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a b s t r a c t

With the successful application and breakthrough of deep learning technology in image segmentation,
there has been continuous development in the field of seismic facies interpretation using convolutional
neural networks. These intelligent and automated methods significantly reduce manual labor, particu-
larly in the laborious task of manually labeling seismic facies. However, the extensive demand for
training data imposes limitations on their wider application. To overcome this challenge, we adopt the
UNet architecture as the foundational network structure for seismic facies classification, which has
demonstrated effective segmentation results even with small-sample training data. Additionally, we
integrate spatial pyramid pooling and dilated convolution modules into the network architecture to
enhance the perception of spatial information across a broader range. The seismic facies classification
test on the public data from the F3 block verifies the superior performance of our proposed improved
network structure in delineating seismic facies boundaries. Comparative analysis against the traditional
UNet model reveals that our method achieves more accurate predictive classification results, as evi-
denced by various evaluation metrics for image segmentation. Obviously, the classification accuracy
reaches an impressive 96%. Furthermore, the results of seismic facies classification in the seismic slice
dimension provide further confirmation of the superior performance of our proposed method, which
accurately defines the range of different seismic facies. This approach holds significant potential for
analyzing geological patterns and extracting valuable depositional information.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Seismic facies serve as comprehensive representations of sedi-
mentary characteristics in seismic data. In terms of understanding
the underground depositional environment and lithofacies distri-
bution, seismic facies interpretation plays a crucial role in the
analysis of geological conditions and prediction for oil and gas
distribution. Manual seismic facies analysis heavily relies on in-
terpreters, which is time-consuming and subjective and inevitably
susceptible to non-objective factors. Hence, it is necessary to
develop fast and effective automatic seismic facies interpretation
schemes. In recent years, with the significant progress and break-
through of deep learning technology in the field of computer vision,
y Elsevier B.V. on behalf of KeAi Co
seismic facies classification based on deep learning approaches has
greatly attracted the attention of researchers and has achieved
substantial developments and applications.

The highly nonlinear nature of geophysical problems fits the
application characteristics of deep learning technology, which can
mine high-dimensional nonlinear relationships from data itself
when specific mathematical expressions cannot be established.
Taking advantage of this feature, deep learning approaches have
found widespread applications across various disciplines (Saxena
et al., 2021; Wang et al., 2021; Liu et al., 2021a). Particularly, con-
volutional neural networks (CNNs) have been demonstrated with
good application effects in pattern recognition, target detection and
image processing. Due on the similarity between seismic data
interpretation and computer image processing, CNNs have been
extensively utilized in seismic data interpretation. Compared to
seismic data processing based on the deep learning technology, the
combination of seismic data interpretation with deep learning
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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approaches shows stronger stability and migration generalization
ability. Consequently, in recent few years, including fault detection
(Liu et al., 2020b; Hu et al., 2022), salt dome identification (Amin
and Deriche, 2016; Alfarhan et al., 2022; Chung et al., 2022), hori-
zon tracking (Wang et al., 2022; Birnie and Hansteen, 2022; Shi
et al., 2022), first-break picking (Duan and Zhang, 2020; Yuan
et al., 2018; Han et al., 2022) and seismic facies classification
(Puzyrev and Elders, 2021; Nasim et al., 2022; Chai et al., 2022; Liu
et al., 2020a) have been combined and applied with deep learning
methods. Among them, as the major goals of seismic stratigraphy,
seismic facies classification is increasingly integrated with deep
learning techniques.

Seismic facies analysis approaches can be broadly divided into
two major categories: one is seismic-attributes-based analysis
methods (Liu et al., 2019; Mirzakhanian and Hashemi, 2022; Qi
et al., 2020), and the other is waveform-clustering-based classifi-
cation approaches (Duan et al., 2019; Zhang et al., 2021; Feng et al.,
2021). Compared with manual seismic facies interpretation, the
introduction and application of various different seismic attributes
in deep neural network models have significantly improved the
efficiency of seismic facies classification. However, due to the
numerous seismic attributes, interpretation work is heavy. In
addition, the relationship between various seismic attributes and
the target geological task is complicated. Consequently, Selecting
the appropriate attributes and evaluating the classification results
are very difficult. Although deep learning alleviates the difficulty in
attributes selection and improves the reliability of analysis results
to some extent. However, the main challenge for deep-learning-
based seismic facies classification remains the selection of appro-
priate characterization. Waveform clustering-based methods offer
an alternative to the limitations of seismic attribute analysis and
open up new ideas for seismic facies classification. The most
commonly used waveform clustering algorithms include K-means
clustering (Song et al., 2021), principal component analysis (PCA)
(Babikir et al., 2022) and the self-organizing map (SOM) (Liu et al.,
2021b). These methods are unsupervised machine learning tech-
niques that do not rely on the labeled data, but they usually come at
the cost of lower classification accuracy and more difficult opti-
mization process. For example, it is difficult to determine the most
reasonable initial clustering center for the K-means clustering al-
gorithm, which requires multiple iterations and the classification
results are often the local optimal solution. With the advancement
of image segmentation algorithm based on deep feature extraction
(Yin et al., 2020; Liu et al., 2018; Xie et al., 2016; Zhao et al., 2015),
the seismic facies recognition method of waveform classification
based on the deep CNNs has become a research hot-spot. In
contrast to unsupervised clustering algorithms, the deep CNNs ar-
chitectures also obtain high-precision classification results even
with small training samples.

Deep CNNs are widely used in image segmentation. Its charac-
teristics, such as weight sharing and local connections, result in the
network having a small number of parameters and being easy to
train. The fully convolutional network (FCN) replaces the fully
connected layers in the classical CNNs structure with convolutional
layers, enabling it to handle any size of inputs and achieve pixel-
level image segmentation (Shelhamer et al., 2017). FCN realizes
the end-to-end image segmentation, but the details of its seg-
mentation results still need improvement. To address this issue, the
UNet structure is developed. UNet is a variant network of FCN,
which follows the structural features of encoders and decoders. The
entire network structure consists of three main parts: down-
sampling, up-sampling, and skip connections. During down-
sampling, the image is compressed, the receptive field continues
to grow, and the convolutional kernel perceives more low-
frequency information. In the up-sampling process, the
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information from each stage of down-sampling is integrated
through skip connections. The image resolution is restored in
combination with the information from each level. UNet excels at
solving cell-level segmentation tasks and has been demonstrated to
performwell on small training samples initially (Ronneberger et al.,
2015). Different from FCN, which integrates features by adding the
corresponding pixel values of feature maps during up-sampling.
While the UNet integrates features by concatenation, which re-
tains more dimensional and position information. Consequently,
the UNet architecture can make full use of shallow and deep fea-
tures, which is beneficial to image segmentation (Noh et al., 2015).
In the geophysical application fields, UNet has been successfully
used for fault detection (Wu et al., 2019) and seismic facies classi-
fication (Qian et al., 2018; Tolstaya and Egorov, 2022; Zhang et al.,
2020).

