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a b s t r a c t

Deterministic inversion based on deep learning has beenwidely utilized in model parameters estimation.
Constrained by logging data, seismic data, wavelet and modeling operator, deterministic inversion based
on deep learning can establish nonlinear relationships between seismic data and model parameters.
However, seismic data lacks low-frequency and contains noise, which increases the non-uniqueness of
the solutions. The conventional inversion method based on deep learning can only establish the deter-
ministic relationship between seismic data and parameters, and cannot quantify the uncertainty of
inversion. In order to quickly quantify the uncertainty, a physics-guided deep mixture density network
(PG-DMDN) is established by combining the mixture density network (MDN) with the deep neural
network (DNN). Compared with Bayesian neural network (BNN) and network dropout, PG-DMDN has
lower computing cost and shorter training time. A low-frequency model is introduced in the training
process of the network to help the network learn the nonlinear relationship between narrowband
seismic data and low-frequency impedance. In addition, the block constraints are added to the PG-DMDN
framework to improve the horizontal continuity of the inversion results. To illustrate the benefits of
proposed method, the PG-DMDN is compared with existing semi-supervised inversion method. Four
synthetic data examples of Marmousi II model are utilized to quantify the influence of forward modeling
part, low-frequency model, noise and the pseudo-wells number on inversion results, and prove the
feasibility and stability of the proposed method. In addition, the robustness and generality of the pro-
posed method are verified by the field seismic data.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Seismic inversion is an excellent tool for converting seismic data
into subsurface parameters, such as impedance, formation velocity,
density, and even petrophysical parameters. The accurate estima-
tion of model parameters is helpful to understand the underground
geological structure and properties, which can be used to guide
reservoir characterization and fluid discrimination. At present,
probabilistic inversion based on Bayesian theory is the mainstream
method to estimate model parameters. As one of the popular
inversion methods, Bayesian deterministic inversion has been
widely utilized in exploration geophysics due to its high
ng).

y Elsevier B.V. on behalf of KeAi Co
computational efficiency and ease of application (Buland andMore,
2003; Downton, 2005; Li et al., 2017; Zong et al., 2012). In deter-
ministic inversion, it is usually assumed that the model parameters
and noise obey Gaussian prior distribution, and then MAP
(maximum a posterior) solution is obtained by gradient-based
method. However, seismic data usually lacks low-frequency and
contains noise (Sun and Demanet, 2020; Zong et al., 2018). Utilizing
narrowband seismic data to predict broadband impedance is an ill-
posed and nonlinear problem (Gholami, 2016). To address this
issue, the regularization constraint is usually added to the objective
function to reduce the solution space (Gholami, 2015; Hamid and
Pidlisecky, 2015; Sun and Zong, 2019). Compared with determin-
istic inversion, geostatistical inversion usually assumes that the
prior distribution is Gaussian mixture distribution. Under the
Bayesian framework, a posterior probability distribution is
randomly sampled to estimate the optimal interval of parameters
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and the optimal geological facies (Grana, 2016; Grana and Rossa,
2010; Li et al., 2020; Spikes et al., 2007). Although both methods
are mature enough to solve many practical problems, simplified
physical models will lead to undesirable results. Deep learning (DL)
methods can learn the complex physical system directly from
training data. DL can overcome the problem of insufficient accuracy
of physical models in traditional seismic inversion and geo-
statistical inversion. Therefore, it is a very suitable solution to those
problems without transparent knowledge background or accurate
physical model.

With the emergence and rapid development of deep neural
network (DNN), the DL algorithm has been successfully used to
solve various problems in exploration geophysics. The DL method
can more accurately learn the nonlinear forward and inverse
mapping between seismic data and model parameters, thus
reducing the solution space. According to different training data,
seismic inversion methods based on DL can be divided into three
categories: unsupervised learning, supervised learning, and semi-
supervised learning. Unsupervised learning seismic inversion re-
quires only seismic data. For instance, Biswas et al. (2019) devel-
oped a physics-constrained DL inversion method. However, the
prediction accuracy of this method largely depends on the quality
of seismic data, and the low-frequency models are not involved in
the training process. As a special type of unsupervised learning,
self-supervised learning is also a label-free learning method, which
usually includes pretext tasks and downstream tasks (Hu et al.,
2020). In general, in self-supervised learning, the pretext task is
designed to mine the characteristics of seismic data itself as su-
pervisory information to improve the feature extraction capability
of the network. Then, the pre-trained network is used to solve the
concerned downstream tasks. Based on the above process, self-
supervised learning is usually used to predict low-frequency in-
formation of seismic data (Wang et al., 2020). Supervised learning
usually requires logging curves and corresponding seismic traces to
establish inversion network, such as velocity estimation based on
full connected neural networks (FCNNs) (R€oth and Tarantola, 1994),
seismic impedance inversion based on convolutional neural net-
works (CNNs) (Das et al., 2019), petrophysical parameters seismic
inversion based on CNNs (Das and Mukerji, 2020), and pre-stack
inversion based on U-net (Cao et al., 2022). In their research,
stack or pre-stack seismic data are inputs to the network, and
model parameter curves obtained from logging is output labels. The
accuracy of supervised learning model largely depends on the
richness of training data set. Compared with the above machine
learning methods, semi-supervised learning not only learns the
nonlinear relationship between logging curves and corresponding
seismic data, but also learn the physical laws of forward modeling.
For example, Alfarraj and AlRegib (2019) proposed a physics-
constrained semi-supervised seismic inversion, which can fully
mine seismic data and alleviate the effect of fewer labels. Because of
the advantages of semi-supervised learning, it has been widely
utilized to predict reservoir parameters (Chen and Saygin, 2021; Di
and Abubakar, 2021; Sun et al., 2021; Wu et al., 2021). To improve
the performance of networks, low-frequency model is introduced
in training process to better compensate for the missing low-
frequency information (Song et al., 2022).

Although the conventional seismic inversion method based on
DL has good performance, it cannot directly evaluate the inversion
uncertainty of model parameters. In seismic inversion method
based on DL, different statistical methods are generally utilized to
analyze the uncertainty of predicted parameters, such as approxi-
mate Bayesian computation (Das et al., 2019). As a powerful tool to
quantify the uncertainty of results, Bayesian neural network (BNN)
has been applied to signal discrimination (Maiti and Tiwari, 2010),
seismic inversion (Ge et al., 2021), and well-log prediction (Feng
1612
et al., 2021). However, the parameters of BNN are twice as large
as those of traditional networks, which will lead to larger compu-
tational cost and longer training time (Feng et al., 2021). Network
dropout is also a method to quantify the output uncertainty
(Junhwan et al., 2022), but it requires multiple realizations of the
network. In order to directly and quickly quantify the uncertainty of
the target variable conditioned on observed data. Bishop (1994)
proposed mixture density network (MDN), which can learn the
nonlinear mapping between the input data and the posterior
probability distribution of the target variable. Based on this
advantage, MDN is utilized instead of Monte Carlo method to
resolve nonlinear problems in petrophysics (Shahraeeni and Curtis,
2011; Shahraeeni et al., 2012; Wang et al., 2021). MDN is also uti-
lized to quantify the uncertainty of S-wave velocity from the Ray-
leigh wave dispersion curve (Earp et al., 2020). In addition, MDN is
also utilized to evaluate the uncertainty of travel-time tomography
(Earp and Curtis, 2020).

