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a b s t r a c t

P- and S-wave separation plays an important role in elastic reverse-time migration. It can reduce the
artifacts caused by crosstalk between different modes and improve image quality. In addition, P- and S-
wave separation can also be used to better understand and distinguish wave types in complex media. At
present, the methods for separating wave modes in anisotropic media mainly include spatial non-
stationary filtering, low-rank approximation, and vector Poisson equation. Most of these methods
require multiple Fourier transforms or the calculation of large matrices, which require high computa-
tional costs for problems with large scale. In this paper, an efficient method is proposed to separate the
wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.
For 2D problems, the computational complexity required by this method is 1/2 of the methods based on
solving a vector Poisson equation. Therefore, compared with existing methods based on pseudo-
Helmholtz decomposition operators, this method can significantly reduce the computational cost. Nu-
merical examples also show that the P and S waves decomposed by this method not only have the
correct amplitude and phase relative to the input wavefield but also can reduce the computational
complexity significantly.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The P- and S-waves are coupled during their propagation in the
Earth. Thus, crosstalk artifacts will occur when imaging directly
with the mixed wavefields, affecting the imaging quality (Zhang
and Shi, 2019; Xie et al., 2021). Through wave-mode separation,
the PP, PS, SS and SP waves can be imaged separately, which can
reduce wave-mode crosstalk artifacts and improve imaging quality
(Sun et al., 2006; Yan and Sava, 2008; Zhou et al., 2019; Yang et al.,
2019; Li et al., 2021; Li and Qu, 2022; Zhang et al., 2022; Zuo et al.,
2022). The application of wave mode separation in full-waveform
inversion can reduce the nonlinearity and crosstalk problem be-
tween multi-parameters and improve the accuracy of inversion
(Ren and Liu, 2016; Qu et al., 2018; Luo et al., 2020; Hu et al., 2022).
y Elsevier B.V. on behalf of KeAi Co
So P- and S-wave separation is very important in imaging and full-
waveform inversion for elastic isotropic and anisotropic media.

The key to wavefield separation is the polarization directions of
the P and S waves. In isotropic media, the wave travels in the same
direction as the polarization of the P-wave and perpendicular to the
polarization of the S-wave, so the P and Swaves can be separated by
applying divergence and curl directly to the input wavefield.
However, the resulting amplitude and phase of the P and S waves
are incorrect (Sun et al., 2004). Separating the input wavefield us-
ing Helmholtz decomposition (Morse and Feshbach, 1953; Aki and
Richards, 2002) can solve this problem effectively. However,
directly solving scalar and vector potentials requires calculating
triple integrals, resulting in high costs. To solve this problem, the
Helmholtz decomposition based methods for vector decomposing
wavefield in the space domain and the wavenumber domain are
proposed successively (Zhang and McMechan, 2010; Zhu, 2017).
Yang et al. (2018) and Zhao et al. (2018) propose to integrate the
sourcewavelet and achieve the wavefield decomposition by scaling
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the decomposition operator. This method avoids the calculation of
Poisson equation and improves the efficiency of wavefield
decomposition. Using the relationship between the divergence,
curl, gradient, and exterior derivative operations (Morse and
Feshbach, 1953), Zheng and Yao (2023) proposed a method for
decomposing wavefields in isotropic media based on a scalar Lap-
lacian operator. Different from the existing Helmholtz decomposi-
tion based method, this method only requires solving a scalar
Poisson equation, not a vector Poisson equation, resulting in much
higher computational efficiency.