To combine the advantages of UNet model for training on small
samples with the potentials of supervised learning, we propose an
improved deep dilated convolutional neural network with spatial
pyramid pooling module (DCSPP) for seismic facies classification.
Taking the UNet structures as the basic network configurations, the
spatial pyramid pooling module (SPPM) is introduced into the
network structure to improve the ability to obtain the global in-
formation of the model. Additionally, during the down-sampling
process of the network, we strategically employ dilated convolu-
tional layers to expand the receptive field. The pooling of different
scales can perceive input information of different sizes, while the
expansion of the receptive field allows to detect and segment the
larger targets. By combining these two modules with UNet, the
classification accuracy is further improved. The paper is organized
as follows. First, we sort out the problem and explain the proposed
network architectures. Then, we provide specific and detailed de-
scriptions of the network's structure blocks, the features and
principles of spatial pyramid pooling and dilated convolution
modules. Next, the training process and performance of the pro-
posed network are evaluated. We illustrate the advantages of the
DCSPP network model by testing it on the public F3 seismic data.
Subsequently, through the visualization of internal feature maps
and training accuracy, we evaluate the network architectures using
various image segmentation evaluation indicators, which objec-
tively demonstrates the effectiveness and reliability of the pro-
posed method. Finally, we conduct the tentative experiments with
field data. The test results show that the proposed network struc-
ture achieves better classification effect and has certain practicality
and generalization ability.

2. Methodology

Seismic facies classification can be regarded as a special appli-
cation of image segmentation problems, which is essentially to take
advantage of the differences between seismic waveforms. By
dividing seismic profiles into multiple single-channel images and
feeding them into the network structures, pixel-level classification
prediction are achieved. The abundance of seismic data provides
the prerequisites for the application of deep learning techniques.
However, many redundant information contained in seismic data
also weakens the application performance. Thus, this requires the
network to extract useful information related to the classification
target during the training process and abandon the interference of
useless information. Deep CNNs meet this requirement through
multiple layers of convolution and sampling. Taking the UNet ar-
chitecture as an example, the two ends of the structure capture the
detailed information of the image. The image is large at this time
and many details are preserved. The middle part of the structure
obtains the low-frequency information, which extracts more
boundary information as the receptive field increases continuously
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during down-sampling. During the up-sampling process to restore
the image resolution, the skip connections retain the image infor-
mation at all levels. Consequently, the network can remember all
the information contained in the image. Therefore, UNet model
achieves good classification results even with limited training
samples.

The proposed DCSPP network not only inherits the advantages
of UNet in small sample training, but also better handles the global
and detailed information. The workflow of the DCSPP network
structure for seismic facies classification includes the following
steps: (1) Network structure construction. Firstly, seismic profiles
are divided to make training samples. Then, the DCSPP network
architecture is built by incorporating spatial pyramid pooling and
dilated convolutionmodules into the UNet framework. (2) Network
training and optimization. The training and validation set are split
to train the network structure. Comparative tests of different
network structures are conducted to verify the effectiveness of the
proposed method. By deploying the hybrid dilated convolution
(HDC) principle, the classification effect is further improved. During
training, the network learns high-dimensional features associated
with seismic facies and expands the receptive field. (3) Model
visualization and result evaluation. From the two aspects of clas-
sification accuracy and the change of internal feature maps to
visualize and understand the training process of the network
intuitively. Furthermore, various indicators are used to evaluate the
classification results of the network model. The evaluation pa-
rameters objectively show that the DCSPP network structure has
better migration generalization ability. (4) Field data tests. Based on
data augmentation and transfer learning technologies, the experi-
mental test of seismic facies classification with field data is carried
out. Additionally, the experimental results are analyzed to illustrate
the effectiveness and applicability of the proposed network
architectures.

3. Neural network architectures

3.1. UNet

The UNet model is a segmentation network derived from the
FCN. As the pioneering work of semantic segmentation network,
FCN has the following three main characteristics. (1) Replacing the
fully connected layers at the end of the FCN model with convolu-
tional layers allows the network to adapt to any size of input.
Benefiting from the characteristics of weight sharing and local
connection of convolutional operation, the computational
complexity and model size are greatly reduced. (2) FCN employs
the bilinear interpolation for up-sampling. The resolution of the
image is restored and the pixel-wise prediction is provided. (3) If
up-sampling operates directly based on the down-sampling feature
maps, it will lose a lot of detailed information and blur image edges.
Therefore, FCN introduces skip connections into the network ar-
chitecture to integrate the shallow information through pixel
addition, which helps to restore image details.

Due to the characteristics of small datasets and large single
images in medical images, the segmentation effect of FCN is not
satisfactory. However, the UNet structure has achieved remarkable
results with only a few dozen medical image datasets. Fig. 1 dis-
plays a schematic of the UNet structure for seismic facies classifi-
cation. It consists of two parts: encoding and decoding. Each layer
of the encoding part contains two convolutional layers with a
convolutional kernel size of 3 � 3 and a maximum pooling layer
with a pooling kernel of 2 � 2. After the input seismic section is
convoluted and sampled layer by layer in the encoding blocks, the
image size is halved layer by layer while the number of channels is
doubled layer by layer. The receptive field gradually increases and
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the number of channels is expanded into 1024. Consequently, the
network can perceive and recognize the boundary and low-
frequency information of the image, which is crucial and valuable
for seismic facies analysis. Each block of the decoding part contains
a transposed convolutional layer with a convolution kernel size of
2 � 2, a dimensional concatenation layer, and two convolutional
layers with a convolutional kernel size of 3 � 3. During the up-
sampling process, the size of the feature map gradually expands
to the original size, the number of channels is compressed to 64.
The network perceives more high-frequency and texture informa-
tion. In addition, the concatenation layer in each block of up-
sampling receives feature maps with different levels from the
down-sampling process. This skip connection allows the network
to utilize both shallow and deep features, which alleviates the
problem of insufficient and incomplete information during up-
sampling. Meanwhile, the feature map retains more dimensional
and positional information through feature integration by concat-
enation approach, which is beneficial for pixel-level prediction and
segmentation tasks.