Inspired by MDN and semi-supervised learning seismic inver-
sion, we propose a novel probabilistic seismic inversion method
based on physics-guided deep mixture density network. The con-
struction of PG-DMDN (physics-guided deep mixture density
network) is based on the sequence modeling neural network (SM-
net) proposed by Alfarraj and AlRegib (2019). In this paper,
impedance inversion is taken as an example to introduce proposed
method. The proposedmethod can be easily extended to the case of
prestack data. Marmousi II model test verifies the feasibility of the
PG-DMDN in the case of small samples. First, we compare PG-
DMDN with SM-net to illustrate the advantages of the proposed
method. At the same time, we quantify the influence of forward
model part, noise, low-frequency model, and the number of
pseudo-wells on inversion results. To illustrate the reliability of the
prediction uncertainty, we provide a comparison to other uncer-
tainty estimation methods, such as Stein variational gradient
descent method (SVGD) (Zhang and Curtis, 2020, 2021; Zhao et al.,
2022). Finally, the potential of PG-DMDN to solve the small-sample
problem is illustrated by field data, and the uncertainty of seismic
inversion is also evaluated.

Compared with SM-net, the proposed PG-DMDN has four dif-
ferences: (1) PG-DMDN can predict the posterior probability dis-
tribution of model parameters rather than the deterministic value.
(2) In the training process of PG-DMDN, low-frequency model is
introduced to help the network learn the nonlinear relationship
between narrowband seismic data and low-frequency impedance.
(3) Since the output of the PG-DMDN is a posteriori probability
distribution, we change the corresponding loss function. The loss
function of forward modeling part is reconstructed based on
Bayesian theory. (4) To improve the horizontal continuity, we
added a block constraint to the framework and modify the corre-
sponding network structure. Similar training strategies can also be
found in the literature (Gao et al., 2020). Compared with BNN, the
training parameters of the PG-DMDN are half of those of BNN, so its
training cost is lower. The proposed method can not only obtain
more accurate inversion results, but also predict the probability
distribution of model parameters.
2. Theory

2.1. Physics-guided deep mixture density networks

For the conventional inversion problem based on DL, the para-
metric DNN is utilized to learn the nonlinear mapping between
seismic data x and model parameter R, which is generally
expressed as
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FyQðxÞzR: (1)

FyQ : x/R represents the DNN inverse operator parameterized by

Q.
To evaluate the uncertainty of seismic inversion, the target

variable in Eq. (1) is replaced by the probability distribution of
model parameter conditioned on seismic data. Then, Eq. (1) can be
rewritten as

FyQðxÞzpðR j xÞ: (2)

The MDN can be used to emulate the approximation of
pðR j xÞ.The conditional probability of R with respect to x can be
represented by the known probability (Bishop, 1994):

pðRjxÞ¼
Xk
i¼1

aiðxÞkiðRjxÞ; (3)

where kiðRjxÞ is a known probability density function (PDF), called
the kernel; k represents the number of kernels; and aiðxÞ repre-
sents the weighting coefficient of each kernel.

It is well known that given a sufficient number of Gaussian
kernels, the Gaussian mixture model can approximate any PDF
with the desired accuracy (Shahraeeni and Curtis, 2011). Therefore,
we assume that the kernel is Gaussian and kiðRjxÞ can be written as
(Bishop, 1994)

kiðRjxÞ¼
1Qh

j¼1

� ffiffiffiffiffiffiffi
2p

p
sijðxÞ

� exp
8<:� 1

2

Xh
j¼1

�
Rj � mijðxÞ

�2
s2ijðxÞ

9=;;

(4)

where h represents the number of target variables R ¼ ðR1;/;RhÞ,
mij represents the jth value in the mean vector of the ith kernel, and

s2ij denotes the jth diagonal value in the covariance matric of the ith

kernel. It is obvious from Eqs. (3) and (4) that the output of MDN is
M ¼ fai;mi;siði ¼ 1;2;/; kÞ. We take M as a function of the input

seismic data x, denoted as FyQðxÞzpðR j xÞ ¼ M. Because of the
complex nonlinear relationship between M and x, DNN is used to

establish mapping FyQ : x/M. The DNN and MDN constitute
DMDN.

The coefficients ai must satisfy
Pk

i¼1aiðxÞ ¼ 1, and the standard
deviations si must be positive. The outputs of DNN are transformed
as follows (Bishop, 1994):

ai ¼
exp

�
yai
�

Pk
i¼1 exp

�
yai
�; i ¼ 1; /; k; (5)

sij ¼ exp
�
ysij
�
; i ¼ 1; /; k; and j ¼ 1; /; h; (6)

mij ¼ ymij; i ¼ 1; /; k; and j ¼ 1; /; h; (7)

where yai , y
s
ij and ymij denote the outputs of DNN. For each seismic

trace x, DMDN can be utilized to estimate the corresponding PDF of
impedance R.

Next, the structure of DNN in DMDN is introduced and PG-
DMDN is constructed. As shown in Fig. 1, PG-DMDN includes for-
ward modeling part and inversion part. The forward modeling part
consists of convolution model and likelihood function. The
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inversion part consists of feature fusion layer, upscaling and
regression layer. The feature fusion layer consists of multiple
feature extraction layers. The multiple feature extraction layers are
used to replace a single layer to simultaneously extract the spatial
information from i � n trace to i þ n trace. This layer will improve
the horizontal continuity of the results. The single feature extrac-
tion layer consists of low-frequency information extraction layer,
sequence model layer and local feature extraction layer. Hyperbolic
tangent function (Tanh) is an activation function used to increase
network nonlinearity. PG-DMDN proposed in this work is an
improvement of SM-net (Alfarraj and AlRegib, 2019), which has
four differences:

(1) The first difference is that the output of PG-DMDN is prob-
ability distribution not deterministic value. In the regression
layer, MDN is used to replace the full connection layer to
output the posterior probability distribution of model
parameters.

(2) The second difference is that in feature extraction, a low-
frequency information extraction layer is added to the
feature extraction layer. This layer can enhance the network's
ability to capture low-frequency information of parameters.

(3) The third difference is that In the forward modeling part, the
Gaussian likelihood function is used to replace the mean
squared error (MSE), becauseMSE cannot be used to train the
probabilistic networks.