In anisotropic media, the polarization directions of P and S waves
are neither parallel nor perpendicular to the wave propagation di-
rection. Therefore, it is necessary to obtain the polarization di-
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(1)
rections of P and S waves through the Christoffel equation (Dellinger
and Etgen, 1990), and then project the vector of wave displacement
or particle velocity into the polarization directions of P and S waves
to achieve wave mode separation. Dellinger and Etgen (1990) and
Dellinger (1991) obtained the polarization directions of P and S
waves by solving the Christoffel equation in the wavenumber
domain and then returned to the spatial domain to obtain the
anisotropic wavefield separation operator. However, since this
method directly applies the separation operator to thewavefield, the
amplitude and the phase obtained are incorrect. Moreover, this
method is only accurate for homogeneous media. To solve these
problems, Zhang and McMechan (2010) proposed a vector decom-
position method of elastic wavefield in the wavenumber domain,
which can obtain the correct amplitude and phase. Yan and Sava
(2009) proposed a non-stationary filter to separate P- and S-wave
in anisotropic heterogeneous media. Their method needs to solve
the Christoffel equation of local media parameters to obtain the local
polarization direction for constructing the non-stationary filter,
which leads to high computational costs. To reduce computational
costs, many scholars have proposed other approaches, such as low-
rank approximation (Cheng and Fomel, 2014; Sripanich et al., 2017),
LU decomposition (Yang et al., 2019), ani-Helmholtz decomposition
in the wavenumber domain and the spatial domain (Zhang et al.,
2022, 2023). In addition, Zhou and Wang (2017) used the Poynting
vector to estimate the deviation angle between the vector of wave
displacement and the P-wave polarization direction and then
separated the P and S waves by rotating the wave vector to the P-
wave polarization direction. Lu et al. (2019) used the Poynting vector
to achieve wave-mode separation in the angle domain.

In this paper, we extend themethod proposed by Zheng and Yao
(2023) to separate the anisotropic elastic wavefields by using the
pseudo-gradient operator (Zuo et al., 2022). For the resulting
method, we only need to solve an scalar anisotropic Poisson
equation. Compared with the methods that require solving vector
anisotropic Poisson equations, our method can greatly reduce the
computational cost. Precisely, in the case of 2D wavefields, our
method can save half of the computational cost. Like the methods
proposed by Du et al. (2017) and Zhong et al. (2021), we obtain the
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S-wave by subtracting the vector P-wave directly from the input full
wavefield. There is no curl operation on a certain auxiliary wave-
field, which can further reduce the computation costs when
compared with existing pseudo-Helmholtz decomposition
methods.
2. Method

2.1. Review of the pseudo-Helmholtz decomposition operator for 2D
VTI media

The elastic wave equation in the 2D VTI media is as follows:
where x is spatial position coordinates, uxðx; tÞ and uzðx; tÞ denote
horizontal and vertical components of the displacement or particle
velocity wavefields, respectively. rðxÞ represents density, and
c11ðxÞ, c13ðxÞ, c33ðxÞ , c55ðxÞ are the elements of the elastic coeffi-
cient matrix.

Taking the Fourier transform of Eq. (1) by assuming the local
homogenous medium, the Christoffel equation is obtained:
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where u is the angular frequency, Ux and Uz are the corresponding
wavefields of ux and uz after the Fourier transform, respectively.
Moreover, kx and kz are the wavenumbers in the x and z directions,
respectively. Denoting
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Then l ¼ ru2 ¼ rk2V2, where V is the phase velocity, l and ~a are
the eigenvalue and eigenvector of matrix A, respectively. The ma-
trix A has two eigenvalues, and the eigenvectors corresponding to
the large and small eigenvalues are the polarization directions of
the P and S waves, respectively. Moreover, the elastic coefficient
matrix elements in Eq. (3) can be represented by Thomsen pa-
rameters (Thomsen, 1986) as follows:

c11 ¼ rð1þ 2εÞv2p; c33 ¼ rv2p; c55 ¼ rv2s

c13 ¼ r
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ih
v2p � v2s

ir
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(4)

where ε and d are the Thomsen anisotropy parameters, vp and vs
denote the P and S velocities along the axis of symmetry, respec-
tively. Therefore, the eigenvalue of matrix A is
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Utilizing the zero-order Taylor expansion (Zuo et al., 2022), the
eigenvalues and eigenvectors of A can be approximately expressed
as

l1 ¼ rv2p
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i
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By denoting (Zuo et al., 2022)
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the corresponding formulas of Eq. (6) in the spatial domain are