In addition to the interpolation method used for up-sampling,
up-pooling and transposed convolution are also common
methods for up-sampling. Fig. 2 illustrates the up-sampling process
of up-pooling after maximum pooling and the up-sampling process
of transposed convolution. The up-pooling process restores the
image size by filling with zero values, which preserves the position
information of the maximum value within the pooling kernel
range. However, it is evident that the up-pooling cannot restore the
original data, the pooling process retains the main information
while discarding some of it. As a result, there is a lack of information
during the up-sampling process. The maximum information
completion can only be achieved by filling in zero values to ensure
the integrity of the information.

Transposed convolution, also known as deconvolution, is a
special convolution used for up-sampling to expand the feature
map. The up-sampling process is completed by flipping the
convolution kernel and then convolution with the feature map. In
addition to the same function of restoring image resolution as up-
pooling, the biggest difference between transposed convolution
and up-pooling is that the transposed convolution process has
parameters to learn, so that an optimal up-sampling method can be
learned. Theoretically, transposed convolution can realize up-
pooling operations, as long as the parameters of the convolu-
tional kernel are set appropriately. Moreover, transposed convo-
lution itself is a convolution operation. Therefore, it combines all
the advantages of convolution operations, which significantly
benefits in reducing the model's complexity. Additionally, trans-
posed convolution enables feature visualization during the image
processing in the neural network, which facilitates the reasonable
adjustment and optimization of the network structure according to
the visualization results. Hence, we apply the transposed convo-
lution operation to restore the resolution of the input seismic
profiles and maximize the preservation and recovery of image in-
formation to provide complete image information for seismic facies
analysis.

3.2. Spatial pyramid pooling

In the UNet structure, the fixed convolutional kernel size of
3 � 3 allows the network to extract target features with only a
single receptive size. This limitation hinders the network from fully
capturing important spatial information. The acquisition of global
information is crucial for image segmentation problems. Therefore,
we introduce the SPPM into the network structure, which aims to
preserve the global information through pooling at different scales.
The network considers the characteristics of multiple receiving



Fig. 1. Architectures of the UNet model. Rectangles of different colors denote the feature map corresponding to different operations. The number of channels is displayed at the
bottom for each feature map. The network consists of four down-sampling convolutional blocks, an intermediate feature layer, four up-sampling transposed convolutional blocks,
and a softmax probability calculation layer. The network maps the input seismic data to the seismic facies.
Note: BatchNorm ¼ batch normalization; Relu ¼ linear rectification function; Conv ¼ convolution.

Fig. 2. The schematic of up-sampling operation. (a) Up-pooling and (b) transposed convolution. The same input feature map correspond to the different up-sampling results after
two different up-sampling approaches. The pool size is 2 � 2 for the max-pooling and the kernel size is 3 � 3 for the transposed convolution. The up-pooling preserves the position
information of the input data. The image recovery is achieved by filling in zero values within the feature map. While the transposed convolution is an up-sampling method achieved
by flipping the convolution kernel, which is consistent with the convolution operation. Therefore, it inherits all the characteristics of convolution. In addition, the entire up-sampling
is a learning and optimization process.
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zones in parallel. Meanwhile, the information of different scales
and different regions is integrated for target segmentation. This
enables the network to extract and obtain comprehensive global
Fig. 3. Architectures of the Unet model with the spatial pyramid pooling module (SPPM)
different scales of 1 � 1, 2 � 2, 3 � 3, and 6 � 6, and after convolution and up-sampling, it is
layer to output the classification probability of each seismic facies.
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information. Fig. 3 shows the UNet model structure with the SPPM,
which adds four pooling operations of different sizes for 1 � 1,
2� 2, 3� 3, and 6� 6 after the UNet model structure. First, the four
. The information of different ranges and scales is extracted through pooling of four
merged with the output of UNet model. Finally, send the merged result to the softmax
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pooling feature maps will be individually convoluted by convolu-
tional kernels with size of 1� 1, the output channels are reduced to
1/4 of the input image. Then, after up-sampling, the original image
information is restored. Finally, it is merged with the UNet's output
as the input of the softmax layer to yield the classification
probability.

The introduction of the SPPM allows the network to effectively
capture global features. Information fromvarious levels and regions
is extracted and integrated, which is beneficial for improving
recognition accuracy. In the SPPM, the size of the pooling kernel can
be adjusted according to the application scenario and specific
problem. The 1 � 1 pooling kernel represents global-scale pooling,
while pooling at other levels produces different degrees of se-
mantic and edge information. The combination of different pooling
scales results in a more complete representation of spatial infor-
mation. The features extracted by the UNet model and the features
integrated by the SPPM are combined through concatenation.
Consequently, the model extracts more precise seismic facies
texture features and spatial boundary features simultaneously,
which yields the high-precision seismic facies classification results.
3.3. Dilated convolution

The dilated convolution, originally proposed and applied in
signal processing for wavelet decomposition, is now used in image
semantic segmentation. It addresses the issue of reduced image
resolution and information loss during down-sampling. When
computational resources are too limited to increase the number
and size of convolutional kernels, or when excessive convolution
layers are stacked, it may lead to gradient problems. The dilated
convolution expands the receptive field without adding additional
computational parameters. Therefore, the output of each convolu-
tion contains a larger range of information. In real-time image
segmentation problems like seismic facies classification, the
network often requires a larger receptive field to perceive the edge
and contour information. The dilated convolution introduces a new
parameter to the convolutional layer called the dilation ratio, which
defines the spacing of values when the convolutional kernel pro-
cesses the data. By filling the hole points with a value of 0 and then
performing convolution. The dilation ratio for the ordinary convo-
lution is 1. Furthermore, the dilated convolution can replace the
pooling module to capture a larger range of information without
losing image size. Benefitting from above advantages, the dilated
convolution is widely used in image semantic segmentation.

