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a b s t r a c t

(Multichannel) Singular spectrum analysis is considered as one of the most effective methods for seismic
incoherent noise suppression. It utilizes the low-rank feature of seismic signal and regards the noise
suppression as a low-rank reconstruction problem. However, in some cases the seismic geophones
receive some erratic disturbances and the amplitudes are dramatically larger than other receivers. The
presence of this kind of noise, called erratic noise, makes singular spectrum analysis (SSA) reconstruction
unstable and has undesirable effects on the final results. We robustify the low-rank reconstruction of
seismic data by a reweighted damped SSA (RD-SSA) method. It incorporates the damped SSA, an
improved version of SSA, into a reweighted framework. The damping operator is used to weaken the
artificial disturbance introduced by the low-rank projection of both erratic and random noise. The central
idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for
the first iteration and the Tukeys bisquare norm for the rest iterations. The RD-SSA method can suppress
seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance. The
feasibility of RD-SSA is validated via both synthetic and field data examples.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Field seismic data are always masked by various incoherent
noise. The incoherent noise will degrade quality of sampled data,
and negatively affect the final imaging or inversion performance
(Wang et al., 2022; Li and Qu, 2022). Therefore, incoherent noise
suppression is an indispensable step in seismic data processing.

In the past decades, a lot of effort has been put to denoise
seismic data, and a large number of efficient denoising techniques
have been proposed. For instance, data decomposition techniques
denoise seismic data by first decomposing the noisy seismic data
into different components and then reconstructing the signal ac-
cording to certain attribute. Successful examples include the
empirical mode decomposition (Bekara and van der Baan, 2009;
G�omez and Velis, 2016) and mathematical morphological decom-
position (Wang et al., 2008; Li et al., 2016). Huang et al. (2017a)
introduced an orthogonalization operator into traditional
decomposition-and-reconstruction framework to improve
y Elsevier B.V. on behalf of KeAi Co
performance of unveiling weak signal from extremely noisy data.
Sparsity-promoting methods remove seismic noise on the basis of
the different sparse features between signal and noise. It generally
estimates the signal and removes noise by a thresholding or muting
operation in a certain sparse domain. Successful examples include
the Radon (Trad et al., 2002), Fourier (Zwartjes and Gisolf, 2007),
wavelet (Mousavi et al., 2016; Anvari et al., 2017), and curvelet
(Herrmann and Hennenfent, 2008; Chen et al., 2022) transforms.

The low-rank approximation technique explores the low-rank
feature of seismic signal, which treats the seismic denoising
problem as the data matrix decomposition (Lan et al., 2022). Noise
or other unwanted incoherent energies increase the rank of the
data matrix, and noise suppression can be achieved by reducing the
rank of the data matrix. As one of the rank-reduction-based ap-
proaches, singular spectrum analysis (SSA) or its multichannel
version (MSSA) is widely demonstrated to be effective in denoising
of seismic data (Trickett, 2008; Sacchi, 2009; Oropeza and Sacchi,
2011). The core rank-reduction operator in SSA is implemented
by a truncated singular value decomposition (SVD) filter (Anvari
et al., 2019; Li et al., 2021), which decomposes the vector space of
the Hankel/Toeplitz matrix of the observed data into a signal
mmunications Co. Ltd. This is an open access article under the CC BY license (http://

http://creativecommons.org/licenses/by/4.0/
mailto:cup_hwl@126.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petsci.2024.01.018&domain=pdf
www.sciencedirect.com/science/journal/19958226
www.keaipublishing.com/en/journals/petroleum-science
https://doi.org/10.1016/j.petsci.2024.01.018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.petsci.2024.01.018
https://doi.org/10.1016/j.petsci.2024.01.018


Fig. 1. Comparison of Tukey's bisquare and quadratic (a) norms, and (b) weights.
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subspace and a noise subspace, and then removes the energies in
the noise subspace to achieve noise attenuation. Many modified
SSA methods have been proposed from different aspects. Huang
et al. (2017b) extended the SSA method into randomization
domain and develop an algorithm for simultaneous random and
coherent noise attenuation. Oropeza and Sacchi (2011) used ran-
domized SVD as fast approximations to the truncated SVD to speed
up traditional SSA filtering. For a similar purpose, Cheng and Sacchi
(2015) replaced truncated SVD with the more efficient randomized
QR decomposition. Naghizadeh and Sacchi (2013) address the
problem of interpolation beyond aliasing in the SSA reconstruction.