a1ðxÞ ¼
"

vx

rðxÞvz

#

a2ðxÞ ¼
"
rðxÞvz
�vx

#

rðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
ð1þ 2dðxÞÞv2pðxÞ � v2s ðxÞ

ih
v2pðxÞ � v2s ðxÞ

ir
ð1þ 2εðxÞÞv2pðxÞ � v2s ðxÞ

(8)

where, vx and vz are the first-order spatial derivatives in x and z
directions, respectively. Physically, a1ðxÞ and a2ðxÞ denote the po-
larization directions of the P- and S-wave, respectively. Since zero-
order Taylor expansion is applied to obtain the eigenvalues and
eigenvectors of A, the resulting eigenvalues in Eq. (6) and eigen-
vectors in Eq. (8) are accurate for elliptical anisotropy media, i.e.,
ε ¼ d. When the difference between ε and d is large, the accuracy of
zero-order Taylor expansion decreases.

According to Eq. (8), which gives approximated eigenvectors of
A, the following operator gives a pseudo-gradient operator in
anisotropic media:

V¼
�

vx
rðxÞvz

�
(9)

Since the P- and S-wave polarization directions are
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perpendicular to each other, the decomposition formulas of P and S
waves can be obtained from the zero-order pseudo-Helmholtz
decomposition operator:

up ¼VðV $wÞ; us¼ �V� ðV�wÞ (10)

The vector wavefield w satisfies the following anisotropic
Poisson equation:

v2wðxÞ
vx2

þ r2ðxÞ v
2wðxÞ
vz2

¼ uðxÞ (11)

Eqs. (9)e(11) are the anisotropic wavefield decomposition for-
mulas. When the anisotropy parameter is 0, Eq. (9) reduces to a
gradient operator. Therefore, the approximate gradient operator of
Eq. (9) is an improvement on the counterpart in Yang et al. (2019).
Eq. (11) indicates that w is obtained by solving a vector Poisson
equation, which contains multiple scalar Poisson equations. When
the scale of u increases, the computational cost of solving the vector
Poisson equation (Eq. (11)) will increase significantly.
2.2. A scalar anisotropic Poisson operator

By using relationships among the gradient, divergence, curl, and
exterior derivative operations, Zheng and Yao (2023) proposed the
method of using a scalar Poisson equation to decompose the
isotropic wavefield. In this section, we extend this method to
decompose anisotropic wavefields. By introducing an auxiliary
function, we present a scalar anisotropic Poisson equation based on
the pseudo-divergence, pseudo-gradient, and pseudo-curl
operators.

For anisotropic media, the input wavefield vector can be pro-
jected to the polarization directions of P and S waves according to
the Helmholtz decomposition theory. Here, the obtained spatial
domain approximate P-wave polarization direction is used to
replace the P-wave polarization direction. The pseudo-gradient
operator given by Eq. (9) is consistent with the polarization direc-
tion of the P-wave and orthogonal to the polarization direction of
the S-wave. Therefore, the following formula in the spatial domain
is obtained after projecting the vector wavefields u, up and us onto
the obtained polarization vectors a1ðxÞ, a2ðxÞ:

u ¼ up þ us

V$u ¼ V$up; V� u ¼ V� us

V� up¼ 0; V$us¼ 0 (12)

More details can be seen in Zhang et al. (2022). Here, u, up and
us are the input vector wavefield, vector P-wave, and vector S-wave,
respectively.