Fig. 4 displays the specific process of the ordinary convolution
Fig. 4. The schematic of (a) regular convolution and (b) the dilated convolution. The size o
dilation ratio of the dilated convolution is 2. The effective receptive field of the convolution is
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and the dilated convolution. An image of size 7� 7 is operated with
a normal and dilated convolution with kernel size of 3 � 3 and a
dilated coefficient of 2. The output image sizes are 3 � 3 and 5 � 5,
respectively. For the dilated convolution with a dilated coefficient
of 2, which is similar to the ordinary convolution and same 9 values
actually participate in the convolution operation, the remaining
points have a weight of 0. Even though the size of the convolution
kernel is 3 � 3, the effective receptive field of the dilated convo-
lution is equivalent to a 5� 5 convolutional kernel. This is the basic
principle of the dilated convolution to expand the receptive field.
With the same parameters and calculations, a 3 � 3 convolution
kernel has a 5 � 5 receptive field. After two consecutive layers of
3 � 3 dilated convolution with a dilation ratio of 2, the receptive
field reaches 13 � 13, which increases exponentially compared to
the 5 � 5 receptive field size of ordinary convolution.

Indeed, the receptive field of dilated convolution can be
increased exponentially. Does this mean that superimposing more
dilated convolution layers can obtain a better segmentation effect?
Actually, when using consecutive dilated convolutional layers with
same dilation ratio, the shallow data used by a deep pixel is not
continuous. There is an interval between each non-zero element,
which is the gridding effect phenomenon. In other words, the deep
pixels do not utilize all the pixel values within the receptive field
and lose some detailed information. To address this issue, Wang
et al. (2018) proposes the solution d HDC to deal with the lack of
information caused by the gridding effect. The goal of HDC is to
completely cover the square region of the underlying feature layer
after a series of dilated convolutions. Meanwhile, there are no holes
or missing edges inside this square region. By setting the dilation
ratio to a jagged structure, HDC can capture both near and far in-
formation simultaneously. Following this principle, we design the
dilated convolutional layers with dilation coefficients of {1, 2, 5} to
expand the convolutional receptive fields. Fig. 5 shows the dilated
convolution that satisfies the HDC condition. The kernel size of
convolution is 3 � 3 and the dilation ratio is {1, 2, 5}.
3.4. DCSPP structures

Table 1 presents the structural composition of the proposed
improved deep dilated convolutional neural network for seismic
facies classification. It comprises five down-sampling convolutional
blocks, four up-sampling transposed convolutional blocks, one
SPPM and a softmax probability layer. During down-sampling, we
incorporate the dilated convolution into two convolutional blocks
to expand the receptive field and capture more boundary
f the input image and convolutional kernel size are 7 � 7 and 3 � 3, respectively. The
expanded by supplementing zero elements around each convolution kernel parameter.



Fig. 5. Rules for the use and design of the dilated convolution: hybird dilated convolution (HDC). A dilated convolution block consists of a convolution kernel of size 3 � 3, and the
design of parameter combinations with dilation ratio of {1, 2, 5} can effectively avoid the griding effect caused by pixel loss.
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information. The specific operations contained in each block, the
structural parameters, and the size of the feature map are all listed
in the table. The whole model is built upon the UNet architectures.
The PPM is introduced to obtain global information, and the dilated
convolution is used to extract seismic facies boundaries in down-
sampling process.
4. Model experiments

4.1. Data description

We use the F3 3D open seismic data in the Netherlands for
model tests, it is a block in the Dutch sector of the North Sea.
Alaudah et al. (2019) provides 401 training profiles, each line con-
sists of 701 seismic traces and 255 sampling points (401*701*255),
which includes all the data in the range of inlines [300, 700] and
crosslines [300, 1000]. The test set contains 200 seismic profiles
(200*701*255), which includes all the data in the range of inlines
[100, 299] and crosslines [300, 1000]. Within the seismic data we
used, 6 groups of lithofacies units are divided according to lithol-
ogy: (1) Upper North Sea group: claystones and sandstones from
Miocene to Quaternary; (2e3) Middle North Sea group/Lower
North Sea group: sands, sand-stones, and claystones from Paleo-
cene toMiocene; (4) Scruff group: clay-stones of Upper Jurassic and
Lower Cretaceous; (5) Rijnland/Chalk: clay formations with sand-
stones of Upper Cretaceous./carbonates of Upper Cretaceous and
Paleocene; (6) Zechstein group: evaporites and carbonates of
Zechstein (Yan et al., 2020). Fig. 6 shows the training seismic data
and the corresponding seismic facies distribution. These are used to
evaluate the classification effect of the proposed network
configurations.
4.2. Experimental process

We use the inline number as the index to convert the seismic
data into a two-dimensional datasets. Then, we intercept the
seismic data with a window size of 256 � 256. To maintain the
spatial distribution of seismic facies while increasing the diversity
of training samples, the overlapping step size is set as 0. In order to
speed up the convergence speed and ensure the stability of training
process, we normalize the amplitude of the seismic data to [�1, 1].
Fig. 7 displays the corresponding training samples. In addition to
the inline section, we also construct training samples of the same
size with CDP and time indexes respectively. Subsequently, we
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randomly select 320 samples as the training set and 80 samples as
the validation set from the divided samples. The label contains a
total of 6 different seismic facies and its one-hot encoding is {[1, 0,
0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1,
0], [0, 0, 0, 0, 0, 1]}. Fig. 8 displays the percentage of each seismic
facies in training samples. It shows a very obvious unbalanced data
distribution with a large difference in the proportion of each class
of seismic facies. The percentage of category 2 seismic facies is
approximately 45%. It is much higher than that of category 5, which
accounts for nearly 3%. For such classification problems with
severely imbalanced category under small samples, Wong et al.
(2018) pointed that the exponential logarithmic loss (ELL) func-
tion has better performance than dice loss and cross-entropy. ELL is
a kind of compound loss function, which pay more attention to
samples that are not classified accurately under the cross-entropy
loss function. It can adapt to highly unbalanced segmentation tasks.