(4) The fourth difference is that in the feature fusion layer,
multiple feature extraction layers are used to replace a single
layer to simultaneously extract the spatial information from
i-n trace to i þ n trace. The features of seismic trace i and its
adjacent 2n seismic traces are extracted by 2nþ 1 feature
extraction layers, and they are adaptively fused to obtain the
spatial information of seismic data and low-frequency
models. This part will improve the horizontal continuity of
the inversion results.

The inputs of PG-DMDN are block seismic data xi�n�iþnði ¼ 1; 2;

/; mÞ and block low-frequency model Rlow
i�n�iþnði ¼ 1; 2; /; mÞ,

and the output is PDF pðRij xiÞ ði ¼ 1; 2; /; mÞ, where m repre-
sents the trace number. The mean value of model parameters can

be estimated with Ri ¼
Pk

j¼1ajmj. Finally, the mean value is fed into
the forward modeling part to evaluate the difference between the
synthetic data and the real data. The architecture of sequence
modeling layer and local feature extraction layer will be introduced
in the next section.

2.2. Sequence modeling layer based on bidirectional-gated
recurrent units

The traditional feed-forward neural network has been widely
used in intelligent inversion of model parameters. However, the
feed-forward neural network only captures the deterministic re-
lationships and ignores the temporal correlation of seismic data
and model parameters (Alfarraj and AlRegib, 2019). Recurrent
neural networks (RNNs) can effectively capture the temporal cor-
relation of time series, but fails to learn the long-term correlation.
RNNs have the vanishing gradient problemwhen learning the time
dependence of long sequence data (Werbos, 1990). As a more
complex form of RNNs, long short-termmemory (LSTMs) and gated
recurrent units (GRUs) can be utilized to avoid gradient disap-
pearance (Cho et al., 2014; Hochreiter and Schmidhuber, 1997). For
small sample problems, such as seismic inversion, there is almost
no difference in performance between LSTMs and GRUs. Compared
with LSTMs, GRUs has fewer parameters, faster convergence speed



Fig. 1. The network structure of PG-DMDN.
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and lower training cost. Therefore, in this study, bidirectional GRUs
(B-GRUs) is selected as the sequence modeling layer to establish
PG-DMDN. As shown in Fig. 2, a single-layer bidirectional GRUs (B-
GRUs) consists of two GRUs. The forward process through a GRUs is
as follows:

8>>>>>>>><>>>>>>>>:

uðtÞ
i ¼ sigmoid

�
Wuhh

ðt�1Þ
i þWuxx

ðtÞ
i þ bu

�
rðtÞi ¼ sigmoid

�
Wrhh

ðt�1Þ
i þWrxx

ðtÞ
i þ br

�
bhðtÞ
i ¼ tanh

�
Whh

h
rðtÞi *hðt�1Þ

i

i
þWhxx

ðtÞ
i þ bh

�
hðtÞ
i ¼

�
1� uðtÞ

i

�
*hðt�1Þ

i þ uðtÞ
i *bhðtÞ

i

; (8)

where uðtÞ
i , rðtÞi , xðtÞi , hðtÞ

i , bhðtÞ
i and
Fig. 2. The architecture of
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yðtÞi ði ¼ 1; 2; /; m; t ¼ 1; 2; /; TÞ represent the update-gate
vectors, reset-gate vectors, input seismic data, hidden state vari-
able, candidate hidden state variable, and final hidden state vari-
able of the ith sample, respectively.m represents the batch size and
T represents the number of sampling points. The operator * denotes
element multiplication. The term W and b are learning parameters
of the network, which will be updated during training. The
subscript represents the direction of connection between different
variables. For example, Wuh represents the weight used to connect
update vectors and hidden state variable. Reset and update gate
control the amount of information transferred from the previous
hidden state to the current hidden state. B-GRUs not only captures

the previously stored information (e.g., hðt�1Þ
i ), but also extracts the

later stored information (e.g., hðtþ1Þ
i ).
a single-layer B-GRUs.
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In this paper, we use three layers of B-GRUs to construct the
sequence modeling layer, which is the same as the SM-net (Alfarraj
and AlRegib, 2019), to extract the long-term background trend from
the seismic data. As shown in Fig. 3, the input data of the sequence
modeling layer is a batch of seismic data slices with the size of b�
T � 1. When seismic data is fed into the sequence modeling layer,
the output size becomes b� T � 2c, where c is the dimension of the
final hidden state in the B-GRUs. It is worth noting that the number
of features in the output layer is 2c, which is determined by the
bidirectional propagation property of B-GRUs.
Fig. 4. Dilated convolution. (kernel size ¼ 3, dilation factors dilation ¼ 1, 3, 5).
2.3. Local feature extraction layer based on CNN

Convolutional block (ConvBlock) generally includes convolution
layer, batch normalization layer and nonlinear activation function.
The core of CNN is the convolution layer, in which the feature map
is convolved with the convolution kernel. The sliding convolution
kernel can capture the local features of seismic data in different
time windows. The forward process is the following form (Lecun
et al., 1998; Gao et al., 2016):

ypj ¼s

 XI
i¼1

xp�1
i *Wj þbj

!
; (9)

where ypj represents the jth feature map in the pth layer, sðÞ is the
nonlinear activation function, I represents the number of feature

maps in the ðp� 1Þth layer, xp�1
i is ith feature map in the ðp� 1Þth

layer,Wj denotes the jth convolution kernel of the pth layer, and bj

is the bias matrix of the pth layer. The CNN learns the features
contained in seismic data by updating these two parameters. Tak-
ing Eq. (9) as an example, the convolution layer is described in
detail. Assume that the number of output maps in the ðp� 1Þth is I,
expected output in the pth is J, and the size of each convolution
kernel is m� 1, the size of the final output is ðm � 1 � I þ 1Þ� J.
Note that different convolution kernels capture different features
from the input seismic data. The convolution kernels with different
dilation factors can be regarded as different convolution kernels.
The dilation factor controls the distance between points of the
convolution kernel (Yu and Koltun, 2016). The multiple dilation
factors enable convolution kernel to extract information not only
near the reference sample, but also far away from it. For one-
dimensional convolution kernel with size 3 and dilation ¼ 1, 3,
and 5, the dilated convolution is displayed as Fig. 4. The batch
normalization layer normalizes the output of the convolution layer.
See Appendix A for details of batch normalization (BN).

