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ABSTRACT

Flow units (FU) rock typing is a common technique for characterizing reservoir flow behavior, producing
reliable porosity and permeability estimation even in complex geological settings. However, the lateral
extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and
using the seismic data as constraints is rarely a subject of study. This paper proposes a workflow to
generate numerous possible 3D volumes of flow units, porosity and permeability below the seismic
resolution limit, respecting the available seismic data at larger scales. The methodology is used in the
Mero Field, a Brazilian presalt carbonate reservoir located in the Santos Basin, who presents a complex
and heterogenic geological setting with different sedimentological processes and diagenetic history. We
generated metric flow units using the conventional core analysis and transposed to the well log data.
Then, given a Markov chain Monte Carlo algorithm, the seismic data and the well log statistics, we
simulated acoustic impedance, decametric flow units (DFU), metric flow units (MFU), porosity and
permeability volumes in the metric scale. The aim is to estimate a minimum amount of MFU able to
calculate realistic scenarios porosity and permeability scenarios, without losing the seismic lateral
control. In other words, every porosity and permeability volume simulated produces a synthetic seismic
that match the real seismic of the area, even in the metric scale. The achieved 3D results represent a
high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the
process and can be directly incorporated in the dynamic characterization workflow.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Lupinacci, 2021). Once FUs may not have any relation with the li-
thology, incorporating FUs into reservoir models, which are

Complex geology reservoir systems present many challenges to
generate coherent static and dynamic models for reservoir simu-
lation. The representation of reservoir heterogeneities and flow
patterns comprehend the most important step to predict subsur-
face fluid movement, production and injection, especially in giant
oil fields where prediction errors can result in a great loss of
investment.

Flow units (FUs) reservoir rock typing can present an advantage
over lithological rock typing in the 3D model building process using
seismic data as a constraint, as FU provides better estimations of
reservoir petrophysical properties, like porosity (¢) and absolute
permeability (k), even in complex geological settings (Penna and
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essentially built with geological premises, is quite challenge for any
asset team. Lithological facies, for instance, can comprehend two
distinct FUs, depending on the diagenetic evolution of both rocks.
Due to pore obliteration or generation processes, lithological facies
would present different fluid flow and petrophysical patterns, and
different consequences when submitted to production or injection
(Penna and Lupinacci, 2020).

FU rock typing has been performed from flow zone indicator
(FZI) (Nabawy et al., 2018), electrical parameters (Ghanbarian et al.,
2018), FZI-star (Mirzaei-Paiaman et al., 2018; Rocha et al., 2019) and
mercury injection capillary pressure (Liu et al, 2019), demon-
strating how FUs are a powerful tool to predict storage and flow
capacity of the reservoir, regardless of the geological complexity.
Penna and Lupinacci (2021) showed that the 3D porosity and
permeability performed on the basis of FU is a valuable and accu-
rate tool to be incorporated into workflows in the construction of
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reservoir models.

Because of the FU incorporation difficulties and lack of corre-
lation with lithological facies, most 3D static models built from FU
are merely a geostatistical procedure away from the well control,
without any lateral constraint of the facies interpolation (Li et al.,
2017; Zhang et al., 2018). However, recent studies have incorpo-
rated seismic data into the FU modelling workflow for the FU
interpolation. Iravani et al. (2018) considered the acoustic imped-
ance as constraint for interpolation of petrophysical properties in a
FU template. Yarmohammadi et al. (2014), Rastegarnia et al. (2016)
and Hatampour et al. (2018) applied artificial intelligence to obtain
linear relationships between FU and seismic attributes, creating
their constraints to the FU facies modelling. Penna and Lupinacci
(2021) used a cumulative S-curve analysis to create a decametric
FU rock typing, and, through a Bayesian probabilistic model, per-
formed 3D porosity and permeability, adequate to the seismic
acoustic impedance resolution. All these seismic-generated FU
models can later be successfully incorporated in the static model-
ling workflow of the reservoir, as hard constraints or secondary
variable in co-kriging techniques.

The usage of seismic attributes provides lateral control for FU
interpolation away from the well and is especially relevant in large
reservoirs with a reduced number of drilled wells. However, the
vertical resolution of deterministic seismic inversion products is
limited to the decametric scale, above 20 m for Brazilian presalt
reservoirs (more details in Penna and Lupinacci, 2021). In seismic-
incorporated FUs and fluids movements detection, the scale of
observation is crucial as, for instance, porous fractured media will
be more or less connected depending on the grid size (Haridy et al.,
2020). Conventional methods of seismic facies classification do not
extrapolate the vertical resolution further from the input data limit.
Considering that most of the FU classifications are made in the core
scale (millimetric) and transposed to well log scale (centimetric),
then several upscale and downscale assumptions are needed to
incorporate the decametric seismic results (Penna and Lupinacci,
2021).

This paper proposes an approach to estimate seismic derived
petrophysical property volumes at the metric scale. Using data
percentiles and a cumulative S-curve from the core porosity and
absolute permeability, we calculated a significant number of
decametric and metric flow units that correlates with seismic
acoustic impedance and responds for both large and small scales
flow characteristics of the reservoir. Within each iteration of
decametric and metric flow units from the geostatistical seismic
inversion, we co-simulated petrophysical properties volumes that
respect the well information in the metric scale and are laterally
consistent with the local geology, regardless of the input resolution
limit.