For the general VTI anisotropic media, the gradient and curl
operators are complex. Thus, we obtain them by applying zero-
order Taylor expansion to the exact eigenvalue of A. Applying the
pseudo-gradient operator to Theorem 1 of Zheng and Yao (2023)
and combining it with the properties of P and S waves in Eq. (12),



Fig. 1. Flowchart of P/S-wave decomposition.
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the following equation can be obtained:

u� us ¼Vf (13)

Applying the pseudo-divergence operator to both sides of Eq.
(13) results in

V
2f ¼V $ ðVf Þ¼V $u (14)

which can be rewritten as

v2f ðxÞ
vx2

þ r2ðxÞ v
2f ðxÞ
vz2

¼ V $uðxÞ (15)

Therefore, the P- and S-wavefield decomposition equations for
VTI anisotropic media are

up ¼Vf ; us ¼ u� up (16)

From Eqs. (15) and (16), it can be seen that the computational
complexity of implementing wavefield decomposition is mainly
reflected in solving the scalar anisotropic Poisson Eq. (15). By
contrast, the separation presented by Yang et al. (2019) needs to
solve the vector anisotropic Poisson equation (e.g., Eq. (11)). For the
2D case, two anisotropic Poisson equations need to be solved.
The method proposed in this paper only requires solving one
Poisson equation. Theoretically, the computational cost of our
proposed method is almost 1/2 of that of Yang et al. (2019) for 2D
problems. An extension of this method for 3D cases can be found in
Appendix A.
2.3. Numerical implementation

According to Eqs. (14)e(16), the proposed wavefield decompo-
sition method includes four steps: (1) calculate V$ u; (2) solve the
scalar anisotropic Poisson equation; (3) compute Vf to produce the
f ðkþ1Þ
i; j ¼ b

wi; j �
1

Dx2
P3
n¼1

cn
�
f ðkÞiþn; j þ f ðkþ1Þ

i�n; j

�
� bi; j
Dz2

P3
n¼1

cn
�
f ðkÞi; jþn þ f ðkþ1Þ

i; j�n

�

c0

�
1

Dx2
þ bi; j
Dz2

�
þð1� bÞf ðkÞi; j

(19)
P-wave; (4) compute the S-wave by subtracting the P-wave from
the full wavefield.

Usually, staggered finite-difference methods are used to solve
the VTI elastic wave equations, resulting in a half-grid shift of the
velocity and stress components. In the first step, we use the stag-
gered grid finite difference to compute V$u. The obtained scalar
field is located at the grid points of normal stresses. The calculation
in the second step operates on the grid points of normal stresses. In
the third and fourth steps, the P-wave is obtained by solving Vf
using finite difference, and then the S-wave is obtained by sub-
tracting the P-wave from the full wavefield. Therefore, the sepa-
rated P/S waves are still in the original grid position.

In the second step, the successive over-relaxation (SOR) iterative
method (Kincaid and Young, 1972) is used to solve the scalar
anisotropic Poisson equation (Eq. (15)). Here, the second-order
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spatial derivative of the function is computed with the sixth-
order central finite difference.

By denoting

bðxÞ ¼ r2ðxÞ;wðxÞ ¼ V $uðxÞ (17)

Eq. (15) can be expressed as

v2f ðxÞ
vx2

þ bðxÞ v
2f ðxÞ
vz2

¼ wðxÞ (18)

The SOR iteration format for Eq. (18) is as follows:
where f ðkÞi; j represents the value of f on the grid point (i, j) of the k-th

iteration, b is the relaxation factor of the SOR iterative method, and
cn is the finite-difference coefficient. The convergence condition of
this iterative method is 0<b<2. In the numerical experiments of
this paper, the relaxation factor b of the SOR iterative is obtained
through trial and error in the interval [0, 2], which is taken as 1.9. To
speed up the convergence, we adopt the SOR iteration with alter-
nating sweeping orderings (Zhao, 2005) to solve the scalar Poisson
equation. The four alternating sweeping orderings in the entire
domain are as follows:

ðiÞ i¼ 1:I; j¼ 1:J; ðiiÞ i ¼ I: 1; j¼ 1:J
ðiiiÞ i ¼ I: 1; j¼J: 1; ðivÞ i¼ 1:I; j¼J: 1 (20)

Eq. (20) indicates the update order of Eq. (19). One iteration uses



Fig. 2. The horizontal (a) and vertical (b) components of particle velocity for the elliptical anisotropic homogeneous model.