LELL ¼ wDiceE½ð � lnðDiceiÞ ÞgDice � þwCEE½wlð � lnðplðxÞ Þ ÞgCE �

Dicei ¼
2
�P

xdilðxÞpiðxÞ
�þ e�P

xdilðxÞ þ piðxÞ
�þ e

wl ¼
��X

k
fk
�.

fl
�0:5

(1)

where x is the sample pixel position and i denotes the label. l is the
ground-truth label at x. E½ � � is the mean value with respect to i and
x in LDice and LCE, respectively. wDice and wCE are the trade-off pa-
rameters. dilðxÞ is the Kronecker delta, which is 1 when i ¼ l and
0 otherwise. piðxÞ is the softmax probability that the x sample is
predicted to be i label. The results of the neural network output are
normalized by the softmax function and output the classification
probability between 0 and 1. 3is a smoothing parameter. fk is the
frequency of label k, which can reduce theweight of categories with
higher frequency. gDice and gCE are the nonlinearities parameter.
Compared with medical image segmentation, the distinction of
seismic waveforms are more complicated. In order to avoid
excessive parameter optimization and greatly increase the diffi-
culty of training, we set the nonlinear parameter gDice and gCE to 0.3
in this paper. In this way, only the weight coefficients in the loss
function need to be determined experimentally. We test the weight
coefficient of the loss function on the DCSPP network structure, and
finally determine wDice ¼ 0.6 and wCE ¼ 0.4.

To demonstrate the effectiveness of the proposed DCSPP
network architecture, we set up a regular UNet and a UNet model
with SPPM for comparison. The other structural parameters are
consistent with the UNet model. Prepared training samples and



Table 1
The structure composition, operating parameters and feature map size of the proposed DCSPP model.

Modules Operations Parameters Sizes

Input 256� 256� 1
Conv block1 Conv + BatchNorm and Relu Kernel size¼ 3 256� 256� 64

Conv + BatchNorm and Relu Filters¼ 64
Conv block2 MaxPooling Pool size¼ 2 128� 128� 128

Conv + BatchNorm and Relu Kernel size¼ 3
Conv + BatchNorm and Relu Filters¼ 128

Conv block3 MaxPooling Pool size¼ 2 64� 64� 256
Conv + BatchNorm and Relu Kernel size¼ 3
Conv + BatchNorm and Relu Filters¼ 256

Conv block4 MaxPooling
Dilated Conv + BatchNorm and Relu
Dilated Conv + BatchNorm and Relu
Dilated Conv + BatchNorm and Relu

Pool size¼ 2
Dilated rate¼ 1
Dilated rate¼ 2
Dilated rate¼ 5
Filters¼ 512

32� 32� 512

Conv block5 MaxPooling
Dilated Conv + BatchNorm and Relu
Dilated Conv + BatchNorm and Relu
Dilated Conv + BatchNorm and Relu

Pool size¼ 2
Dilated rate¼ 1
Dilated rate¼ 2
Dilated rate¼ 5
Filters¼ 1024

16� 16� 1024

Transposed Conv block1 Transposed Conv + BatchNorm and Relu Kernel size¼ 2
Strides¼ 2

32� 32� 512

Concatenate
Conv + BatchNorm and Relu
Conv + BatchNorm and Relu

Kernel size¼ 3
Filters¼ 512

Transposed Conv block2 Transposed Conv + BatchNorm and Relu Kernel size¼ 2
Strides¼ 2

64� 64� 256

Concatenate
Conv + BatchNorm and Relu
Conv + BatchNorm and Relu

Kernel size¼ 3
Filters¼ 256

Transposed Conv block3 Transposed Conv + BatchNorm and Relu Kernel size¼ 2
Strides¼ 2

128� 128� 128

Concatenate
Conv + BatchNorm and Relu
Conv + BatchNorm and Relu

Kernel size¼ 3
Filters¼ 128

Transposed Conv block4 Transposed Conv + BatchNorm and Relu Kernel size¼ 2
Strides¼ 2

256� 256� 64

Concatenate
Conv + BatchNorm and Relu
Conv + BatchNorm and Relu

Kernel size¼ 3
Filters¼ 64

SPPM MaxPooling
Conv2D
UpSampling
Concatenate
Conv2D

Pool size¼ 1, 2, 3, 6
Kernel size¼ 1

256� 256� 64

Output Conv Filters¼ 6
Kernel size¼ 1

256� 256� 6

Other parameters:
padding¼ ‘same’,
activation¼ ‘Relu’

Prediction Softmax 256� 256� 6

Fig. 6. The F3 public seismic data and corresponding seismic facies label. (a) 3D seismic data volume consisting of 601 seismic profiles, 701 CDPs, 255 time sampling points with
sampling intervals of 4 ms. (b) The seismic facies labels of six categories are interpreted according to the differences in lithology.
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Fig. 7. Training samples of the network, which from the (a) inline, (b) CDP, (c) seismic slices and are intercepted to a size of 256 � 256 to increase the diversity of the samples.

Fig. 8. The percentage of each type of seismic facies in the training samples.
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corresponding labels are input into the three different sets of deep
convolutional neural networks, and then we adjust and optimize
the model's hyperparameters. Through iterative training, the net-
work's loss value continuously decreases and the prediction accu-
racy is improved. We chose the Adam optimization algorithm, set
the learning rate to 1e�4 and batch size to 1, to evaluate the clas-
sification accuracy of these three network structures on seismic
sections and seismic slices.
4.3. Numerical results

We measure the performance of the proposed DCSPP network
configurations from two perspectives, one is the prediction results
with different accuracy, and the other is the change of internal
feature map during network training. Fig. 9 displays the change in
Fig. 9. The seismic facies classification results corresponding to different accuracy during th
94.56%, 96.73%, 98.10%, 98.77%, 98.90%, 99.02%, 99.35%, 99.53%, respectively.
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prediction accuracy for one training seismic data as the training
epochs increases, the classification accuracy at different epochs is
41.80%, 78.28%, 90.73%, 94.56%, 96.73%, 98.10%, 98.77%, 98.90%,
99.02%, 99.35%, 99.53% respectively. During the training process,
the accuracy increases rapidly and exceeds 90%. Once the training
accuracy reaches 98.77%, the network accurately predicts the cor-
rect seismic facies categories. After the training accuracy exceeds
96.73%, even a slight increase in accuracy leads to a significant
improvement in the prediction results. Fig. 9 dynamically and
intuitively illustrates the prediction process of the DCSPP neural
network, which efficiently and accurately provides seismic facies
classification results. Moreover, we also analyze the changes in the
internal feature map during the training process of the proposed
network. Fig. 10 shows feature maps corresponding to the four
down-sampling layers, one intermediate layer, and four up-
sampling convolutional blocks. In the shallow convolutional
layers, the network extracts more texture features of the seismic
facies. Meanwhile, the high-frequency information contained in the
seismic data is perceived. As the receptive field continues to in-
crease, the network receives a larger range of information andmore
accurately perceives the boundary and contour of seismic facies. In
the subsequent up-sampling process, these large-scale and detailed
information are integrated and the network provides correct
seismic facies predictions.