2. Study area and geological settings

Mero reservoir, part of the Libra block, is located in the northeast
portion of the Santos Basil, Brazil (Fig. 1). The consortium that
operates the field consists of Petrobras, Shell, Total, CNOOC and
CNPC, under the new Brazilian production-sharing contract ruled
by Pré-Sal Petroéleo S.A. (PPSA). The initial exploratory phase of the
block estimates an oil in place volume between 8 and 12 billion BOE
(Carlotto et al., 2017), with high-complexity geology, igneous rocks
occurrence (Penna et al., 2019; Penna and Lupinacci, 2020, 2021;
Oliveira et al., 2021) and diagenetic effects (Leite et al., 2020;
Sartorato et al., 2020). One of the main hydrocarbon fluid charac-
teristics from Mero Field is the high CO, content (44% in the gas
phase), which imposes several challenges to the reservoir man-
agement. The production design comprises a floating production
storage and offloading (FPSO) designed to reinject all the gas
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produced (Moczydlower et al., 2019). The drilled wells by the
consortium are keepers and will be used as producers or water
alternating gas (WAG) injectors.

Santos Basin evolution history (also Libra block, consequently)
initiates with basalts from Camburid Formation (138—130 million
years) as the response for the initial Gondwana breakup. Picarras
Formation (Barremian age) corresponds to the initial rift stage of
the continental breakup, with sandstones, mudstones and shales
deposited in lacustrine environments (Carlotto et al., 2017). From
the Neobarremian until Eoaptian ages, rudstones from Itapema
Formation were deposited in high energy platform settings. In
lower energy settings, usually in relative structural low, organic
rich shales occur. These rocks are considered the main hydrocarbon
source in the Santos Basin (Moreira et al., 2007). The Barra Velha
Formation deposits are from transitional environments between
continental to shallow marine settings, the lower part to the intra-
Alagoas unconformity still belongs to the rift phase and the upper
part belongs to the sag phase (Buckley et al., 2015; Wright and
Barnett, 2015; Neves et al., 2019). The base of the sequence are
predominantly grainstones and packstones (reword facies), while
in the top shrubs, spherulites and laminites (in-situ facies) occur
more frequently (Gomes et al., 2020). In the late Aptian, already in
marine environment, a thick salt sequence from Ariri Formation
were deposited. This layer is the main Santos basin hydrocarbon
seal and is mainly composed by halite and anhydrite (Moreira et al.,
2007). Fig. 2 shows the Santos Basin presalt lithostratigraphy, tec-
tonic evolution and unconformities adopted in this work.

Main reservoir rocks of Mero field are bivalve rudstones (co-
quinas) from the Itapema Formation and shrubs and spherulites
from the Barra Velha Formation, although high porosity is also
found in rework facies as bioclastic floatstone, grainstones and,
packstones (Jesus et al., 2017; Penna and Lupinacci, 2020; Penna
and Lupinacci, 2021). Several diagenetic effects of dissolution and
neomorphism, replacement of minerals, silicification and dolomi-
tization are identified, and correspond to the main effects that
controls porosity generation and/or obliteration and, consequently,
fluid movements in the reservoir (Herlinger et al., 2017; Gomes
et al.,, 2020; Leite et al., 2020; Sartorato et al., 2020).

A unique feature of the Libra block and Mero reservoir is the
abundant igneous rocks presence (Penna et al., 2019; Oliveira et al.,
2021). Extrusive igneous rocks are of Barremian/Aptian age and
mainly composed by tholeiitic basalts, more commonly found
below Itapema Formation (Penna et al., 2019). Intrusive igneous
rocks are of Santonian/Campanian ages, mainly alkaline, and can
occur anywhere in the stratigraphy cutting surrounding rocks or
concordant to the sedimentary layering (e.g., top of the Barra Velha
Formation). The correct mapping and prediction of these rocks are
very relevant for the characterization and management of the
reservoir, once they penalize the total oil in place volume, they can
act as flow barriers (or even high permeability layers, if fracturing is
high enough) and contribute to the regional aquifer and pressure
maintenance.

3. Data available

The consortium that operates the field performed an extensive
core program with approximately 500 m of linear samples taken in
both Barra Velha and Itapema formations. 1700 conventional core
and plug analysis measurements of porosity and permeability are
available in different stratigraphic levels from seventeen drilled
wells. We organized and analyzed this datasheet for the purpose of
flow unit classification. Twelve well logs are also available and
comprehends sets of both logging while drilling (LWD) and wire-
line: gamma ray, resistivity, compressional and shear slowness,
density, nuclear magnetic resonance porosities (total, effective and
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Fig. 1. (a) Mero reservoir and Libra block location in southeast Brazil. (b) Top of reservoir (Barra Velha Formation) structural map. (c¢) NW-SE seismic section a stratigraphic
interpretation (after Penna and Lupinacci, 2021).

free fluid) and permeability and elements (e.g., calcium, potassium
and magnesium).

The available seismic data is a legacy seismic acquisition that
cover the whole Libra block with an 8 km streamer cable length,
6.25 x 25 m grid and 5 m of vertical sampling. This data was pre-
stack reprocessed in 2016 with an initial tilted transversely
isotropic (TTI) velocity model and a vertical transversely isotropic

1701

[] Barra VelhaFm.  [] Itapema Fm.  [] Picarras Fm.  [I] Basement

full waveform inversion (VTI-FWI) from 3 to 45 Hz. Then, a multi-
layer tomography using both Kirchhoff and reverse time migra-
tion (RTM) picks was performed, followed by a TTI-FWI from 7 to
8 Hz applied at the entire geologic sequence (pos-salt, salt and
presalt) as detailed by Araujo and Gouveia (2015). For the FWI
velocity model, high and low-salt velocity layers, like anhydrite,
tachyhydrite, carnallite and sylvinite, as well as igneous rocks,
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Fig. 2. Santos Basin presalt lithostratigraphy, tectonic evolution and unconformities (After Buckley et al., 2015

within the salt stratification, were incorporated. This procedure is
presented and discussed and by Seifert et al. (2017).