Fig. 3. The separated wavefields for the elliptical anisotropic homogeneous model. Horizontal (a) and vertical (b) components of P-wave. Horizontal (c) and vertical (d) components
of S-wave.
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Fig. 4. The wiggle display of the 350th trace (distance ¼ 3.5 km) for the experiment of the elliptical anisotropic homogeneous model. The black curves show the original wavefield
while the red curves show the separated P/S waves.
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the order of (i), and the next three iterations follows the order of (ii)
e (iv), and then repeat the order of (i) and so on. The solution
obtained in each iteration is used as the initial value of the next
iteration. Based on the description in this section, Fig. 1 is presented
to show the working flowchart.
Fig. 5. The horizontal (a) and vertical (b) components of particle v

1602
3. Examples

In this section, four numerical examples are presented to
demonstrate the effectiveness of our proposed method for
decomposing the wavefields in anisotropic media.
elocity for the non-elliptical anisotropic homogeneous model.



Fig. 6. The separated wavefields for the non-elliptical anisotropic homogeneous model. Horizontal (a) and vertical (b) components of P-wave. Horizontal (c) and vertical (d)
components of S-wave.
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3.1. Elliptical anisotropic homogeneous model

The first example is the elliptical anisotropic homogeneous
model. A 15 Hz Ricker wavelet is used as the vertical body-force
source excitation, and the source location is at the center of the
model. The parameters of the model are vp ¼ 3000 m/s,
vs ¼ 1500 m/s, r ¼ 1000 kg/m3, ε ¼ 0.2 and d ¼ 0.2. Moreover, the
model is discretized into a grid of 600 � 600 with a 10 m grid
interval.

The horizontal and vertical particle velocity wavefields are
shown in Fig. 2. Fig. 3 shows the horizontal and vertical compo-
nents of P and S waves obtained by using the decomposition
method proposed in this paper, i.e., Eqs. (14)e(16). As can be seen
from Fig. 3, P- and S-wavefield can be separated completely for an
elliptical anisotropic model. The wiggle comparison of the 350th
trace is shown in Fig. 4. It can be seen from Fig. 4 that the horizontal
and vertical components of P and Swaves obtained by the proposed
method match well with the amplitude and phase of the input
velocity wavefields. This further demonstrates the effectiveness of
1603
the proposed method.
3.2. Non-elliptical anisotropic homogeneous model

In this experiment, we test the performance of the proposed
zero-order method for a non-elliptical anisotropic homogeneous
media. The test parameters are the same as that of the previous
elliptical anisotropic model except for d ¼ 0.1. The horizontal and
vertical particle velocity wavefields are shown in Fig. 5. Fig. 6 shows
the horizontal and vertical components of P and S waves.

It can be seen from Fig. 6 that there is a small amount of S-wave
leaking into the separated P-wave, and there is also some P-wave
residual in the S-wave. Furthermore, according to the wiggle
display in Fig. 7, the residual is about 3% in terms of the amplitude
ratio. This is because the polarization directions of the P and S
waves shown in Eq. (8) are exact in elliptical anisotropic media
but are an approximation in non-elliptical anisotropic media, so
there will be some residuals when decomposing non-elliptical
anisotropic wavefield. The amplitude of the residual is



Fig. 7. The wiggle display of the 350th trace (distance ¼ 3.5 km) for the experiment of the non-elliptical anisotropic homogeneous model. The black curves show the original
wavefield while the red curves show the separated P/S waves.

Fig. 8. Root mean square errors (RMSE) of the P/S waves obtained by using the proposed method relative to the accurate P/S waves with different influential factors: (a) anisotropic
parameter difference, i.e., ε� d and (b) the ratio of P-wave to S-wave velocities, i.e., vp=vs.
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proportional to the difference between ε and d. Although the
leakage exists, previous studies (Yang et al., 2019; Zhang et al.,
2022; Zuo et al., 2022) suggest that the zero-order pseudo-Helm-
holtz decomposition method fulfills the quality requirement of
elastic migration.