To illustrate the effectiveness of the proposed network struc-
ture, we test and compare it with the UNet model and the UNet
model with the SPPM. Fig. 11 shows the curves of error and accu-
racy for different network structures under the same training
epochs and training samples. The comparison results show that the
DCSPP network has faster convergence speed, lower error and
higher accuracy. As the training epochs increase, the difference in
error and accuracy between the different network structures
gradually decrease. This is because the advantages of small-sample
training of the UNet structure. Furthermore, we compare the clas-
sification effect of different network architectures on seismic
e training process for the proposed DCSPP network model are 41.80%, 78.28%, 90.73%,



Fig. 10. The internal feature maps during the DCSPP model training, which consist of four down-sampling, one compressed representation, and four up-sampling feature maps.

Fig. 11. Comparison of (a) training errors and (b) prediction accuracy of three different network structures.
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profiles and seismic slices. The comparison results are shown in
Figs. 12e14.

The UNet model struggles with accurately classifying all the
seismic facies as shown in Fig. 12(c), and the boundaries of the
seismic facies are blurred, resulting in some incorrect classification
results. On the one hand, this may be due to the limited number of
training samples. On the other hand, the UNet model is at a
disadvantage in obtaining the global perception. Some seismic
facies with similar weak amplitude characteristics aremisclassified.
However, the UNet basically provides correct classification of
seismic facies with an accuracy of 91.17%. After introduction the
spatial pyramid pooling into the UNet model, the classification
accuracy is improved to 93.98% (Fig. 12(d)). The ability to classify
similar weak amplitudes is significantly enhanced. Since the spatial
1577
pyramid pooling helps the model to obtain the global and spatial
information, there are basically no misclassified seismic facies.
However, limited by the size of the convolutional receptive field,
the prediction results still lack accurate seismic facies boundary
characterization. The introduction of the dilated convolution
effectively deals with this issue. Fig. 12(e) shows the classification
results of the improved DCSPP network model. It not only provides
correct seismic facies categories, but also accurately depicts the
boundaries of each seismic facies. This indicates that the improved
neural network model is more suitable for delineation and analysis
of seismic facies under small training samples.

In addition to verifying the effectiveness of the improved
network architectures on other sections, we also test and compare
the different network structures on CDP profile and seismic slice.



Fig. 12. Results of the seismic facies interpretation of a inline seismic section for three different neural network model: (a) seismic profile, (b) ground-truth seismic facies, (c)
classification result from the UNet model, (d) interpretation result from the UNet model with the SPPM and (e) the classification result of the proposed DCSPP model.

Fig. 13. Results of the seismic facies interpretation of a CDP seismic section for three different neural network model: (a) seismic profile, (b) ground-truth seismic facies, (c)
classification result from the UNet model, (d) interpretation result from the UNet model with the SPPM and (e) the classification result of the proposed DCSPP model.
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Figs. 13 and 14 show the seismic facies classification results on CDP
profile and seismic slice, respectively. Fig. 13(d) fully illustrates the
significance of the introduction of spatial pyramid pooling to
improve the accuracy of seismic facies classification. Meanwhile,
Fig. 14(e) also adequately demonstrates that the incorporation of
dilated convolution greatly enhances the model's ability to delin-
eate seismic facies boundaries. Compared with the UNet model and
the UNet model with SPPM, the improved DCSPP model fully in-
tegrates the seismic amplitude information of different scales re-
gions, which provides accurate and efficient seismic facies
1578
classification results. The results of the F3 model test fully
demonstrate and illustrate the effectiveness and reliability of the
proposed DCSPP network architecture. The proposed method has
certain application prospects and potentials for seismic facies
interpretation.
4.4. Evaluation metrics

In order to evaluate the performance of different network
structures in seismic facies classification more objectively and



Fig. 14. Results of the seismic facies interpretation of a seismic slice for three different neural network model: (a) seismic slice, (b) ground-truth seismic facies, (c) classification
result from the UNet model, (d) interpretation result from the UNet model with the SPPM and (e) the classification result of the proposed DCSPP model.

Table 2
Evaluation statistics of seismic facies classification results of different network configurations.

Evaluation, % UNet UNet þ SPPM UNet þ SPPM þ Dilated Conv

Training data set Validation data set Training data set Validation data set Training data set Validation data set

Accuracy 96.80 91.17 97.83 93.98 99.95 97.34
Precision 96.18 72.36 97.32 82.25 99.83 90.03
Recall 96.45 72.33 97.50 83.54 99.77 90.69
F1-score 96.12 79.87 98.30 85.46 99.48 88.27
AUC 95.44 89.50 97.48 93.36 99.87 96.53
mIOU 60.73 60.15 66.30 64.38 75.35 72.41
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comprehensively, we use the image segmentation evaluation in-
dicators such as accuracy, precision, and recall to measure the ad-
vantages and disadvantages of the network model. Table 2 presents
the prediction performance of different network configurations on
the training and validation datasets. The six evaluation indicators
listed in the table are all derived from the parameters involved in
the confusionmatrix. The confusionmatrix, also known as the error
matrix, is a standard format for accuracy evaluation. It consists of
four parameters: true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). In a binary classification problem, TP
refers to correctly identifying the input image's labeled information
as the corresponding label, while FP indicates incorrectly identi-
fying the input image's background information as label. TN rep-
resents correctly identifying the input image's background
information as background, while FN refers to incorrectly identi-
fying the input image's labeled information as background. In the
confusion matrix, TP and TN correspond to the part where the
network predicts correctly, while FP and FN correspond to the part
where the network predicts incorrectly. Therefore, the larger the TP
and TN values, the better model's performance. Conversely, larger
FP and FN values indicate worse performance. For the multi-
classification tasks, the confusion matrix becomes more complex,
but its fundamental principle remains the same.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(2)

Accuracy is the simplest indicator of image segmentation, which
indicates the proportion of correctly classified pixels. In general, the
higher the accuracy, the better classification model.