In the presalt interval, the seismic data has approximately 15 Hz
of peak frequency with bandwidth of 5—35 Hz. Based on the local
geology petrophysical characteristics and the seismic spectral dis-
tribution, Penna and Lupinacci (2021) created a wedge model to
estimate the vertical resolution of the full-stack seismic consid-
ering the true thickness resolving capacity. According to their an-
alyses, the vertical resolution is 62 m when considering the seismic
amplitude and 23 m from inverted acoustic impedance volume.
Thus, any layer below these limits will be falsely estimated in terms
of thickness. This means that facies or flow unit mapped from
seismic amplitude or inverted acoustic impedance volumes will
present decametric proportions.

4. Metric flow units facies discretization and rock typing
statistics

Considering the amount of conventional core analysis available
in the Mero reservoir, we used two methods based on permeability
(k) versus porosity (¢) for flow unit discretization. First, we
considered Gunter et al. (1997) stratigraphic modified Lorenz plot
(SMLP) as a visual aid to estimate a minimum number of flow units
and identify local reservoir flow trends in both decametric and
metric scales. Then, we calculated rock quality index/flow zone
indicator (RQI/FZI) for the discretization (Amaefule et al., 1993).
Those are both extensively documented methods successfully
applied in both clastic and carbonate geological settings.

The SMLP was first introduced by Gunter et al. (1997) by plotting
the percent storage capacity (product of porosity and thickness)
versus percent flow capacity (product of permeability and thick-
ness), providing a visual guide to estimate how many FUs are
necessary to honor the geologic framework in terms of fluid
movement in the subsurface. Fig. 3 shows the SMLP plot of both
Barra Velha and Itapema formations, using percentiles of all the
samples for a cleaner display of the chart. The minimum number of
the FU estimate is performed by observing the slope and behavior
of the curve: as the mean storage and flow capacity increases, we
have better flow units in terms of its permoporous characteristics.
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; Wright and Barnett, 2015; Neves et al., 2019).

Barra Velha and ltapema SMLP
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Fig. 3. Barra Velha and Itapema formations SMLP. Black lines represent decametric
scale flow units, and green lines represent metric scale flow units. In this chart, storage
capacity is the product of core porosity versus layer thickness, and flow capacity is the
product of core permeability versus layer thickness. We considered this only as a
qualitative plot, and a great visual tool for evidencing the scale-dependence of the
petrophysical properties.

In that sense, flat segments can correspond to seals, baffle zones or
low-production zones, as they may present some level of porosity,
but have limited contribution of permeability. Steep segments
correspond to “speed zones” of the reservoir, and they can have low
or high porosity, but provide major contributions to the reservoir
flow performance.

We estimated the minimum number of flow units in the SMLP
using a sequence stratigraphy reasoning for high order and low
order variations, like a Wheeler Diagram interpretation (Wheeler,
1958). The plot in Fig. 3 clearly demonstrates how the flow unit
characterization is scale dependent. Variations of the low- and
high-frequency cycles are correlational since the slope of the low
frequency curve depends on the constructive effect of each high
frequency curve. Penna and Lupinacci (2021) introduced a work-
flow for the detection of decametric flow units using inverted
acoustic and shear impedance volumes, considering the black lines
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as decametric trend (Fig. 3). However, our purpose here is to
characterize higher orders of fluid movements in the reservoir as
metric flow units using the acoustic impedance as constraints ob-
tained from a geostatistical seismic inversion. For this, eight FU are
considered as metric flow trends (green lines) in Fig. 3. SMLP are
used, in this work, only as a visual guide for this scale-dependence
of the petrophysical properties.

The flow unit discretization is performed in the core analysis
using the rock quality index/flow zone indicator (RQI/FZI), and then
transposed to the well log data. This method is based on perme-
ability in mD and effective porosity (¢g) ratio and derived from a
generalization of the Kozeny-Carmen equations (Kozeny, 1927). It
was introduced by Amaefule et al. (1993) and is widely used due to
its simplicity and assertive results. Let the index RQI (reservoir
quality index, in pm) be

RQI = 0.0314- l—<,
\ ¢E

where k is the absolute permeability (in mD) and ¢g the effective
porosity. Then, the FZI is given by

(1)

RQI

FZl = ==
¢z

(2)

where ¢z is an effective porosity normalization on the form ¢z = ¢g/
1—¢g. Since its derivation from Kozeny-Carmen equations, FZI value
is approximates an average pore throat radius for a given porous
media, relating effective porosity and permeability. Different sedi-
mentation environments, late diagenetic processes and reservoir
geometry are also controlling parameters of FZI (Tiab and
Donaldson, 2004).

Taking log on both sides of Eq. (2) and rearranging it, we verify
the linearity between FZI, RQI and ¢z:

logRQI = logFZI + log ¢;. (3)
In log-log plot of the RQI versus ¢z, a constant value of the FZI
produces an inclined straight line. The inference is that samples
with similar flow behavior falls around a corresponding slope line,
determining a single flow unit (FU). Samples with distinct flow
characteristics are plotted in different parallel lines and arrange
distinct flow units.