Because accurate P/S wavefileds can be obtained by cutting
through a homogeneous model, we take homogeneous non-
elliptical media as an example to further analyze the accuracy of
this method. By keeping other parameters fixed, we separately
change the anisotropic parameter difference, i.e., ε� d and the ratio
of P-wave to S-wave velocities, i.e., vP=vs. We then calculate the root
mean square error (RMSE) of the P/S waves obtained by using the
1604
method proposed in this paper relative to the accurate P/S waves.
The results are shown in Fig. 8.

When vp=vs ¼
ffiffiffi
3

p
; vp ¼ 3000m=s; vs ¼ 1732m=s; r ¼ 1000kg=

m3; d ¼ 0:1 and the range of ε� d is [0, 0.3], the RMSE of P/S waves
obtained using the proposed approach are shown in Fig. 8(a). As
can be seen, when other parameters are fixed, the RMSE is directly
proportional to ε� d. Furthermore, the RMSE of the vertical
component is smaller than that of the horizontal component.

When vp ¼ 3000 m=s; r ¼ 1000 kg=m3; ε ¼ 0:2; d ¼ 0:1, the
RMSE relative to vp=vs is shown in Fig. 8(b). As can be seen,
when vp=vs is between 1.2 and 3, the RMSE is less than 1.2 %. The
horizontal component has a relatively larger error than the vertical



Fig. 9. The non-elliptical VTI layered model.

Fig. 10. The horizontal (a) and vertical (b) components of p

Fig. 11. The separated wavefields for the non-elliptical VTI layer model. Horizontal (a) and ve
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component. Besides, the variation in ε� d has a slightly greater
influence on the accuracy of wavefield separation than vp=vs.
However, Fig. 8 indicates that even in strongly anisotropic media,
e.g., ε� d¼ 0:3, the RMSE is about 2.3%. This suggests that the new
method has a high level of accuracy and can be applied to most
anisotropic media.
3.3. VTI layered model

In this example, we consider the VTI layered model, and the
model parameters are shown in Fig. 9. The source is located at
(5 km, 0.8 km) and is excited with a P-wave source of a 15-Hz Ricker
wavelet. The grid spacing is 10 m in both horizontal and vertical
directions.

The horizontal and vertical components of the particle velocity
wavefields are shown in Fig. 10. The separated P and S waves are
shown in Fig. 11. As can be seen, the leakage is weak. This implies
that the proposed method is suitable for the VTI layered model.
article velocity for the non-elliptical VTI layer model.

rtical (b) components of P-wave. Horizontal (c) and vertical (d) components of S-wave.



Fig. 12. Hess model parameters.

Fig. 13. The horizontal (a) and vertical (b) components of particle velocity wavefields in the Hess model.

Fig. 14. The horizontal (a) and vertical (b) components of P-wave using the method of Yang et al. (2019).
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Fig. 15. The horizontal (a) and vertical (b) components of P-wave by using our method.

Fig. 16. The horizontal (a) and vertical (b) components of S-wave by using the method of Yang et al. (2019).

Fig. 17. The horizontal (a) and vertical (b) components of S-wave by using our method.
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3.4. Hess model

The Hess model is further used to show the effectiveness of the
proposed method in heterogeneous media. The model has a grid of
2205 � 915. The grid interval is 10 m. A 5-Hz Ricker wavelet is used
as the vertical body-force source excitation. The source is placed at
(12 km, 0.5 km). The input wavefield contains an absorbing
1607
boundary area. The model parameters are shown in Fig. 12(a)e(e).
Fig. 13 shows the horizontal and vertical components of particle

velocity wavefields obtained through simulation. As a comparison,
we first use the method of Yang et al. (2019) to separate P/S-waves.
The results are shown in Fig. 14(a) and (b). As can be seen from
Fig. 14(a), there is a faint S-wave residual indicated by the black box
in the extracted P-wave. The S-wave residual almost cannot be seen



Table 1
The CPU times of the proposed method and that of Yang et al. (2019).

Model Time cost of Yang's method Time cost of the proposed method

Homogeneous model 6.22 s 3.13 s
Layered model 6.61 s 3.41 s
Hess model 43.05 s 21.82 s
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in the extracted P-wave obtained by the method we proposed
(Fig. 15(a)).