Precision ¼ TP
TP þ FP

(3)

Precision refers to the proportion of correctly predicted part in the
whole prediction part.
1579
Recall ¼ TP
TP þ FN

(4)

Recall is a measure of coverage, which measures the proportion of
correctly predicted parts in the ground-truth.

F1� score ¼ 2*
Precision*Recall
Precisionþ Recall

¼ 2TP
2TP þ FP þ FN

(5)

In image segmentation, Precision and Recall indicators sometimes
have contradictory situations, so they need to be considered
together. The most common method is the F-Measure, which also
known as the F-Score. The F-Measure is a weighted harmonic
average of Precision and Recall. The most commonly used is the F1-
score, which combines the results of Precision and Recall. When the
F1-score is high, it indicates that the classification model has good
validity. Area under the curve (AUC) refers to the area below the
receiver operator characteristic (ROC) curve. The ROC curve is a
crucial and common statistical analysis method for evaluating the
generalization and performance of neural network models. Since
the ROC curves of different models may coincide, AUC is introduced
to evaluate the generalization ability of the model. In general, the
value of AUC is between 0.5 and 1.0, and the larger it is, the better
prediction performance and generalization ability of the model has.

mIOU ¼ TP
TP þ FP þ FN

(6)

Themean intersection over union ratio (mIOU) refers to the average
intersection over union (IOU) of the real images to the predicted
images for each category. IOU indicates the ratio of the intersection
of the true value of a pixel to the predicted value and the union of
the true value and the predicted value. mIOU refers to the mean of
IOU for all categories. It is the fundamental indicator for evaluating
the effect and performance of image segmentation. Therefore, in
addition to the overall mIOU index, we also evaluate the mIOU of
each seismic facies in the training and validation datasets for three
different network architectures, as shown in Table 3. The mIOU



Table 3
The mIOU evaluation indices of each seismic facies of the training and validation data sets with different network architectures.

Seismic facies categories UNet UNet þ SPPM UNet þ SPPM þ Dilated Conv

Training data set Validation data set Training data set Validation data set Training data set Validation data set

60.73 60.15 66.30 64.38 75.35 72.41

0 70.53 67.30 78.20 70.35 85.86 82.45
1 58.42 58.46 60.67 54.64 69.25 65.17
2 84.06 82.23 87.64 82.23 94.55 90.12
3 57.48 55.81 62.19 58.60 70.77 68.27
4 60.39 57.38 64.52 59.73 72.90 67.15
5 49.33 48.85 52.92 48.97 65.42 60.31
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index is much lower than other evaluation parameters, which is
because seismic facies classification results are affected by the
uneven data distribution. For category 0 and category 2 seismic
facies, the mIOU is relatively high. However, for category 5 seismic
facies, which has a smaller percentage of training samples, it has
the lowestmIOU index. The unbalanced distribution of the training
samples leads to low values of the mIOU indicator.

We use the above six indicators to evaluate the performance of
these three different network architectures. In summary, the
improved DCSPP neural network model performs the best. After
the introduction of SPPM, the classification accuracy and precision
of the model have been greatly improved. Moreover, the compar-
ison of the mIOU index indicates that the network has good pre-
diction effect and generalization ability. This means that the model
can better adapt to changes within the data and has good adapt-
ability in migration applications.
5. Field data example

To further illustrate the practicability and applicability of our
proposed method, we conduct a comprehensive test and demon-
stration of different methods based on the field data and corre-
sponding seismic facies interpretation results. The study area is
located to the south of the A Sag and to the north of the B Uplift. The
strata develop from the bottom to the top, including the Permian,
Triassic, Jurassic and Three series. Among them, the Jurassic, Lower
Tertiary X Formation, and Upper Tertiary Y Formation are the main
oil-bearing strata in this area. The target layer for this study is the
Lower Tertiary Y Formation. The target layer develops light gray,
thick layers of gravel-bearing and unequal-grained sandstone,
sandy conglomerate, fine sandstone intercalated with thin layers of
mudstone, and a set of flint conglomerate layers at the bottom are
in angular unconformity contact with the underlying strata. The
Tertiary System in this area develops multi-stage and multi-type
reservoirs. Among them, the X Formation mainly develop braided
river delta and carbonate platform sedimentary systems based on
the sources of the B Uplift in the south. During the deposition
period of the Y Formation, braided river and meandering river sand
bodies are widely developed. These sand bodies that overlap each
other vertically and horizontally have good physical properties and
create good storage space for oil and gas accumulation in the study
area. The Y Formation in the study area is a braided river deposit
controlled by the source from the B Uplift. The river flows through
the study area from south-east to north-west. During this period,
four braided main river channels developed. The river channels
sway frequently and cut each other. The rivers are large in size and
develop braided bars. The braided bars are mainly developed in the
C2, C3 and B4 well area. Fig. 15 displays a seismic amplitude slice
and the interpretation result of sedimentary facies provided by
geologists from the study area. The original data is digitized and
grid-uniformed, respectively, which used as the basic data to
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facilitate subsequent training.
In order to verify the effectiveness of our proposed method, we