The nonlinear activation function is an important part of the
neural network, which enables the neural network to approximate
Fig. 3. The architecture of sequence modeling layer.
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the nonlinear function. Tanh is utilized as the activation function.
The tanh is as follow:

sðxÞ¼ tanhðxÞ ¼ e2x � 1
e2x þ 1

; (10)

where x is the input feature maps.
In this paper, three parallel one-dimensional convolution blocks

with different dilation factors are utilized to capture themulti-scale
features of seismic data. Then, multi-scale features are fused by
using the full connected layer and convolution layer. The archi-
tecture of the local feature extraction layer is similar to that in the
SM-net (Alfarraj and AlRegib, 2019), as shown in Fig. 5. The input
data is a batch of seismic data slices of size b� T � c1.When the
seismic data is fed into the local feature extraction layer, the output
size becomes b� T � c2, where c2 ¼ 2c mentioned in B-GRUs is the
dimension of the final feature map. The network parameters c1 is
the number of input feature map and c2 is the number of output
feature map. Normally, c2 ¼ 2c1. m and T are batch size and time
sampling points.
2.4. Semi-supervised probabilistic seismic inversion method

The conventional physics-guided DL inversion includes two
parts: forward modeling and inversion. The forward part is a
physical model or a trainable neural network (Yuan et al., 2021),
which can be written as

x¼ FðRÞ þ n;

or

xzFQðRÞ; (11)

where F : R/x represents physical modeling operator and
FQ : R/x represents DNN parameterized by Q. For the inverse
problem, the parameterized DNNs is utilized to learn the nonlinear
mapping between seismic data and model parameter, which is
generally expressed as Eq. (1).

Compared with conventional physics-guided DL seismic inver-
sion, the proposed probabilistic seismic inversion method has two
differences. On the one hand, for the inverse operator, the target
model parameter R is replaced by M in Eq. (1). On the other hand,
since the output of inverse operator is the probability distribution
of model parameter, the relationship between the probability dis-
tribution of model parameter and seismic data should be consid-
ered in the forward modeling. Therefore, we introduce Gaussian
likelihood function into forward part to constrain the inverse
operator:



Fig. 5. The architecture of local feature extraction layer. (Covn1d denotes one-dimensional convolutional block).
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pðx j RÞ ¼ 1ffiffiffiffiffiffiffi
2p

p
sn

exp

"
� ðx � FðRÞ ÞTðx � FðRÞ Þ

2s2n

#
; (12)

where pðx j RÞ is likelihood function, which describes the proba-
bility distribution of the difference between the real data and
synthetic data, and s2n is the noise variance.

In this work, the modeling operator FðRÞ in Eq. (12) is a
convolution model, which can be written as

FðRÞ¼Gm; (13)

where m ¼ 0:5D logðRÞ is the reflection coefficient of the model
parameter. Then, Eq. (13) can be rewritten as

FðRÞ¼1
2
GDlogðRÞ; (14)

where G is the wavelet matrix, and

D¼

2664
�1 1 0 /
0 �1 1 1
0 0 �1 1
« 1 1 1

3775
is a differential matrix, which converts model parameter to
reflectivity.

The whole workflow of probabilistic inversion method is shown
in Fig. 6. The parameters of inverse network are updated by
maximizing the following objective function:

LðQÞ¼ l1
Np

XNp

i¼1

pðRij xiÞ þ
l2
Ns

XNs

i¼1

p
�
x*i
�� R*

i
�
; (15)

where fRi; xi�n�iþng represents the training samples at the well

location, fR*
i ; x

*
i g represents the training samples of all traces. R*

i

and x*i are the estimated model parameter and corresponding
synthetic seismic data, respectively. Np is the number of available
well-log data, Ns is the total number of seismic traces, l1 is the
weight of inverse model, and l2 is the weight of forward model.

In the training phase, the inversion part FyQ : x/M is trained by
1616
using the well-log data, the corresponding seismic data from trace
i� n to iþ n, and low-frequency model from trace i� n to iþ n. The
loss function of this part can be defined as the first term of Eq. (15).
The estimated model parameter of the MDN at trace i will be uti-
lized to generate synthetic data. Then, the likelihood function is
utilized to estimate the difference between the synthetic and the
real data, which can constrain the update of the inversion part. The
loss function of this part can be defined as the second term of Eq.
(15). To estimate the optimum model parameters, Eq. (15) can be
converted to the following form:

LðQÞ¼ l1
Np

XNp

i¼1

�ln pðRij xiÞ þ
l2
Ns

XNs

i¼1

�ln p
�
x*i
�� R*

i
�
; (16)

By minimizing Eq. (16) with training data sets, the weights and
biases of the PG-DMDN can be determined. After several iterations,
the hyperparameters of the network model will be optimal. Then,
posterior probability distribution of model parameter can be esti-
mated by inputting seismic data into the trained PG-DMDN. Adam
algorithm (Kingma and Ba, 2014) is utilized to optimize the training
of PG-DMDN.
3. Synthetic data examples

3.1. Synthetic data preparation, network setting, and evaluation of
result

Marmousi II model (Martin et al., 2006) is utilized as synthetic
data to prove the feasibility and robustness of proposed method.
The Marmousi II elastic model has 2720 traces, and each trace has
2070 sampling points. We utilized Marmousi II elastic model to
generate absolute P-wave impedance (in time), as shown in
Fig. 7(a). A 25Hz zero-phase Ricker wavelet with a sampling in-
terval of 1 ms is convoluted with reflection coefficient obtained
from Fig. 7(a) to generate synthetic seismic data. In order to
simulate the resolution mismatch, the seismic data is down-
sampled by 6 times, as shown in Fig. 7(b). The number of seismic
data sampling points is 345. To simulate the low-frequency loss, we
filter out the information below 6 Hz in the seismic data. Finally,
synthetic seismic datawith signal to noise ratio (SNR) of 10, 5, and 2
are used to evaluate the stability of proposed method. The seismic



Fig. 6. The workflow of semi-supervised probabilistic seismic inversion method.

Fig. 7. The P-wave impedance data, seismic data and low-frequency model utilized for the training, validation, or test sets. (a) True impedance profile, (b) the seismic profile with no
noise, (c) the seismic data with SNR ¼ 10, (d) the seismic data with SNR ¼ 5, (e) the seismic data with SNR ¼ 2, and (f) the low-frequency model profile.
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data with different SNR and low-frequency model are displayed in
Fig. 7(c)e(f), respectively. The low-frequency model is obtained by
longitudinally and laterally smoothing the true impedance. Five
numerical tests are carried out utilizing the seismic data, low-
frequency model, and true impedance in Fig. 7. The first test is to
illustrate the advantages of the proposed method compared with
SM-net inversionmethod. The second test is to verify the role of the
forward modeling part and evaluate the inversion uncertainty. The
third test is to demonstrate the robustness of the method. The
fourth test attempts to analyze the influence of low-frequency
model on inversion results. Finally, we try to test the ability of
1617
the proposed inversion method to solve smaller sample problems.
For first three tests, we extract ten impedance curves from the

impedance profile (the solid and dashed black lines in Fig. 7(a)) as
the training labels. Five pseudo-well curves (the dashed red lines in
Fig. 7(a)) at common-depth points (CDPs) 500, 1100, 1600, 1900,
2450 are utilized for validation. For the last test, only the dashed
impedance curve is used as the labeled data. Fig. 7(b)e(e) are uti-
lized to test the performance of the PG-DMDN. Before training, the
seismic data and impedance curves need to be normalized by the
following equation:
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x0 ¼ x� mx
sx

; (17)

where x0 is the normalized seismic (or impedance) data, x is the
original seismic (or impedance) data, mx is the mean of x, and sx is
the variance of x.

