization ability of the model is very weak.

The training accuracy of the training set with l ¼ 0.5 is 0.97, but
the accuracy of the validation set is also very high, indicating that
this model is more ideal. It is worth noting that the model with
l ¼ 0.5 achieves a high accuracy with a very short number of
epochs, as shown in Fig. 9. This suggests that the physics-informed
predictive model has an accelerating convergence effect.

It should also be noted that the training accuracy of both the
training set and validation set with l ¼ 1 is low, although both
prediction accuracies remain consistent. This is due to the excessive



Fig. 6. Pore pressure labels for well P1.

Table 5
Algorithm of the PCA method.

Algorithm: the pseudocode of the PCA method

Input: the seismic data matrix: m rows, n columns
1. Transpose the seismic data matrix, called X
2. Zero-averaging each row of matrix X
3. Calculate the eigenvalues and eigenvectors of the covariance matrix of matrix X
4. Arrange the feature vectors in descending order of corresponding eigenvalue size
5. Take the first K rows as the matrix P
6. Multiply the matrix P with the matrix X, namely matrix Y
Output: dimensionality reduction to K-dimensional matrix data: Y
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involvement of physical constraints, leading to a reduction in the
accuracy of the machine learning model. In other words, the pre-
diction model is under-fitted because of the over-constraint of the
physical criterion. Since the physical model can only represent part
of the stratigraphic information, it is understood that over-
constraint will stop the machine learning model from learning
more information on the stratigraphic features.

Fig. 10 presents the loss values of training and validation sets
with different l. It is clear that the under fitting of l ¼ 1 leads to a
large loss value compared to l ¼ 0 or l ¼ 0.5. Similarly, the gradual
separation of the loss values from the training and validation sets
for l¼ 0 shows that this model is overfitting. However, for the ideal
model, the loss values of the training and validation sets with
893
l ¼ 0.5 are relatively small and very close.

4.3. Target well validation

The formation of target well P4 is very complex, consisting of a
variety of lithologies including mudstone, sandstone, salt-gypsum
rock and carbonate rock. The lithology of the formation in the
well section 4000e4304 m and 4304e5300 m is mainly mudstone
and salt-gypsum rock, respectively; the main composition of the
well section 5300e5555 m is mudstone and salt-gypsum rock
interbed; the well section 5555e6005 m is composed of mudstone,
sandstone, salt-gypsum rock section and carbonate rock.

From the logging data shown in Fig. 11, a higher gamma content



Fig. 7. Schematic diagram of the PCA method.
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is observed at the well depth less than 4304 m. Meanwhile, the
sonic transit time gradually decreases, indicating a higher fraction
of mudstone and that the formation abnormal pore pressure
mechanism is mainly consistent with the under-compaction
mechanism. At the well depth greater than 4304 m, however,
both gamma and sonic transit time curves fluctuate drastically,
suggesting that the formation pore pressure is caused by complex
and diverse mechanisms. This is in line with the observation of a
large variation of the pore pressure values measured at this section.
Fig. 8. The CGP-NN archite
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Therefore, the accurate prediction of pore pressure in this well from
conventionally physical methods is very challenging.

The prediction results of well P4 as a test set using the optimal
prediction model with l ¼ 0.5 are shown in Fig. 11. The correlation
coefficient between the actual and predicted points of the new
method reached 0.94, whichwas evaluated by Pearson’s method. In
particular, the prediction results were compared with those of the
Eatonmethod, Bowers method, and CNNmethod. Correspondingly,
the correlation coefficients of the corresponding methods were
0.85, 0.89, 0.9.

The Pearson’s method can be expressed as the following
equation:

r¼

Pk
j

�
Ppredj � Ppred

��
Pactualj � Pactual

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j

�
Ppredj � Ppred

�2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j

�
Pactualj � Pactual

�2s (18)

where Ppredj ; Pactualj are the j-th predicted and actual value,

respectively; Ppred; Pactual are the mean values of the predicted and
actual values, respectively. The closer of calculated correlation co-
efficient to 1, themore precise of prediction results compared to the
measured data, implying the strong capacity of applying the
developed CGP-NN model on pore pressure prediction directly
using seismic data.
4.4. Regional pressure distribution

Figs. 12 and 13 show the pressure distribution in the inline and
crossline profiles over the P4 well, respectively. The Eaton method
cture for this research.



Table 6
CGP-NN architecture for the case study.