Different methodologies for clustering samples around FZI
values and creating FU are available in the literature and applied in
different geological scenarios. In some cases, a simple log (FZI)
histogram discretization is enough to discretize the flow units
(considering that the samples show strong FZI versus permeability
correlation and a log-normal FZI distribution). More complex
methods, such as iterative multi-linear regressions (Al-Ajmi and
Holditch, 2000) and normal probability plots (cumulative distri-
bution function, Mahjour et al., 2016) are also widely used, espe-
cially in more complex geological settings. Penna and Lupinacci
(2020, 2021) showed that the usage of percentiles and a cumula-
tive S-curve produced a significant minimum amount of flow units
with statistical relevance, without compromising the estimation of
petrophysical properties. This is particularly relevant to the scope of
this study, considering the amount of k and ¢ measurements, the
high complexity degree of the Mero reservoir, and the aim to
correlate the FU to seismic data with respect to its vertical resolu-
tion limit.

The steps to construct the RQI/FZI cumulative S-curve, as pre-
sented by Penna and Lupinacci (2021), are.
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. Take all the core porosity and permeability measurements and
calculate statistical relevant percentiles (the number varies
depending on the data characteristics). Each percentile is a
representative sample from a given interval.

. Calculate RQI and FZI values using Egs. (1) and (2) and the
percentiles values.

. Order the data with increasing values of log (FZI).

. Accumulate and normalize the percentiles of permeability
values.

. Calculate the slope of the curve for each sample (Fig. 4).

As described in the SMLP, at least two scales of variations are
observable in the derivative data (Fig. 3): one on a small scale
(higher order), related to metric variations, and other on a large
scale (lower order), related to decametre variations. Penna and
Lupinacci (2021) chosen to interpretate the major jumps in the
slope curve as the decametric flow characteristics changes in the
reservoir, although this can be extended to many scales. The lower
scale of observation responds to low frequency variations in the
SMLP and FZI S-curve plots, and higher order of variations responds
to high frequency variations. This was fit for purpose, as the scope
of their work were to characterize flow units in the decametric
scale and then correlate with elastic attributes. Given that the aim

S-Curve for MFU discretization

—_
()
=1

0.8

0.6

0.4

0.2

Norm. accumulated permeability, mD/mD

0.4

0.3

Slope

0.2
Decametric FU

—— Metric FU

0.1

IS

i

MFU1 MFU2 MFU4 MFU6 MFU8

Fig. 4. The log (FZI) S-curve for MFU discretization. Grey line corresponds to deca-
metric FU classification (after Penna and Lupinacci, 2021) and red line corresponds to
metric FU classification.
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of the present study is to get a step further, discretizing metric flow
units with the seismic data, we interpret the major jumps in the
slope plot, first order variation, that corresponds to the decametric
FU, same as Penna and Lupinacci (2021), and the second order
variation, as the metric FU.

Using both effective porosity and permeability from the nuclear
magnetic resonance (NMR) well logs, the RQI/FZI values are
calculated for each well through Egs. (1) and (2). The discretization
of the FU in the metric (MFU) and decametric (DFU) scales from the
FZI S-curve plot is shown in Fig. 4. Eight metric flow units are
interpreted considering the changes in the FZI S-curve slope. Note
that the number of metric flow units correlates to the SMLP inter-
pretation as a higher order variation from the decametric scale. The
cut-offs in log (FZI) used for discretizing the flow metric units
(MFU) are shown in Table 1.

The initial flat segment parallel to the X axis of the FZI S-curve
(Fig. 4) describes FUs that have no contributions to the flow
behavior in the metric scale. Therefore, MFU1 and MFU2 are
considered seals or baffle zones that retain fluid flow, acting as
vertical and horizontal barriers. In general, rocks with reduced
matrix porosity like igneous rocks, cemented and clayey carbonates
are into these units.

MFU3 is denoted by the initial detachment of the curve from the
X axis, and, subsequently, MFU4 (Fig. 4). These FUs have some flow
capacity but are very poor in terms of overall reservoir flow
behavior. This is the typical behavior of carbonates with some late
diagenetic effects, like quartz and dolomite cementation obliter-
ating the original matrix porosity of the rock. Although not directly
considered for production, they are important for maintaining
reservoir pressurization over production time.

MFUS5 and MFUG are the first ramp up of the curve (Fig. 4), with
better permoporous reservoir characteristics then the previous
units. Although some level of diagenetic effect can occur, they will
have considerable contributions to reservoir flow during produc-
tion. Some bioclastic grainstones, packstones and wackestones
belongs to MFU5 and MFUBG, for example. The end of the curve
corresponds to the better FUs in terms of permoporous character-
istics, MFU7 and MFUS8. They have considerable porosity and
remarkable flow performance during production. In general, MFU7
and MFUS correspond to clean calcite carbonates like bivalve rud-
stones (coquinas) from the Itapema Formation and shrubs and
rework facies from the Barra Velha Formation, with little or none
late diagenetic effects (Penna and Lupinacci, 2021).

Fig. 5 demonstrates how the new classification differs from the
decametric flow unit (DFU) considering the seismic vertical reso-
lution limitation. The relationship between DFU1 and MFU1 and
MFU2, for instance, are quite notable, as the latter are a one-step
upscaling of the first one. The mean, median and standard devia-
tion of the acoustic impedance (PI), effective porosity (¢) and
Schlumberger-Doll Research (Al-Ajmi and Holditch, 2000) perme-
ability (k) for each metric flow units are displayed in Table 2. These
calculations were performed using the well logs. Note that the

Table 1
Metric FU (MFU) cut-offs from the FZI S-curve.

log (FZI) values

MFU1 below —2.2
MFU2 -2.2to -0.5
MFU3 -0.5to -0.2
MFU4 -0.2to 0.4
MFU5 0.4to 0.8
MFU6 08to 1.9
MFU7 1.9 to 3.7
MFUS8 Above 3.7
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Fig. 5. Application of log (FZI) cut-off discretization in Well 6 using the effective
porosity from the magnetic resonance data. Lithologies on the left correspond to a
simplified classification for seismic facies analysis purposes (after Penna et al., 2019).

overall values of the PI tend to decrease from MFU1 to MFU8, while
porosity and permeability increase. This is expected, as MFU1
corresponds to low-FZI values (small pore throat radius) and MFU8
has high-FZI values (large pore throat radius). In general, the dis-
tribution of PI, porosity and permeability for MFU are close to
symmetric, with little mean versus median differences.