After the data sets are prepared, the workflowmentioned above
is adopted to train the PG-DMDN. Then, the testing data is fed into
PG-DMDN to estimate the impedance result. For the four tests of
the synthesis example, the network parameters are set as follows:
the number of adjacent traces for training is n ¼ 2, the batch size of
unsupervised learning part is b ¼ 10; the input feature number of
B-GRUs is c ¼ 8; the input feature number of CNNs is c1 ¼ 8; the
output feature number of CNNs is c2 ¼ 16; the Gaussian kernel
number is k ¼ 5; the kernel size of CNNs ism ¼ 5; and the dilation
factors are d1 ¼ 1, d2 ¼ 3 and d3 ¼ 5, respectively. Theoretically,
the more the number of Gaussian kernels, the higher the accuracy
of the inversion results. However, through multiple tests, too many
kernels can only bring small improvements, but will increase a
large amount of train costs. For four tests of the synthesis example,
the Gaussian kernel number is 5, which makes the mixture model
consistent with the probability distribution of the true impedance.

Within the testing phase, the inversion results are evaluated by
determination coefficient (R2) and Pearson's correlation coefficient
(PCC). smean is used to represent the uncertainty of inversion. The
PCC is commonly utilized to measure the overall correlation be-
tween the original and predicted vectors. PCC is defined as

PCCðx; yÞ¼ 1
N

PN
i¼1

ðxðiÞ � xÞðyðiÞ � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxðiÞ � xÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ðyðiÞ � yÞ2

s ; (18)

where x and y are the mean value of x and y, respectively. The R2 is
commonly utilized to evaluate the mean square error between the
estimated and target vectors. R2 is defined as

R2ðx; yÞ ¼ 1�

PN
i¼1

ðxðiÞ � yðiÞ Þ2

PN
i¼1

ðxðiÞ � y Þ2
; (19)

In addition, we used structural similarity (SSIM) to evaluates the
similarity of two images from local statistics (on local windows)
using the flowing equation:

SSIMðX; bXÞ¼ ½lðx; bxÞ�a , ½cðx; bxÞ�b,½sðx; bxÞ�g; (20)

where x and bx are patches from estimated and target image,
respectively. The terms lðx;bxÞ, cðx;bxÞ, and sðx; bxÞ are the luminance,
contrast, and structure comparison functions, respectively. The
terms a>0, b>0, and g>0 are constants chosen to adjust the in-
fluence of the each of three terms. From SSIM, a single similarity
value, denoted as M-SSIM, can be computed by taking the mean of
all SSIM scores for all local windows.
3.2. Comparison between PG-DMDN and SM-net

To verify the benefits of the PG-DMDN, it is compared with SM-
net. Fig. 8(a) and (c) show the comparison of inversion results based
on PG-DMDN and SM-net. Fig. 8(b) and (d) show the absolute
difference between the estimated impedance and the true
1618
impedance. Because the proposed method uses the block con-
straints, the lateral continuity of its inversion results is better than
that of SM-net. However, SM-net cannot accurately restore the
structure in the red rectangular area. In contrast, PG-DMDN-based
inversion method has a better performance. The PG-DMDN will
first learn the nonlinear relationship between narrowband seismic
data and broadband impedance. Then, the modeling operator FðRÞ
is used to generate the narrowband seismic data to reduce the
solution space of the inverse part. Besides matching the output of
the PG-DMDN with broadband impedance labels, data generated
by inputting the PG-DMDN output into the known modeling
operator match the narrowband seismic data. The trained PG-
DMDN can predict broadband impedance using narrowband
seismic data. The low-frequency in the predicted impedance come
from logging labels and low-frequency models. If there is no
modeling operator to constrain the network, the inaccurate results
will be obtained. See the next section for the corresponding results
and analysis. To compare the two methods more fairly, the low-
frequency model is merge with the results of SM-net, as shown
in Fig. 8(e) and (f). The accuracy and lateral continuity of inversion
results have been improved, but there are still large errors. A
detailed comparison of the inversion results within the red rect-
angle in Fig. 8(e) and (f) is shown in Fig. 9. It can be seen that the
results of SM-net have improved to some extent after merge the
initial model. The results prove the superiority of the proposed
method. Fig. 10 shows the comparison between the inversion
impedance and the validation data. A similar conclusion can be
drawn from Fig. 10. The quantitative evaluation of the inversion
results is reported in Table 1. PG-DMDN inversion results have
higher PCC, R2, M-SSIM. It can be seen from the above results that
PG-DMDN is better than SM-net.

3.3. The role of forward modeling part

To quantify the contribution of forward part in the loss function
in Eq. (12), we compare the inversion results for different values of
l1 and l2. Ten black impedance curves (Fig. 7(a)) and seismic data
profile (Fig. 7(b)) are utilized as training data. The learning rate is
0.005. We set l1 ¼ 1, l2 ¼ 0 to implement DMDN-based inversion
(supervised learning), and l1 ¼ 1, l2 ¼ 1 to implement PG-DMDN
inversion (semi-supervised learning). For DMDN-based inversion,
only ten impedance curves are used as label data to train the
network. The corresponding 10 traces seismic data and low-
frequency model are used as input data. The mean impedance
models estimated by supervised and semi-supervised learning are
show in Fig. 11(a) and (b). Both supervised learning and semi-
supervised learning can restore the geological structure, but the
inversion results of semi-supervised learning have better hori-
zontal continuity and higher accuracy, especially in red box areas.
Fig. 11(c) and (d) show the absolute difference between the original
impedance and the estimated impedance. The difference between
the estimated impedance of semi-supervised learning and the true
impedance is smaller. Fig. 11(e) and (f) show the standard deviation
of the estimated impedance. From the figures, the prediction un-
certainty indicates where the predictive deviations are relatively
large. High uncertainty is observed mainly at impedance bound-
aries, which is similar to Ge's conclusion (Ge et al., 2021). The
standard deviation model obtained by semi-supervised learning
(Fig. 11(f)) has a smoother structure than supervised learning
(Fig. 11(e)). The smooth structure means that the inversion results
are closer to the true model and have less uncertainty (Zhang and
Curtis, 2021). To further understand the results, the comparison
between the inversion impedance and the validation data is dis-
played as Fig. 12. The mean impedance and shaded area are in good
agreement with the real impedance. The 2s of shallow simple



Fig. 8. 2-D synthetic model examples. (a) Proposed method. (b) Absolute difference between Fig. 8(a) and Fig. 7(a). (c) SM-net. (d) Absolute difference between Fig. 8(c) and
Fig. 7(a). (e) SM-net using low-frequency model. (f) Absolute difference between Fig. 8(e) and Fig. 7(a).