Type Component Layers Hyper-parameter Output shape

Encoder Original e e [None,13,1]
PCA e p ¼ 0.95 [None,8,1]
Input [None,8,1]
1DCPP Conv1D_1 (Input) f ¼ 6, k ¼ 2, s ¼ 1 [None,8,6]

Maxpooling1d_1 (Conv1D_1) pool ¼ 2 [None,4,6]
Flatten_1 (Maxpooling1d_1) e [None,24]
Maxpooling1d_2 (Conv1D_1) pool ¼ 1 [None,8,6]
Flatten_2 (Maxpooling1d_2) e [None,48]
Conv1D_2 (Input) f ¼ 6, k ¼ 4, s ¼ 1 [None,5,6]
Maxpooling1d_3 (Conv1D_2) pool ¼ 2 [None,2,6]
Flatten_3 (Maxpooling1d_3) e [None,12]
Maxpooling1d_4 (Conv1D_2) pool ¼ 1 [None,5,6]
Flatten_4 (Maxpooling1d_4) e [None,30]
Conv1D_3 (Input) f ¼ 6, k ¼ 8, s ¼ 1 [None,1,6]
Maxpooling1d_5 (Conv1D_3) pool ¼ 1 [None,1,6]
Flatten_5 (Maxpooling1d_5) e [None,6]
Concatenate (Flatten_1,2,3,4,5) e [None,120]
Repeat vector (Concatenate) e [None,3,120]

Decoder Multilayer GRU GRU layer_1 (Repeat vector) u ¼ 128, d ¼ 0.4 [None,3,128]
GRU layer_2 (GRU layer_1) u ¼ 64, d ¼ 0.2 [None,64]

Output Dense (GRU layer_2) e [None,1]

Note: p ¼ percentage of components left, f ¼ numbers of filters, k ¼ kernel size, s ¼ strides, pool ¼ pool size, u ¼ number of neural units, d ¼ recurrent dropout. The total
parameter numbers for the case study are 133,414.

Fig. 9. The accuracy of training and validation sets with different l

Fig. 10. The loss of training and validation sets with different l
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Fig. 11. Prediction results of pore pressure for well P4.
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underestimates the pore pressure, as described in the literature
(Bowers, 1995). The prediction results of the Eaton method seem to
have better continuity, but the accuracy is low and does not match
the actual situation. The actual drilling shows that the pore pres-
sure varies greatly not only with depth but also laterally at different
locations in the region. The CGP-NN method presents this true
characteristic well, with discontinuities in the lateral pressure
variations. In particular, the CGP-NN method accurately predicts
the overflow point of the actual drilled well. Moreover, the CGP-NN
method also predicts various risk points where overflowmay occur
during actual drilling. These results further demonstrate the
generalization capability of the CGP-NN model.
4.5. Model limitation

It is worth noting that the proposed model in this work con-
siders two theoretical models as physical constraints, implicitly
assuming that the abnormal pore pressure is mainly caused by two
mechanisms. In the future, the adaptive physics-informed loss
function would be improved by adding physical models which
represent more causal mechanisms of pore pressure.
896
5. Conclusions

In this study, we propose a novel adaptive physics-informed
deep learning model with the name CGP-NN, which can predict
the pore pressure values directly from seismic attributes data. The
CGP-NNmodel mainly consists of a 1DCPP model, a multilayer GRU
neural network and an adaptive physics-informed constraint
method. First, the 1DCPP model extracts multidimensional para-
metric features from seismic data. Second, the corresponding pore
pressure values are predicted by a multilayer GRU model with an
adaptive physics-informed constraint method. To enhance the
learning efficiency of the CGP-NN model and save computational
resources, we propose a 1DCPP structure combining the advantages
of 1DCNN and spatial pyramid pooling. To further verify the
generalization and predictive ability of the developed CGP-NN
model, a case study on a complex reservoir is conducted. The
actual measured data demonstrated the effectiveness and gener-
alization of the proposed model and method. Furthermore, since
the adaptive physics-informedmethod can automatically select the
most appropriate physical model as a constraint based on the error
variation between the predicted and labeled values, the most
appropriate physical model here may reflect the main cause of the
formation pore pressure at this depth, which can be further



Fig. 12. Inline profile pressure distribution over P4 well.

Fig. 13. Crossline profile pressure distribution over P4 well.

X. Zhang, Y.-H. Lu, Y. Jin et al. Petroleum Science 21 (2024) 885e902
investigated later.
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Appendix A
Fig. A1. Pore pressure labels for well P2.
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Fig. A2. Pore pressure labels for well P3.
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Appendix B
Fig. B1. The accuracy and loss of training and validation sets with l¼ 0:2
Fig. B2. The accuracy and loss of training and validation sets with l¼ 0:4
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Fig. B3. The accuracy and loss of training and validation sets with l¼ 0:6

Fig. B4. The accuracy and loss of training and validation sets with l¼ 0:8
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