5. Geostatistical seismic inversion for metric flow units
5.1. Stochastic seismic inversion method

Geostatistics is a modelling tool that plays an important role in
building earth models. In geoscience, initially developed with the
constant grow of the mining industry, geostatistical concepts and
algorithms have been widely adopted in the oil exploration and
production for many purposes (Pereira et al., 2017; Feng et al., 2018;
Ferreira and Lupinacci, 2018; Kneller et al., 2019; Pecanha et al,,
2019). These techniques are traditionally used to interpolate the
target property, most commonly facies, porosity and permeability,
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Table 2

Mean, median and standard deviation (std. dev.) of the acoustic impedance (PI),
porosity (¢) and permeability (k) from MFU1 to MFUS8 considering both Barra Velha
and Itapema formations.

PI, g/cm>-m/s ¢, frac. k, mD
MFU1 mean 16,521 0.042 0.016
median 17,478 0.044 0.005
std. dev. 2785 0.019 0.022
MFU2 mean 14,829 0.087 0.265
median 15,276 0.082 0.234
std. dev. 1880 0.005 0.126
MFU3 mean 14,482 0.102 1.251
median 14,869 0.102 1.057
std. dev. 18,645 0.007 0.634
MFU4 mean 13,874 0.119 5.933
median 14,112 0.118 5.658
std. dev. 1850 0.004 2.023
MFU5 mean 13,047 0.144 28.23
median 13,814 0.144 25.85
std. dev. 1646 0.009 12.69
MFU6 mean 11,928 0.167 80.29
median 11,022 0.168 78.01
std. dev. 1599 0.004 16.77
MFU7 mean 11,522 0.188 232.75
median 10,874 0.188 199.08
std. dev. 1454 0.007 103.68
MFU8 mean 10,633 0.236 1760.67
median 9830 0.220 1146.70
std. dev. 1674 0.038 1425.33

between well data within a stratigraphic framework. The most
common method is the sequential gaussian simulation (SGS,
Deutsch and Journel, 1992).

Since the introduction by Haas and Dubrule (1994), stochastic
seismic inversion is an active topic of interest, as the technique
introduces seismic data as a constraint to generate possible earth
models (Doyen, 2007). However, the direct use of seismic as sec-
ondary data for reservoir modelling is usually frustrating because of
vertical scale differences between seismic (usually decametric
resolution) and well logs (centimetric). Finding a relationship be-
tween, for instance, seismic amplitude and/or impedance volumes
and well log porosity is constantly difficult, making the incorpo-
ration of seismic data directly into the SGS workflow a challenge for
reservoir characterization (Azevedo and Soares, 2018).

The most documented and used methods for stochastic seismic
inversion are SGS (Escobar et al., 2006), direct sequential simula-
tion (DSS, Soares, 2001), global stochastic inversion (GSI, Soares
et al,, 2007) and Monte Carlo Markov Chain (MCMC Statmod®
MC™, Sams et al., 2011). Although these methods differ in how to
sample a prior/posterior pdf, they essentially produce multiple
realizations of petrophysical properties, considering the strati-
graphic grid and a given vertical sampling (that can be smaller than
the available seismic sampling). Every iteration produces a geologic
model that fits the seismic and well log data, i.e., each realization is
plausible samples of the reservoir's posterior distribution and a
variance measure of the input parameters, considering the seismic
data as constrains.

In this study, we perform a Metropolis-Hastings (MH) algorithm
within the MCMC method (MCMC Statmod® MC™, Sams et al.,
2011) to simulate the acoustic impedance. There are three main
steps in the stochastic inversion workflow, which are detailed
further: 1) Statistical modelling, where are estimated the proba-
bility density functions (pdfs), variograms and trends for each
decametric and metric facies; 2) Bayesian inference, combining the
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prior model, seismic and well data for compute the posterior dis-
tribution; 3) Sampling, where we used the MH-MCMC algorithm
for sampling the posterior pdfs. Briefly, the algorithm builds a pdf
that represents P(reservoir | geostatistics, seismic) and sample it for
the target property volumes using the MCMC method, i.e., the
probability of the produced reservoir model given the input geo-
statistics and seismic data.

The workflow for the stochastic seismic inversion is represented
in Fig. 6. The evidence and assumptions are expressed as a series of
pdfs defined over the property volumes. We calculated variograms
for continuous and discrete properties and property distributions
(multivariate joint pdfs). Then the seismic data is modelled for
acoustic impedance using the convolutional model, and a normal
pdf for the seismic noise is calculated directly in the seismic data
(windowed in the reservoir area) to account for seismic noise, there
is, uncorrelated differences between real and synthetic seismic
(Saussus and Sams, 2012; Kneller et al., 2019). This parameter is
directly correlated to the likelihood parameter of the inversion. The
steps (Fig. 6) are described as.