Fig. 9. A detailed comparison of the inversion results within the red rectangle: (a) and (b) correspond to the results shown in Fig. 8(c) and (e).
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structures is small, while that of deep complex structures is large.
From Fig. 12, the inversion accuracy of semi-supervised learning is
higher than supervised learning, especially at CDP 1600. Because
the modeling operator can limit the network to learn the rela-
tionship between broadband impedance and narrowband seismic
data. In addition, to demonstrate the reliability of the proposed
method for uncertainty prediction, we provide comparisons to
1619
other uncertainty estimation methods, such as Bayesian variational
inference implemented by SVGD (Zhang and Curtis, 2020, 2021;
Zhao et al., 2022). For each inversion, we utilize 500 particles that
are initially generated from the initial model to implement SVGD
(shown in Fig. 7(d)) and updated for 500 iterations. We use a uni-
form distribution over an interval of 5000 g/cm3$m/s at each depth
as a weaker prior distribution of impedance. Fig. 13 shows the



Fig. 10. The comparison between the inversion impedance and the validation data. (a)
CDP 500. (b) CDP 1100. (c) CDP 1600. (d) CDP 1900. (e) CDP 2450.

Table 1
Quantitative evaluation of inversion results of different methods.

Method PCC R2 M-SSIM

PG-DMDN 0.9853 0.9736 0.9447
SM-net (no model) 0.9746 0.9211 0.8756
SM-net (model) 0.9776 0.9372 0.9033

Fig. 11. Comparisons of inversion results between the supervised and semi-supervised learn
of semi-supervised learning. (c) The absolute difference between inverted impedance of su
impedance of semi-supervised learning and true impedance. (e) The uncertainty predicted

Fig. 12. The comparison between the inverted impedance of supervised and semi-
supervised learning scheme and the validation data. (a) CDP 500. (b) CDP 1100. (c)
CDP 1600. (d) CDP 1900. (e) CDP 2450.
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comparison between the particle density estimated by SVGD and
the predicted PDF of the proposed method. In comparison, the
posterior PDF predicted by semi-supervised learning is more
similar to the particle density. Then, we compare the predicted PDF
with the real distribution, as shown in Fig. 14. The posterior PDF
ing. (a) The estimated impedance of supervised learning. (b) The estimated impedance
pervised learning and true impedance. (d) The absolute difference between inverted
by supervised learning. (f) The uncertainty predicted by semi-supervised learning.



Fig. 13. Four estimated posterior PDFs of impedance at depths of 480, 960, 1440, 1920 ms. (a) CDP 500. (b) CDP 1100. (c) CDP 1600. (d) CDP 1900. (e) CDP 2450.
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predicted by semi-supervised learning are more consistent with
the true distribution than supervised learning, especially at CDP
1600. The geological information at CDP 1600 is completely
different from other regions. There are few learning samples for
supervised learning, and the mapping features of CDP 1600 cannot
1621
be learned. In addition, the quantitative evaluation of the role of
forward part are reported in Table 2. When l1 ¼ 1 and l2 ¼ 0 (su-
pervised learning), the network learns from only 10 seismic traces
and the corresponding impedance traces fromwell logs. Therefore,
compared with the unsupervised scheme, it can produce better
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Table 2
Quantitative evaluation of the role of the forward part.

Training scheme PCC R2 M-SSIM smean

Supervised (l1 ¼ 1, l2 ¼ 0) 0.9761 0.9586 0.9315 287.1431
Semi-supervised (l1 ¼ 1, l2 ¼ 1) 0.9853 0.9736 0.9447 274.6873

Q.-H. Sun, Z.-Y. Zong and X. Li Petroleum Science 21 (2024) 1611e1631
results. However, training a deep inverse model in a supervised
learning scheme requires heavy regularization and careful selection
of the training parameters (Alfarraj and AlRegib, 2019). Finally,
when l1 ¼ 1 and l2 ¼ 1 (semi-supervised learning), the network is
learned from all seismic data and 10 impedance traces from well
logs. The average standard deviation smean of supervised learning is
slightly larger than that of semi-supervised learning. Hence, the
semi-supervised scheme improves the performance and regular-
izes the learning. All the results demonstrate that semi-supervised
has better performance than supervised learning in small sample
problems.
1622
3.4. The robustness of PG-DMDN inversion

Seismic data with signal to noise ratio (SNR) of 10, 5 and 2 are
used to evaluate the robustness of PG-DMDN. Ten black impedance
curves (Fig. 7(a)), seismic data profile (Fig. 7(b) and (c)) and low-
frequency model (Fig. 7(d)) are utilized as training data. The
learning rate is 0.005. Fig. 15 shows the estimated impedance with
different noise levels. Fig. 15(a),(c),(e) show the inversion results of
the PG-DMDN. Fig. 15(b),(d),(f) show the absolute difference be-
tween the estimated impedance and the real impedance. However,
the existence of noise reduces the horizontal continuity of inver-
sion results. Fig. 16 shows the estimated impedance curves at CDP
500, 1100, 1600, 1900 and 2450 with different SNR. Fig. 17 shows
the predicted posteriori PDF with different noise. The predicted
probability distribution is approximately consistent with the true
impedance value. The corresponding quantitative evaluation of the
inversion results on Marmousi II is reported in Table 3. The exis-
tence of noise increases the uncertainty of inversion. From all the
results, it can be concluded that PG-DMDN still has good perfor-
mance even when the SNR is 2.



Fig. 15. Inverted impedance of semi-supervised learning inversion with different SNR. (a) SNR ¼ 10. (b) SNR ¼ 5. (c) SNR ¼ 2.
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3.5. Influence of low-frequency on PG-DMDN inversion

The influence of low-frequency model on inversion is self-
evident. To quantify the effect of low-frequency on PG-DMDN
inversion, the results are compared with those without low-
frequency model. The setting of network parameters is also
consistent with the previous test. Fig. 18(a) shows the estimated
impedance profiles utilizing low-frequencymodels as training data.
Fig. 18(c) shows the inversion result without low-frequency model.
Fig. 18(b) and (d) show the corresponding absolute difference
profiles. From Fig. 18(c) and (d), the inversion results without low-
frequency model are basically consistent with the real model,
except in the red rectangle. The 10 selected training samples do not
contain the relevant low-frequency features from CDP 1520 to
1650. Without the help of low-frequency model, the network does
not fully learn the nonlinear relationship between narrowband
seismic data and broadband impedance.

However, due to the existence of modeling operator FðRÞ, the
network can still learn the some low-frequency features, which is
consistent with the conclusion in Section 3. The convolution model
is an approximate linear operator, so some features will be lost. The
corresponding quantitative evaluation of the inversion results is
reported in Table 4. From all the results, it can be seen that the
proposed method can still obtain good results without the partic-
ipation of low-frequency models. Of course, as with the traditional
seismic inversion method, the high accuracy low-frequency model
is also useful for the DL-based inversion method. How to obtain a
reliable low-frequency model in the case of small samples is also a
better research direction.