Although effective, the traditional truncated SVD is a non-robust
rank-reduction operator which performs unsteadily when the
seismic data are contaminated by erratic interference. This kind of
interference is often caused by swell noise, power line noise, air
blast noise, artifacts caused by glitches, recording errors and un-
corrected polarity reversals. The erratic noise is not a specific kind
of noise. If the energy of the noise is relatively concentrated in
certain traces or ranges, with an amplitude significantly larger than
the effective signal, and without a definite space-time shape (e.g.,
apparent velocity), it can be called erratic noise. To solve this
problem, Trickett et al. (2012) blended SSA into a reweighting
iteration framework to robustify the least-squares estimators and
thus obtain robust performance in attenuating erratic noise. Simi-
larly, Chen and Sacchi (2014) combined the SSA filter and iteratively
reweighed least-squares method to suppress erratic noise. Cheng
et al. (2015) applied robust principal component analysis and the
first-order gradient iteration method to suppress seismic erratic
noise. Bahia and Sacchi (2019) proposed a bifactored gradient
descent-based SSA to simultaneously reconstruct and denoise 3D
seismic dataset and also deblend simultaneous-source seismic data
(Lin et al., 2021). Wu et al. (2020) used Lp-norm robust principal
component analysis to aworkflow to attenuate seismic traffic noise.
In addition to these, Sternfels et al. (2015) modeled the signal and
erratic noise as low-rank and sparse components, respectively, and
attenuated erratic noise from incomplete seismic data by a joint
low-rank and sparse inversion. Zhu et al. (2019) detected and
suppressed high amplitude noise using a convolutional neural
network. Huang and Liu (2020) proposed to constrain the
morphological scale of the data when solving the interpolation
problem, which can improve the robustness to the spatial aliasing
and erratic energies.

The reweighting iteration SSA and its various analogues deal
with the erratic disturbance by iterating the estimation according
to the absolute difference between the original and filtered data.
However, the method may fail when the data are corrupted by
strong erratic disturbance because the low-rank projection in SSA is
forced to introduce significant artificial disturbance to fit the high
amplitudes of erratic disturbance under the sense of least-squares.
Huang et al. (2016) indicated that the truncated SVD in SSA actually
decomposes the data into a noise subspace and a signal-plus-noise
subspace, and derived a damped SSA (DSSA) which can theoreti-
cally remove the noise from the signal-plus-noise subspace. The
DSSA method has been demonstrated to be more effective for
seismic low-rank interpolation and denoising. In this work, we
further extend the DSSA method to robustify the low-rank recon-
struction of seismic data, and propose a reweighted version of DSSA
(RD-SSA). In the proposed RD-SSAmethod, the damping operator is
used to weaken the artificial disturbance introduced by the low-
rank projection of both erratic and random noise. The damping
factor can be adjusted to project both erratic and random noise to
an acceptable level and avoid the error accumulated with itera-
tions. The prominent advantage of our proposed RD-SSA method is
that it is more robust to the strong erratic disturbance. We have
tested the proposed RD-SSA method on both synthetic and field
1672
seismic data examples and the results demonstrate its feasibility.
2. Theory

2.1. Problem formulations

As many geophysical problems, the additive noise model and
denoising can be formulated as a pair of forward and inversion
processes as

D ¼ SþN; (1)

S¼ argminS0 kD� S0kþR ðS0Þ; (2)

where D is the 2D observed data in time domain. S and N are the
noise-free signal and incoherent noise with the same size, dimen-
sion and domainwithD.R denotes the regularization operator and
k ,k stands for the certain norm. S0 represents a temporary variable
in the minimization problem. In general, the first term in Eq. (2) is
called fidelity term which ensures that the estimated signal S
agrees with the observation, and the second term is the penalty
term which forces some prior constraints to the estimated signal S
(Ding and Selesnick, 2015; Chen et al., 2019). The different combi-
nations of fidelity and penalty terms define different denoising
methods. Inmost cases, the incoherent noiseN is assumed to obey a
Gaussian distribution, and the norm k ,k is chosen as the Frobenius
norm.
2.2. Reweighted damped SSA

The denoising problem can be solved by the SSA approach,
which provides us a filter of u frequency component Du to denoise
seismic data consisting of three main steps as (Oropeza and Sacchi,
2011)