L. In the stratigraphic grid, created from seismic horizons, start

with an arbitrary reservoir model (resp) and select a random

location in the volume (the current state of the chain). The
lateral sampling is consistent with the seismic data grid and

the vertical sampling is 1 m.

Randomly generate a modified realization (res;). A synthetic

seismic (synthy) is calculated through convolution between

the estimated wavelet and res; acoustic properties. Consid-
ering the Bayesian inference scheme, compute the likelihood
function of res; given the real seismic data: P(seis|synthy).

Evaluate the prior distribution of the modified realization

(P(resq|geostats), which reflects the lateral and vertical con-

tinuity computed from the variograms and the value of the

property at neighboring cells.

. Multiply the prior distribution P(resi|geostats) with the
likelihood function P(seis|synth;) to compute the posterior
probability value given the input information (e.g., statistics,
well data, seismic horizons and stratigraphy). This step is the
Bayesian inference of the algorithm.

. Compare the posterior probability value with the current
reservoir model resp. If the proposal res; has a posterior
probability value higher than resy, there is, P(res;|geostats,
seis) > P(resp|geostats, seis), then res; is accepted and the
chain moves to a different random location considering res;
as the new current state. Otherwise, if the value is smaller,
res; can be randomically rejected (and resg is the current stat
for the next step) or accepted as a ratio between P(res|
geostats, seis) and P(resp|geostats, seis). Note that this part is
the Metropolis-Hastings of the algorithm, avoiding the
calculation to be stuck in local maxima/minima as lower
probabilities are sometimes accepted.

The process continues updating for the entire seismic vol-

ume until P(res,|geostats, seis) is no longer changing. Due to

the large number of calculations needed to sweep the entire
volume, the MCMC algorithm only calculate the conditional
posterior pdf on a small portion of the volume at a time.

Combination them all gives the global posterior pdf.

L.

I

VL

Note that the MCMC algorithm does not change the whole resg
trace considering a single iteration. Instead, a small portion of the
grid is modified a step at a time, until the entire grid is swept. All
the pdfs are local, so they are re-calculated every time it moves to
another part of the volume.

For our purpose, the stochastic seismic inversion fits very well,
once we are taking advantage over the seismic constraint in
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Fig. 6. MCMC Statmod® MC™ algorithm workflow.
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Fig. 7. Experimental and modelled vertical variograms for (a) acoustic impedance, (b) decametric flow units and (c) metric flow units. Experimental variograms were calculated
from well logs.

decametric scale and explicitly simulating flow units in the metric 5.2. Inputs and parametrization

scale, below the seismic data resolution. The objective is to

generate many plausible flow units models (and consequently We created the grid using three seismic horizons: the tops of the

porosity and permeability models) in the decametric and metric Barra Velha, Itapema and Picarras formations (Fig. 2), where the

scales, given the geostatistics associated with every metric flow first and last horizons represent respectively top and bottom of the

unit (MFU). reservoirs. The lateral spacing is relative to the seismic grid
(25 m x 25 m), and vertical sampling is set to 1 m. The stochastic

Lateral variograms for Al and DFU

(a) P-impedance (b) DFU and MFU
1 1

3

P

Variogram
Variogram

/' Lateral variograms
4 g

0% -G +-40%-E:
10/

0% Gauss: fo-EXp-
/ lodel

Experimental

0 5000 0 5000
Lag distance, m Lag distance, m

Fig. 8. Experimental and modelled lateral variograms for the (a) acoustic impedance and (b) decametric and metric flow units. We calculated the experimental variograms
considering elastic inversion volumes (PI) (Penna et al., 2019) and Bayesian facies classification (DFU and MFU) (Penna and Lupinacci, 2021).
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Fig. 9. P-Impedance pdfs for the MFU in the Barra Velha (a) and Itapema (b) formations.

seismic inversion is set to obtain the acoustic impedance and
decametric and metric flow units (defined from the FZI cut-offs
described in Table 1). We maintain the FZI S-curve relation be-
tween decametric and metric flow units, that is, MFU1 and MFU2
will only occur if DFU1 is present, for instance. This is compatible to
the flow multi-scale of observation reasoning used for
discretization.

We used experimental vertical variograms calculated from well
logs for acoustic impedance, decametric and metric flow units.
Fig. 7 shows an example of the experimental and modelled vario-
grams. They are a mixture of 60% gaussian and 40% exponential
with vertical range of 20 m for PI, of 5-10 m for DFU and of 3—6 m
for MFU. No differences were observed between vertical vario-
grams of the Barra Velha and Itapema formations, so we considered
the same variogram parametrization for both layers.

Experimental lateral variograms were calculated through
different maps. For the acoustic impedance were extracted the

DFU4 prior probability volume

mean values for both Barra Velha and Itapema formations,
considering the PI volume obtain from the elastic inversion (Penna
et al., 2019). For the lateral variograms of the decametric flow units,
we used the mode considering each of the most likely facies vol-
umes derived from the Bayesian classification (Penna and
Lupinacci, 2021). Both lateral variograms were calculated along
the main Mero structural direction, NE-SW. The same DFU lateral
variograms were considered for the MFU. Also, no considerable
difference was found between lateral variograms of the Barra Velha
and Itapema formations, therefore we used the same variograms
for both formations. In general, they are a mixture between 90%
Gaussian and 10% exponential curves with a range around 2500 m
for the PI and 1000 m for DFU and MFU (Fig. 8).