Figs. 16 and 17 show the separation results for S-wave. As can be
seen, there are P-wave residuals in both S-waves, but Fig. 16(b) has
more remnants than Fig. 17(b), which are indicated by the black
arrows. The reason why a tiny amount of P-waves remains in S-
waves in Figs. 16 and 17 is that these two methods are based on
zero-order Taylor expansion to the exact eigenvalues, and therefore
the resulting polarization direction is accurate when ε ¼ d, and is
an approximation when εsd. But, in general, the pseudo-
Helmholtz decomposition based on zero-order Taylor expansion
achieves good wave separation for the Hess model, which is a
representative model of the real world. In addition, previous
studies have shown that the wavefield separation results obtained
by using zero-order Taylor expansion can meet the needs of elastic
migration imaging (Yang et al., 2019; Zhang et al., 2022; Zuo et al.,
2022). The reasonwhy our method is slightly better than Yang et al.
(2019) is that, for 2D problems, Yang's method requires solving two
anisotropic Poisson equations when computing the auxiliary vector
wavefield, and requires a pseudo-divergence and a pseudo-
gradient to obtain the P-wave. In addition, Yang's method re-
quires two pseudo-curl operators to compute the S-wave. Errors
will occur when using pseudo-gradient, pseudo-divergence, and
pseudo-curl operators for approximating the corresponding exact
operators. However, our algorithm only uses one anisotropic Pois-
son equation to compute the scalar auxiliary function and uses a
pseudo-gradient operator to obtain the P-wave. Another reason is
that the pseudo-derivative operator proposed by Yang et al. (2019)
does not reduce into a derivative operator when the anisotropic
parameters are zero. This tends to cause more errors.

To further show the efficiency of the proposed method, we
compare the CPU time of the new method with that of Yang et al.
(2019) for the homogeneous elliptical anisotropy model, the
layered model, and the Hess model in the previous numerical ex-
amples. The running time is shown in Table 1. As can be seen, the
computational cost of the proposed method is about 1/2 of that of
Yang et al. (2019) for 2D problems.
4. Discussion

Zheng and Yao (2023) used the relationships between the
gradient, divergence, curl, and exterior derivative operators to
construct the isotropic scalar Poisson equation. In this paper, the
anisotropic scalar Poisson equationwas derived by constructing the
pseudo-divergence, pseudo-gradient, and pseudo-curl operators
through the polarization directions of P and S waves. The scalar
anisotropic Poisson equation is an extension of the scalar isotropic
Poisson equation. When the anisotropic parameter is zero, the
pseudo-divergence, pseudo-gradient, and pseudo-curl operators
reduce to the divergence, gradient, and curl operators in the
isotropic media. In this case, the scalar anisotropic Laplace operator
reduces to the scalar isotropic Laplace operator.

The scalar isotropic Poisson equation can be solved in the
wavenumber domain, but the coefficients of the anisotropic
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Poisson equation vary in space, so the equation cannot be solved in
the wavenumber domain directly by using FFT. In this paper, we
propose to solve the scalar anisotropic Poisson equation in the
spatial domain by using SOR iteration with alternating sweeping
orderings. Eq. (19) is used to compute the scalar auxiliary function f
without the need to construct a large coefficient matrix, which can
significantly reduce the computational cost, as well as imple-
mentation complexity, compared with the matrix-based methods,
e.g., LU decomposition. In our numerical experiment, the SOR
method takes 15 iterations for the homogeneous media. For a more
complex model, we can increase the iteration numbers for a more
accurate solution of the function f, for instance, 60 iterations are
used for the Hess model study.