S0u ¼ P_fAgðP_fRgðP_fHgðDuÞÞÞ; (3)

where P_fHg is a rearranging operator to rearrange the data Du

into a Hankel structure as

Hu ¼ P_fHgðDuÞ ¼

0
BB@

Dð1Þ Dð2Þ / DðyÞ
Dð2Þ Dð3Þ / Dðyþ 1Þ
« « 1 «

DðxÞ Dðxþ 1Þ / DðNÞ

1
CCA; (4)

where D(1), D(2),…, D(N) are the elements of Du. x ¼ N � y þ 1 is a
predefined integer chosen such that the Hankel matrix
Hu ¼ P_fHgðDuÞ is close to square. P_fRg is a rank-reducing
operator to calculate a low-rank approximation of Hu by using
the truncated SVD method (Golub and Loan, 1996; Shen et al.,
2020):
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Fig. 2. Comparison of traditional and damped low-rank projections (demonstrated at 12 Hz harmonic frequency). (a, b) Clean and noisy data. (c) Projections of clean and noisy data
on traditional low-rank space. (d) Projections of clean and noisy data on damped low-rank space. (e, f) Reconstructions of clean and noisy data with traditional low-rank projection.
(g, h) Reconstructions of clean and noisy data with damped low-rank projection.

Fig. 3. Analysis of the traditional and damped low-rank projections. (a) Error map of the traditional low-rank projection. (b) Error map of the damped low-rank projection.

Fig. 4. SNR varies with different damping factors. The red line is the output SNR of the
traditional low-rank approximation and the blue line is that of the damped low-rank
approximation. The SNR curve of the damped low-rank approximation first increases
and then decreases as the damping factor increases.
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H
u ¼ P_fRgðHuÞ ¼ Uu

1S
u
1
�
Vu
1
�H

; (5)

where H
u
represents a low-rank approximation of Hu. Su

1 , U
u
1 and

Vu
1 denote the first k largest singular values and associated k sin-

gular vectors of thematrixHu. ( )H denotes the Hermitian transpose
of a matrix. The nature of the rank-reducing operator P_fRg is
actually to solve the following inverse problem with an equality
constraint:

min
1
2
kHu �H

uk2F ; s:t: rankðHuÞ ¼ k; (6)

where k,k2F denotes Frobenius norm. k is an integer which is
generally chosen as the number of the dipping components (e.g.
k ¼ 3 when the data have 3 different dipping events). P_fAg is an
averaging operator which averages the anti-diagonals of the matrix

H
u
to recover the filtered data S0u ¼P_fAgðHuÞ. More details of the

SSA approach are further explained in the work (Oropeza and
Sacchi, 2011).

Although the SSA method is effective in suppression of seismic
incoherent noise, it may perform unsteadily when the amplitudes
of noise are dramatically larger than other samples. This is often the
case when the field seismic data are corrupted with swell noise,
power line noise, air blast noise, artifacts caused by glitches,
recording errors and uncorrected polarity reversals. One of the
1673
most important reasons is that the SSA method seeks a low-rank
approximation of the Hankel matrix of the observed data with a



Fig. 5. Comparison of different low-rank reconstructions of linear events. (a) Clean data. (b) Noisy data corrupted by Gaussian and erratic noise. (c)e(f) low-rank reconstructions
(denoising) by the SSA, DSSA, IR-SSA and RD-SSA methods, respectively.
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quadratic misfit function. The quadratic misfit functionwill assign a
large function value when the observed and calculated data have
great differences in some samples, whichmakes the approximation
quite sensitive to outliers.
2.2.1. Reweighting operation
One possible way to solve such problem is to replace the

quadratic misfit function with a nonquadratic misfit function to
robustify the low-rank approximation. For this end, the proposed
reweighted damped SSA (RD-SSA) method adopts the Tukey's
bisquare function (Beaton and Tukey, 1974) as
Fig. 6. Denoising errors of (a) SSA, (b) DSSA, (c) IR-SSA and (d) RD-SSA. Denoising
errors refer to the differences between the clean data and the denoised data.
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fTðxÞ ¼
(
e2
.
6; jxj> e;

e2
�
1�

�
1� ðx=eÞ2

�3��
6; jxj � e;