Acoustic impedance pdfs for DFU are the same as shown in
Penna and Lupinacci (2021). For MFU, we estimated normal PI pdfs
for the Barra Velha and Itapema formations, as shown in Fig. 9. Due
to the high resolution of the discretization, it is expected that the PI

(a)

(b) 60% prior
MFU2
DFU1
40% prior
Prior Prob.
volume
40% prior
DFU2
MFU4
Prior Prob.
volume < 60% prior
Prior Prob. 50% prior
volume
Prior probability, % MFU6
EE = . DFUA <5O% gt
Prior Prob. MFU7
volume
50% prior
MFU8
50% prior

Fig. 10. (a) Prior probability NW-SE section through DFU4 3D volume and (b) the relation between prior probabilities of the DFU and MFU.
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Fig. 11. (a) Mean PI and most probable DFU and MFU NW-SE section from 100 MCMC iterations. Iterations 21 (b) and 86 (c) PI, DFU and MFU results.
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Fig. 15. Porosity (a) and permeability (b) pdfs for the cosimulation. MFU1 and MFU2 are concentered along the zero-permeability axis. Both Barra Velha and Itapema formations

show the same behavior.

superimposition between MFU units is larger than the DFU pattern.
One of the aims is solve this ambiguity through MCMC simulations
and several iterations, producing a numerous amount of possible
MFU occurrence volumes constrained to the seismic data in deca-
metric scale. The general behavior observed concentrates more
MFUT in higher PI values and MFUS8 in lower PI values, like the DFU
behavior.

We chose not to use a constant value for the priori probability in
the Bayesian classification, as the facies are highly heterogenous in
carbonate environments. Instead, we constructed volumes
regarding the laterally variable priori probability for each DFU
extrapolating, through ordinary kriging, the facies. In the wells
considering horizons and framework. Since there are no wells
drilled in structural lows (therefore sampling low-energy settings)
in the study area, we applied a multiplier to raise the prior occur-
rence probabilities of worse permoporous DFU and MFU away from
the Mero main structural high. This behavior is corroborated by
numerous presalt analogs that drilled this specific setting (Lima
and De Ros, 2019; Neves et al., 2019; Gomes et al., 2020). For
each DFU occurrence, there is a prior probability of MFU that cor-
responds to a mean ratio between its correlated facies obtain from
the well data. For example, if DFU1 occurs in a given location, a
prior probability for MFU1 is 60% and 40% for MFU2. Fig. 10 ex-
emplifies how a prior probability varies laterally for DFU4, for
exemplification, and a prior probability ratio from MFU1 to MFU8
considering the occurrence of each associated DFU.

5.3. Stochastic seismic inversion results and quality control (QC)

We performed 100 iterations for the MCMC stochastic seismic
inversion, that is, 100 possible solutions were calculated for the
acoustic impedance, DFU and MFU given the seismic data as
constraint. The mean wavelet, necessary for the synthetic seismic
convolution, is the same used for the seismic inversion by Penna
et al. (2019). Initially, all the wells with available well-log data
were used as hard constrains for the inversion. Then, we removed
three wells to blind-tests and performed the inversion. The pre-
sented results in this publication are blind-test versions of the
MCMC inversion.

The mean PI and DFU and MFU most probable occurrence from
the 100 iterations, and the results of two random iterations are
presented in Fig. 11. Clearly, one notices the relation and distribu-
tion of low-PI values as DFU3 and DFU4 and MFU5 to MFUS, while
high-PI values tend to concentrate more DFU1 and DFU2 and,
consequently, MFU1 to MFU4. Also, we noted how the occurrence
of each MFU is conditioned to the occurrence of its correlated DFU.
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These sections are a good example of the advantage of using the
seismic constraints over decametric scale and stochastic simulation
over metric scale, below seismic resolution. To illustrate the special
distribution, PI mean and DFU and MFU mode maps from the Ita-
pema Formation are displayed in Fig. 12.

Overall, prior and posterior pdfs result for PI inversion are
consistent, within few errors along Barra Velha and Itapema for-
mations, except for MFU1 and MFU2 (Fig. 13). The reason for the
discrepancy for these two flow units is the addition of an increasing
a prior probability of DFU1 at lower structural regions (areas
without drilled wells), mainly with predominance of mud sedi-
ments that corresponds to low PI values. Because of those areas,
this pushes the posterior MFU1 and MFU2 PI values to the left of the
plot. For the other MFUs, metrics such as mean, standard deviation,
P10 and P90 are in match between prior and posterior pdfs.

The overall prior and posterior proportions of DFU and MFU for
both Barra Velha and Itapema formations is presented in Fig. 14.
MCMC inversion produced occurrence volumes that corroborate
the well statistics. DFU, except for the wells used as blind-tests, are
a perfect match between prior and posterior, because they were
used as hard constraints at the well location. This is not the case for
MFU, whose small deviations are observed between prior and
posterior proportions.

5.4. Porosity and permeability cosimulation

We cosimulated for each PI iteration a numerous quantity of
possible ¢ and permeability k volumes, given the MFU distributions
calculated by the MCMC inversions. The procedure for the cosi-
mulation is similarto the workflow described in Section 5.1, with
the difference that the posterior probability is now coupled with
the simulated PI value, there is, we are sampling for P(porosity|
geostat, simpj) and P(permeability|geostat, simpj). It is important to
emphasize that the porosity and permeability cosimulation is
restricted with the MFU, below the seismic resolution. However,
MFU is directly related to a specific DFU that is constrained by
seismic data. So, at the end, the porosity and permeability are
simulated on the metric scale without losing the seismic lateral
control.