5. Conclusion

In this paper, a new scalar anisotropic Poisson equation for
pseudo-Helmholtz decomposition is proposed using pseudo-
divergence, pseudo-gradient, and pseudo-curl operators. The vec-
tor P and S waves are decomposed by solving the scalar anisotropic
Poisson equation. Thus, compared with the existing approaches
based on solving the vector anisotropic Poisson equation, the pro-
posed method saves the computational cost by half for 2D prob-
lems, respectively. The resulting separated P and S waves keep the
correct amplitude and phase. The numerical experiments demon-
strate the effectiveness of the methods we proposed. Especially, the
Hess model shows that the pseudo-Helmholtz decomposition
based zero-order Taylor expansion can achieve an effective wave
separation, which can basically meet the needs of reverse-time
migration imaging. This proposed method can be extended to 3D
problems straightforwardly, which saves 2/3 of the cost.
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Appendix A

Wavefield decomposition for 3D anisotropic media using scalar
anisotropic Poisson operators.

The elastic wave equation in the 3D VTI media is as follows:
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(A.1)
where ux;uy;uz are two horizontal and one vertical components of
the displacements in Cartesian coordinates, respectively. They are
functions of time and space. c11, c13, c33, c44 and c66 are the ele-
ments of the elastic coefficient matrix, and r represents density.
They are functions of space. Under the assumption of local homo-
geneity, the elastic coefficient matrix elements can be represented
by Thomsen parameters (Thomsen, 1986):

c11 ¼ rð1þ 2εÞv2p; c33 ¼ rv2p

c44 ¼ c55 ¼ rv2s ; c66 ¼ rð1þ 2gÞv2s
c13 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
ð1þ 2dÞv2p � v2s

ih
v2p � v2s

ir
� rv2s

(A.2)

where ε, d and g are the Thomsen anisotropy parameters, vp and vs
denote the P-wave and S-wave velocities along the axis of sym-
metry, respectively.

Like the 2D media, the polarization directions of the P and S
waves can be obtained by using the Christoffel equation. See Zuo
et al. (2022) for more details. For a 3D problem, we can define
the pseudo-gradient operator with the polarization direction of the
P-wave by

~V¼
2
4 vx

vy
rðxÞvz

3
5 (A.3)

where rðxÞ is defined in Eq. (8). Then, the P- and S-wavefield
decomposition equations for 3D anisotropic media are

up ¼ ~Vf ; us ¼ u� up (A.4)

Here the scalar auxiliary function f satisfies the following aniso-
tropic Poisson equation:

v2f ðxÞ
vx2

þ v2f ðxÞ
vy2

þ r2ðxÞ v
2f ðxÞ
vz2

¼ ~V $uðxÞ (A.5)

By denoting

bðxÞ ¼ r2ðxÞ;wðxÞ ¼ ~V $uðxÞ (A.6)

Eq. (A.5) then can be expressed as

v2f ðxÞ
vx2

þ v2f ðxÞ
vy2

þ bðxÞ v
2f ðxÞ
vz2

¼ wðxÞ (A.7)

Similarly, the 3D anisotropic Poisson equation (Eq. (A.7)) can
also be solved using SOR iterative with alternating sweeping or-
derings. When i¼ 1:I; l ¼ 1 : L; j¼ 1:J, SOR iteration format is as
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follows, and iteration formats under other sequential iterations can
also be analogized:

f ðkþ1Þ
i;l; j ¼ b

c0

�
1

Dx2 þ 1
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bi;l;j

Dz2

�
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BBBBBBBBBBBB@

wi;l; j�
1

Dx2
X3
n¼1
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�
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i�n;l; j

�

� 1
Dy2
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n¼1
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�
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i;l�n; j

�

�bi;l; j
Dz2

X3
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�
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i;l; j�n

�

1
CCCCCCCCCCCCA

þð1�bÞf ðkÞi;l; j

(A.8)

Based on Eqs. (A.1)e(A.8), the wavefield decomposition method
based on the proposed scalar anisotropic Poisson equation for 3D
VTI media is briefly discussed in this section. The existing 3D
anisotropic wavefield decomposition method proposed by Zuo
et al. (2022) requires solving the anisotropic Poisson equation
three times, whereas our method only requires solving it once. In
theory, our method can potentially reduce the computational
workload by 2/3 compared to the existing approaches.
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