(7)

where 3 is a constant. Replacing the Frobenius norm with the
Tukey's bisquare norm, the inverse problem in Eq. (6) is rewritten
as

min
1
2
fTðHu �H

uÞ; s:t: rankðHuÞ ¼ k; (8)

The minimization in Eq. (8) is a nonconvex optimization problem
because the Tukey's bisquare norm is a nonquadratic norm. There is
no closed-form solution for such inverse problem if a nonquadratic
norm is chosen for the fidelity term (Chen and Sacchi, 2014). A
reweighted least-squares strategy can be used to reach the mini-
mization of a nonconvex optimization problem as

min
1
2
kP_fHgðWÞ1 ðHu �H

uÞk2F ; s:t: rankðHuÞ¼ k; (9)

where 1 is the Hadamard product. W ¼ [wi,j] is a reweighting
matrix and its element wi,j is determined as

W ¼ ½wi;j� ¼
8<
:

0; jgi;jj> e;

ð1� ðgi;j
.
eÞ2Þ2; jgi;jj � e;

(10)

where gi,j is the ith row and jth column element of the absolute
difference |Du � S0u|. 3is related to the normalized median absolute
deviation (MAD) and can be chosen as 4.685 , MAD (Holland and
Welsch, 1977). Eq. (10) can be simply represented as W ¼ gT(|
Du� S0u|), where 3actually acts as a threshold to find out outliers, in
other words, the (i, j) sample is considered as an outlier sample
when |gi,j| > 3. Fig. 1(a) demonstrates a comparison of the Tukey's



Fig. 7. The amplitude spectra of Fig. 5(a)e(f): (a) Clean data. (b) Noisy data corrupted by Gaussian and erratic noise. (c)e(f) low-rank reconstructions (denoising) by the SSA, DSSA,
IR-SSA and RD-SSA methods, respectively.

Fig. 8. Convergence curves of different harmonic frequencies (different colored lines) of (a) IR-SSA and (b) RD-SSA. In each figure, two detailed parts of convergence curves are
magnified as highlighted by the red arrows. The vertical coordinate represents the L2 norm of the difference between two consecutive results in the iteration process.
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bisquare and quadratic norm, and Fig. 1(b) demonstrates the cor-
responding weights. It can be observed that the outlier sample will
be assigned a small weight with the Tukey's bisquare norm, which
can make the inversion process less sensitive to outlier samples.
2.2.2. Damping operation
It can be observed that the reweighting matrix W is closely

related to the low-rank approximation H
u
. Although we have an

analytic expression for solving Eq. (9) given by the truncated SVD,
as used in the traditional SSA filtering, it may fail for the strong
erratic disturbance because the truncated SVD is the least-squares
solution of the low-rank problem. From the knowledge of linear
algebra, the SVD of matrix Hu can be represented as

Hu ¼ ðUu
1 Uu

2 Þ
 
Su
1 0
0 Su

2

!0@�Vu
1
�H

�
Vu
2
�H
1
A; (11)

where the subscript 1 and 2 denote the first k largest and the rest
1675
singular values and associated singular vectors, respectively. The
truncated SVD for rank-k approximation is achieved by abandoning
Su
2 and its associated singular vectors, which decomposes the data

into a noise subspace and a signal-plus-noise subspace. Due to the
strong amplitudes of the erratic disturbances, the projection on the
low-rank space is easy to produce serious distortion. To address this
problem, we introduce a damping operator into the low-rank
approximation as (Huang et al., 2016)

~H
u ¼ PRðHuÞ ¼ Uu

1S
u
1T
�
Vu
1
�H

; (12)

T ¼ I� ðSu
1 Þ�NdN (13)

where T is the damping operator, N is the damping factor, I is an
identity matrix and d is the maximum element of Su

2 . Compared
with the truncated SVD, this the damping operator changes the row
space of the original low-rank approximation to attenuate the re-
sidual projection of noise. More mathematical foundations can be



Fig. 9. Output SNR curves of different methods vary with different number of erratic
traces.
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found in Huang et al. (2016). It can also weaken the artificial
disturbance introduced by the low-rank projection of erratic dis-
turbances. The damping factor can be adjusted to project both
erratic and random noise to an acceptable level and avoid the error
accumulated with iterations.