3.6. Smaller samples problem

In seismic inversion based on DL, the small samples problem
1623
caused by sparse wells has attractedmuch attention. In this test, we
try to test the ability of the PG-DMDN inversion to solve the smaller
sample problem. Low-frequency model (Fig. 7(c)) and only five
pseudo-well curves (the dashed red lines in Fig. 7(a)) are used as
training data. Fig. 18(a) shows the estimated impedance profiles.
The absolute difference between the estimated impedance and the
true impedance is shown in Fig. 19(b). The PCC is 0.9805, the R2 is
0.9656, the SSIM is 0.9404, and the smean is 338.9038. The inversion
results can still accurately describe the geological structure, and the
error is acceptable. Fig. 20 shows the comparison between the
estimated parameter and the validation data. The inverted
impedance is consistent with the real impedance, but the inversion
uncertainty of complex structure area increases. Fig. 21 displays the
predicted posteriori PDF of impedance. The predicted posteriori
PDF is consistent with the real distribution. Comprehensive anal-
ysis demonstrates that the proposed PG-DMDN inversion method
still performs well in small sample problems.

4. Field data example

The semi-supervised probabilistic inversionmethod proposed is
validated using the actual seismic data of the South China Sea. The
frequency band of seismic data is from approximately 6 to 60 Hz,
and the interval sampling is 2 ms. The CDP number is 1899, the
sampling point is 500, and sampling interval is 2 ms. As shown in
Figs. 22(a) and 6 well-connecting lines are selected as the test
profile. The amplitude energy on the right is stronger than that on
the left, which is due to the development of limestone. Well A, B, C,
D, E and corresponding multi-trace seismic data are used as labeled
data, and well F is validation data. The remaining seismic traces are
used as unlabeled data. Two types of data are used as training sets
for field data example. The sampling interval of well-log data is 0.2
ms, which is one tenth of seismic data. Fig. 22(b) shows the low-



Fig. 16. Comparison between the inverted impedance and validation data with
different SNR. (a) SNR ¼ 10. (b) SNR ¼ 5. (c) SNR ¼ 2.
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frequency impedance model established by horizontal interpola-
tion of well curves.Well F is not used to establish the low-frequency
model. In the training process, the number of iterations is 5000, and
the learning rate is 0.003. The rectangular seismic data are used for
training network. Therefore, the size of the input data is the same.
For missing logging data, we use the inversion results obtain by
seismic inversion in the complex domain (Zong et al., 2018) to
repair it. The parameters of the network are set as follows: the
batch size is b ¼ 10; the input feature number of B-GRUs is c ¼ 8;
the input feature number of CNNs is c1 ¼ 8; the output feature
number of CNNs is c2 ¼ 16; the Gaussian kernel number is k ¼ 3;
the kernel size of CNNs ism ¼ 3; and the dilation factors are d1 ¼ 1,
d2 ¼ 3 and d3 ¼ 5, respectively. From Eq. (16), it can be seen that
parameters l1 and l2 can be used to control the effect of labeled
logging data and unlabeled seismic data on the loss function.
Through multiple experiments, the optimal weight coefficient can
be obtained to achieve optimal performance of the network. In this
test, we set l1 ¼ 1 and l2 ¼ 0.8.

Fig. 23 shows a comparison between PG-DMDN inverted
impedance result (Fig. 23(a)) and the SM-net inverted impedance
result (Fig. 23(b)). From Fig. 23, the both inverted impedances have
good horizontal continuity and high resolution. The inversion re-
sults can describe the limestone body well on the right side, that is,
the low value part. However, SM-net gets the high value at the red
ellipse. The seismic residual between the synthetic and real seismic
profile is shown in Fig. 23(c) and (d). The synthetic seismic data is
obtained by feeding the PG-DMDN inversion result into the forward
modeling part. We can observe that both residuals in Fig. 23(c) and
(d) are small in contrast to the seismic data of Fig. 22(a). Thus, both
the generated seismic data are close to the real seismic data. The
small residual shows that the forward modeling part is effective.

To better comparison, Fig. 24(a) exhibits the comparison be-
tween the estimated impedance and the real impedance at well F.
The green solid line represents the low-frequency model, the black
solid line indicates the true value, the blue solid line denotes the
inverted impedance with the SM-net, the red solid line denotes the
inverted impedance with the PG-DMDN, and the grey area is pre-
dicted probability distribution. The estimated mean impedance of
PG-DMDN is well consistent with the real impedance, especially at
about 3.85 s, while the estimated impedance of SM-net is incon-
sistent with the real impedance due to the lack of low-frequency. In
addition, the real impedance curve is within the predicted proba-
bility distribution range (grey area). Fig. 24(b) shows the compar-
ison between the particle density estimated by SVGD and the
predicted PDF of the proposed method. In comparison, the poste-
rior PDF predicted by semi-supervised learning is similar to the
particle density. Fig. 24(c) displays the corresponding probability
density distribution of impedance. The black solid line denotes the
PDF of the real impedance, and the black dashed line represents the
PDF of the predicted impedance. Obviously, PG-DMDN can well
estimate the posterior probability distribution of impedance. In
order to quantify the effect of different combinations of training
sets on the inversion results, five additional tests are implemented.
Well A, B, C, D and E are used as verification wells, and the
remaining wells are used as training labels. At the same time, the
verification well does not participate in the construction of low-
frequency model to verify the feasibility of the proposed method.
Fig. 25 shows the inversion results of impedance of different
training sets. It can be seen from Fig. 25 that the inversion results of
different training sets are almost the same, which proves the sta-
bility of the method. The quantitative evaluation results of different
as validation wells are reported in Table 5. It can be seen from
Table 5 that the errors of inversion results of different combinations
are similar. All the above results verify the effectiveness of the
proposed method.



Fig. 17. Four estimated posterior PDFs of impedance at depths of 480, 960, 1440, 1920 ms with different noise. (a) CDP 500. (b) CDP 1100. (c) CDP 1600. (d) CDP 1900. (e) CDP 2450.
Black bars represent the true value.
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5. Discussion

Different from some existing semi-supervised deterministic
seismic inversion methods, we study a probabilistic DL method
1625
combined with convolution model. MDN can simulate the proba-
bility distribution of arbitrary data, so we introduce it into semi-
supervised deterministic seismic inversion. Correspondingly, the
likelihood function is used instead of MSE to describe the difference



Table 3
Quantitative evaluation of the PG-DMDN with different SNR.

Method SNR PCC R2 M-SSIM smean

PG-DMDN 10 0.9809 0.9710 0.9357 319.9051
5 0.9806 0.9699 0.9271 347.8565
2 0.9756 0.9602 0.8797 369.2706

Table 4
Quantitative evaluation of the influence of the low-frequency model.