supplement the lithofacies classification test experiment with field
seismic data. Due to the limited results of seismic facies interpre-
tation of field seismic data, in order to effectively test the different
network configurations, we first carry out the basic work of data
enhancement on the collected data, so as to make up for the impact
of limited labels on the application effect of the method as much as
possible. We use data augmentation techniques to increase the
diversity and coverage of training samples. Data augmentation in-
cludes operations such as rotation, flipping, translation, and scaling
to simulate seismic data at different angles and locations. In this
way, we can increase the diversity of training samples, enabling the
model to generalize better to the task of seismic surface classifi-
cation over small patches. Fig. 16 shows the raw data, seismic slice
and corresponding sedimentary facies after data augmentation,
respectively. In addition, we also fine-tune the network structure
trained on F3 to adapt to the characteristics of field seismic data
through transfer learning technology, so as to improve and enhance
the learning performance. Transfer learning can be implemented in
many ways, one of the common methods is to use pre-trained
models. A pre-trained model is a model trained on a large-scale
dataset, usually used to solve a related task. By pre-training on
the source domain, the model can learn general features or
knowledge. These learned features or knowledge can then be
transferred or fine-tuned to tasks on the target domain to improve
learning performance. Fig. 17 displays the facies classification result
of field seismic slice for three different neural network model.
Consistent with the conclusions obtained from the model experi-
ments, the DCSPP network architecture we proposed exhibits the
best classification effect. It distinctly delineates the boundaries of
different seismic facies and accurately provides the spatial distri-
bution range of each seismic facies. From the comparison of
experimental results, it is found that after the introduction of the
SPPM, the network can extract and obtain large-scale global in-
formation more reasonably and effectively compared to the UNet
structure. Furthermore, the dilated convolution and skip connec-
tion promotes the DCSPP network structure to better handle the
spatial information at different scales in down-sampling and up-
sampling, resulting in the optimal classification performance.
Seismic facies interpretation of field seismic data based on deep
neural networks is a very meaningful work. Here, the preliminary
tests have been processed based on technologies such as image
augmentation and transfer learning. The current work is still in the
experimental stage and there are still several shortcomings, there
are many areas that need to be supplemented and improved. We
will continue to explore in the future.
6. Discussion

The wide application of deep learning technology in geophysics



Fig. 15. Field seismic data and corresponding seismic facies interpretation results: (a) is the interpretation results of sedimentary facies given by geologists based on the char-
acteristics of well logging curves of well points, the plane distribution of sand bodies and seismic data; (b) is the original seismic amplitude slice and the facies distribution map
after the digitization of sedimentary facies interpretation results; (c) is the basic network training data after interpolation and homogenization processing on the basis of (b).

Fig. 16. Seismic slice and sedimentary facies after data augmentation.

Fig. 17. Facies interpretation results of a field seismic slice for three different neural network model: (a) classification result from the UNet model, (b) interpretation result from the
UNet model with the SPPM and (c) the classification result of the proposed DCSPP model.
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owes much to its powerful nonlinear mapping relationship. Many
geophysical problems are challenging to describe with explicit
mathematical expressions, given their highly complex relationships
between variables. The nonlinear transformation and high-
dimensional mapping of the network have proven to be a valu-
able solution to these challenges. Moreover, the efficiency and
immediacy of deep-learning techniques save time and alleviate
manual labor. Therefore, the seismic data processing and inter-
pretation work based on the deep learning technology have been
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increasing and developing. Supervised learning as the most com-
mon and widely used deep learning approach, which is particularly
popular nowadays. Although the proposed DCSPP neural network
model achieves automatic seismic facies interpretation, it essen-
tially belongs to the supervised learning mechanism. Even though
the small-sample training advantage of the UNet model is used to
alleviate the dependence of extensive training samples, it still re-
quires labeled data. The diversity of samples and the imbalance in
categories moderately affect the classification results. In order to
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solve the problem of limited training samples, image augmentation
and other technical approaches have been applied to seismic data
cutting and division. Image augmentation refers to expanding the
datasets through various data enhancement transformations, such
as clipping, rotation, flip, scale, translation, contrast, noise distur-
bance and color transformation. By applying random changes to the
training samples, similar but different training samples are gener-
ated and the number of training samples is expanded. Furthermore,
random changes to the training samples reduce the dependence of
the network model on specific attributes, thereby improving the
generalization ability of the model. However, whether this appli-
cationwill destroy the original morphology and spatial distribution
of seismic data and adversely affect the seismic facies classification
remains to be considered.

Another bothering problem in the application of deep learning
in geophysics is its transfer and generalization ability. How to
successfully and effectively apply the trained model to field seismic
data is another crucial aspect to evaluate and investigate the
applicability of the proposed method. However, the field seismic
data often have very few labeled samples available for network
training. Therefore, model pre-training is usually used to test and
optimize the network configurations on the model data, and then
fine-tune the network structures and neuron weights to adapt to
the field seismic data through transfer learning technology. The
application of the proposed DCSPP network model to field seismic
data is still undergoing testing and trials. Currently, we only use
seismic data as input to the network, which makes classifications
and predictions by distinguishing differences in seismic wave-
forms. Whether the single seismic waveform contains sufficient
information to distinguish different seismic facies. In fact, many of
the early intelligent seismic facies classification work was based on
various seismic attributes. Seismic facies classification work
combining seismic attributes and seismic waveforms can be
considered subsequently. This requires the optimization and anal-
ysis of different seismic attributes, so as to make predictions of
seismic facies based on the necessary and non-redundant input
information.

7. Conclusions

We propose an improved deep dilated convolutional neural
network DCSPP to classify different seismic facies based on seismic
amplitude differences. The model architecture takes the encoder
and decoder structures of UNet as the basic configurations, with the
incorporation of the SPPM and the dilated convolution layers. The
model combines the advantages of small-sample training of the
UNet model, the spatial information acquisition and integration of
SPPM, and the strengths of the dilated convolution to expand the
receptive field and perceive more spatial information. Besides that,
to address the issue of sample category imbalance under small
training samples, we introduce a composite loss function to
enhance the classification performance. The test results of F3 public
data show that the proposed model successfully distinguishes
different seismic waveform features and achieves effective classi-
fication of seismic facies. Compared to the UNet model, the intro-
duction of SPPM significantly improves the classification accuracy.
Themodel integrates the seismic characteristics of different regions
and scales to obtain the global information. However, its depiction
of seismic facies boundaries is still not ideal. The introduction of
dilated convolution layers allows the model to capture an expo-
nentially increasing receptive field during down-sampling. More
low-frequency and contour information is perceived to distinguish
the boundaries of different seismic facies. The test results of both
the seismic profiles and the seismic slices demonstrate and illus-
trate the effectiveness and reliability of the proposed network
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architectures. Moreover, we visualize the changes of the internal
feature maps during the network training process and more intu-
itively understand the process of information extraction, integra-
tion and prediction of the model. Among them, the proposed
DCSPP network model exhibits the best performance and predic-
tion potential. The application of the method to field seismic data
further confirms its effectiveness and reliability. As an intelligent,
real-time approach for seismic facies analysis, which greatly saves
time and labor.
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