Through well data analysis and porosity and permeability vol-
umes obtain from the Bayesian classification, the vertical and
lateral experimental variograms are like those used to the PI MCMC
inversion (Figs. 7 and 8). The porosity and permeability pdfs used
for the cosimulation are showed in Fig. 15. As previously shown in
Table 2 basic statistics, MFU1 concentrate worse permoporous
samples and MFUS8 better. We considered a cosimulation for each
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Fig. 16. (a) Most probable MFU and mean porosity and permeability NW-SE section from 100 cosimulation iterations. (b) Iteration 13 MFU, porosity and permeability results. (c)
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Prior, posterior and cumulative pdfs for porosity and permeability cosimulations
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Fig. 17. Prior and posterior pdfs and cumulative pdfs for the 100 cosimulations for porosity and permeability.

MCMC iteration, that is, 100 possible porosity and permeability
solutions were calculated given the input variograms, pdfs and PI
volumes. Mean and individual results are displayed in Fig. 16, as
well as the corresponding MFU from the related MCMC inversion.
In practice, given these results, we can stablish pessimistic, opti-
mistic and base scenarios for the Mero reservoir considering pa-
rameters such as net to gross, porous volumes, and volume in place.

We also performed the prior and posterior pdfs analysis for the
permeability and porosity. As previously shown in the PI QC
(Fig. 13), the cosimulation produces results below the seismic res-
olution that are compatible with the well data statistics, without
relevant discrepancies and without losing the seismic constrain in
the decametric scale. The pdf comparison is presented in Fig. 17.
Also, in Fig. 18, inputs and mean outputs from porosity and
permeability are displayed for two blind wells. Overall, the QC
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results corroborates the robustness and predictability of the
method. A slighter higher amount of errors for MFU then DFU in the
blind wells are expected, considering that the simulation constraint
is stronger for decametric scale given the seismic vertical resolution
characteristics. Thus, it's more reliable to analyze the posterior/
prior pdfs analysis, once we are trying to mimic the probability
distribution of the data. Summarizing, we produced a series of
possible PI, DFU, MFU, porosity and permeability volumes through
an MCMC inversion and cosimulation, which are laterally
compatible with the seismic data and vertically with the well data
statistics (Fig. 19).

6. Conclusions

The proposed workflow provided means to generate numerous



R. Penna and W.M. Lupinacci

Petroleum Science 21 (2024) 1699—1718

Well 1 Well 6
MD MFU Porosity Permeability MD MFU Porosity Permeability
’ Metric flow units | g Metric flow units In In
L In out m In out |0 Ouf 0.150 Out 750 mD
5540 - 1 5300
1 | T : | ] - —
| N _———— Metric
/ % flow units
| < ==
5 e [ I
I~ TR T4
5640 | S} I MFU2 | | MFUB I 5350
| I S = I MFU3 | | MFU7 |
) i
I S I MFU4 | | MFUS |
=
I S —
| SE=] —m
5740 — I j = P Mean output (Blind Wells) 5400
| o ==
- < = =
L . 3 g
ol B
5840 1
> o 5450

Fig. 18. MFU, porosity and permeability estimation QC for two blind wells in the area. Black lines correspond to input data and red lines to output data.

possible porosity and permeability 3D volumes below the seismic
resolution limit, respecting the seismic data in decametric scale.
Like many seismic Bayesian inference algorithms, the prior infor-
mation plays an important role in the posterior distribution of PI
and, consequently, porosity and permeability. We highly recom-
mended that prior models are built representing local geology as-
pects or its analogs, constraining some characteristics that
sometimes are not sampled even in the presence of numerous
wells. That is the case of prior and posterior pdfs for MFU1 and
MFU2, which the prior information volume forces the occurrence of
worse permoporous facies (clay-rich carbonates) in structural lows,
causing a deviation of posterior pdf towards low-PI values. These
carbonates were not drilled by wells, once they are below the O/W
contact. However, several analog data from other presalt reservoirs
indicate the presence of such facies.

Even in the presence of high MFU superimposed zones in the
acoustic domain, our workflow achieved a satisfactory posterior
blind-well proportion. This issue can be addressed by generating a
sufficient number of iterations and constraining MFU with its cor-
responding DFU, guaranteeing the seismic correlation at larger
scales. As shown in previous studies, DFU presents a reduced
amount of elastic and acoustic superimposition and can be quan-
tified in terms of deterministic inversion and Bayesian probabilistic
classification. However, the presence of noise and imaging prob-
lems in the seismic can propagate errors in the decametric scale to
metric scale, causing porosity and permeability deviations.

Understanding flow behavior at decametric scale is the first step
to build the dynamic reservoir knowledge at smaller scales, but
detailed analysis can be performed with much more accuracy in the
metric scale. In complex reservoir settings, where the fluid flow is
inflected by numerous processes, it is important to have more flow
units to correctly characterize the flow behavior, producing more
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accurate porosity and permeability relations and, consequently, a
better volumetric distribution of these properties. Due to vertical
resolution limitations, the distribution of MFU is not constrained by
the seismic data, being dependent exclusively on the simulation
method used. This can lead to some calculation errors that falls
along any method of lateral extrapolation of discrete and contin-
uous properties chosen. However, we tried to address this problem
constraining the calculation of MFU with the occurrence of DFU. In
this decametric scale the seismic can constrain the results, mini-
mizing some of the large errors that could occur. We strongly
recommend that some uncertainty analysis be performed through
the probabilistic outputs of the workflow. We believe that inter-
pretation of scenarios based on the volumes generated by the
proposed methodology (e.g. P10, P50 and P90) will positively
impact the static and dynamic model building process, as well as
4D seismic interpretation and seismic assisted history matching.
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