Model type PCC R2 M-SSIM smean

Low-precision 0.9893 0.9766 0.9447 274.6873
None 0.9805 0.9568 0.9370 346.4596
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between synthetic and real seismic data, thus helping to update the
network parameters of inversion part. The block low-frequency
model is introduced in the training process of the network to
learn the nonlinear relationship between narrowband seismic data
and broadband impedance. To improve the horizontal continuity,
we added a block training strategy to the framework and modify
the corresponding network structure. Based on the above four as-
pects, an inversion method based on PG-DMDN is proposed. Five
model tests are utilized to explain the feasibility of the proposed
method. The first test verifies the advantages of PG-DMDN. The PG-
DMDN can extract spatial information from seismic data and
improve the lateral continuity of inversion results. The second test
verifies the role of the forward modeling part. This means that PG-
DMDN has learned the physical laws of seismic forward modeling.
The third test verifies the anti-noise performance of the proposed
method. The existence of noise may increase the uncertainty of
inversion results. Because there are few well-log data available for
training, and other training samples are seismic data. The fourth
test demonstrates the importance of the low-frequency informa-
tion. Low-frequency model is helpful to capture the physical law
between seismic data and low-frequency impedance. The fifth tests
the ability of the proposed method to solve the problems with only
five pseudo-wells. The inversion results show that only using 5
pseudo wells as training data can still obtain good results. Finally,
the ability of proposed PG-DMDN inversion method to solve
practical problems is verified by a field example. It can be seen from
the results that PG-DMDN inversion method can not only accu-
rately estimate the results, but also predict the uncertain infor-
mation in seismic inversion directly.

Although the proposed method performs well, there are still
some limitations. The proposed method still requires an initial
model and wavelet. It is difficult to fully learn the nonlinear map-
ping relationship between narrowband seismic data and broad-
band impedance only by relying on a small amount of logging data.
Fig. 18. Inverted impedance profiles. (a) Estimated impedance with low-precision model, an
(d) corresponding absolute difference.
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Therefore, a low-frequency model is needed to assist PG-DMDN in
learning this relationship. The accuracy of wavelets also affects the
final inversion results. It may be a better method to replace the
forward operator with neural operator. In addition, the proposed
method can be easily extended to pre-stack inversion to estimate
elastic and physical parameters. For three parameter inversion, we
only need to set in Eq. (4). The input data becomes pre-stack
seismic data, and the label data is a well curve of elastic or phys-
ical parameters. The forward operator will become an AVO accurate
or approximate reflection coefficient. Based on the above changes,
the proposed method can be used for AVO inversion.

6. Conclusion

The conventional deterministic seismic inversion method based
on deep learning can only output deterministic value, which cannot
reflect the uncertainty of seismic inversion. To address this issue,
based on the SM-net, a probabilistic seismic inversion method
based on physics-guided deep mixture density network is pro-
posed. The proposed method can capture the uncertainty infor-
mation of seismic inversion on the premise of ensuring the
accuracy. The low-frequency model in the training process can
promote the prediction accuracy. The block constraints in the
framework can improve the horizontal continuity. The feasibility
and stability of proposed method are demonstrated by five syn-
thetic data examples. The first test proves the advantages of the
proposed method compared with the SM-net inversion method.
The proposed inversion method can obtain more accurate results.
The second test proves the validity of the modeling operator. The
third test proves the anti-noise performance of the proposed
method. The fourth test shows that the proposed method can still
obtain a relatively good results without initial model. The fifth test
demonstrates that the proposed method still performs well in the
case of less label data. The inversion results and the predicted
probability distributions are consistent with the validations. In
d (b) corresponding absolute difference. (c) Estimated impedance without model, and



Fig. 19. PG-DMDN-based inversion results. (a) Estimated impedance profile using five pseudo-wells curves as training data. (b) Absolute difference between Figs. 19(a) and 18(b). (c)
Predicted uncertainty.

Fig. 20. Comparison between the estimated results and the validation data using five
pseudo-wells curves as training data. (a) CDP 500. (b) CDP 1100. (c) CDP 1600. (d) CDP
1900. (e) CDP 2450.
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addition, compared with the results of SVGDmethod, the reliability
of prediction probability is verified. The field data test proves the
feasibility of the method in practical application. The results are in
good agreement with the real curves, which proves the effective-
ness of the proposed method.
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Fig. 21. Comparison between predicted PDF of PG-DMDN and DMDN. (a) CDP 500. (b) CDP 1100. (c) CDP 1600. (d) CDP 1900. (e) CDP 2450. (f) All data. The black line indicates the
true probability distribution of impedance, and the red dashed line indicates the predicted probability density distribution of PG-DMDN.

Fig. 22. Training data for PG-DMDN. (a) Profile of seismic data. (b) Profile of low-frequency impedance model.
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Fig. 23. Comparison between (a) the PG-DMDN inversion result and (b) the SM-net inversion result. (c) The residuals between Fig. 22(a) and the generated seismic data using
Fig. 23(a). (d) The residuals between Fig. 22(a) and the generated seismic data using Fig. 23(b).

Fig. 24. PG-DMDN inversion results of field data. (a) The comparison between the estimated impedance and the real impedance. (b) Four estimated posterior PDFs of impedance at
depths of 3.6, 3.7, 3.8, 3.9 s. (c) The comparison between the predicted probability density distribution and the real probability density distribution.
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Fig. 25. Impedance profiles inverted from different training sets. (a) Well A is a verification well. (b) Well B is a verification well. (c) Well C is a verification well. (d) Well D is a
verification well. (e) Well E is a verification wells.

Table 5
Quantitative evaluation of the influence of the different combinations of training
data.

Verification well PCC R2 MSE

A 0.9656 0.9443 0.0118
B 0.9569 0.9392 0.0168
C 0.9752 0.9505 0.0102
D 0.9587 0.9367 0.01728
E 0.9683 0.9492 0.0112
F 0.9628 0.9494 0.0129
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Appendix A

BN makes the distribution of input data in each layer of the
network relatively stable and speeds up the learning speed. In
addition, BN reduces the sensitivity of the inversion model to
network parameters and makes the learning process more stable.
1630
Furthermore, BN allows the network to utilize saturation activation
functions (e.g. sigmoid, tanh, etc.). BN is divided into the following
steps (Ioffe and Szegedy, 2015):

1) Calculate the mean and variance of the batch input X ¼ fx1; x2;
/; xbg using the following equation:

mX ¼1
b

Xb
i

xi; (A1)

and

s2X ¼1
b

Xb
i¼1

ðxi � mXÞ2: (A2)

2) Standardize the batch input with Eq. (A3):

bx i ¼
xi � mXffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2X þ ε

q ; (A3)

where ε is to prevent invalid calculation when variance is zero.

3) Normalization reduces the representation ability of the
network. Therefore, BN introduces two learnable parameters g

and b to solve this problem. A linear transformation is per-
formed on normalized data bx i (Eq. (A4)).
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by i ¼gbx i þ b: (A4)

In particular, when g2 ¼ s2 and b ¼ m, identity transform can be
achieved and the distribution of the original input features can be
preserved.
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