Fig. 2 is a comparison of traditional and damped low-rank
projections (demonstrated at 12 Hz harmonic frequency). In this
comparison, we project a clean dataset (Fig. 2(a)) and a noisy
dataset (Fig. 2(b)) on the traditional and damped low-rank spaces,
respectively. The projection results on traditional and damped low-
rank spaces are shown in Fig. 2(c) and (d), respectively. The red and
blue lines denote the projections of the clean and noisy data,
Fig. 10. Comparison of different low-rank reconstructions of curve events. (a) Clean data. (b
the SSA, DSSA, IR-SSA and RD-SSA methods, respectively. In this experiment, all the four m
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respectively. The solid and dashed lines denote the real and
imaginary parts, respectively. Fig. 2(e) and (f) are the denoising
results of clean and noisy datawith traditional low-rank projection,
and Fig. 2(g) and (h) are those with the damped low-rank projec-
tion. It is clear that the erratic noise changes the projected curves
on the traditional low-rank space significantly (Fig. 2(c)). The
damped low-rank projection shows decent robustness to the
erratic noise (Fig. 2(d)), in which the reconstruction result of the
clean data (Fig. 2(g)) has almost no change after erratic noise cor-
ruption (Fig. 2(h)). Fig. 3 presents the error analysis of the tradi-
tional and damped low-rank projections varying with different
harmonic frequencies and levels of additive erratic noise. The error
refers to the root-mean-square of the difference between the low-
rank projections of the clean and noisy data. Fig. 3(a) corresponds
to the traditional low-rank projection, and Fig. 3(b) corresponds to
the damped low-rank projection. Within the error analysis, we can
also see the superior robustness of the damped low-rank projection
which can always hold smaller errors. Fig. 4 presents a recon-
struction error curve varying with different damping factors. It can
be seen that the error of the damped low-rank reconstruction de-
creases as the damping factor decreases, when the damping factor
is not very small. However, users need to be careful to choose a
small damping factor because it may produce a huge reconstruction
error.
2.2.3. Algorithm implementation
The DR-SSA method is implemented by alternately solving the

reweighting matrixW and the low-rank filtered data S0u, which can
be represented mathematically as

S0ui ¼ P_fAgðPRðP_fHgðDu
i ÞÞÞ; (14)
) Noisy data corrupted by swell noise. (c)e(f) low-rank reconstructions (denoising) by
ethods are implemented in local windows.



Fig. 11. Denoising errors of (a) SSA, (b) DSSA, (c) IR-SSA and (d) RD-SSA. Denoising errors refer to the differences between the clean data and the denoised data.

Table 1
SNRs (dB) of the results of the two synthetic examples.

Input SSA DSSA IR-SSA RD-SSA

Linear events �17.8896 �12.9447 �3.8732 �8.5054 8.2206
Curve events �16.6395 �7.3268 �2.9926 �1.6592 1.9966
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Wi ¼ gT
�		Du � S

0u
i

		�; (15)

Du
iþ1 ¼ Du1Wi þ S

0u
i 1ðI�WiÞ; (16)

where I is a matrix with all elements equalling 1, i is the iteration
index. Eqs. (14)e(16) are solved alternately to obtain the final so-
lution. The central idea of RD-SSA is to iteratively approximate the
observed data with the quadratic norm for the first iteration to
obtain the initial S0u1 , and the Tukey's bisquare norm for the rest
iterations. Similar to the traditional SSA method, the truncation
rank k in the RD-SSA method is determined equalling to the
number of the dipping components. The damping factor N in-
creases with iteration as

N ¼ NL þ ðNU � NLÞ,i=I; (17)

where NL and NU are the user-given lower and upper limits of the
damping factor, respectively. I is the maximum iteration number.
User has the flexibility to choose the criterion for maximum iter-
ation number such as the absolute variation ratio, relative variation
ratio or a specific number. A complete and detailed algorithm
workflow of the proposed RD-SSA approach is given in Algorithm 1.
1677
Algorithm 1. RD-SSA

3. Example

3.1. Synthetic example

To simplify the numerical environment and highlight the per-
formance comparison among different SSA-based methods, we use
a synthetic dataset consisting of three linear events with different
dips, polarities, and dominant frequencies. In this case, the rank for
the SSA-based methods equals 3. It avoids different performances
due to inapposite parameter selection. The clean data are shown in
Fig. 5(a). Two noisy traces with high amplitudes and Gaussian noise
is added to the clean data as shown in Fig. 5(b). The first example
explores the performance of low-rank approximation of the linear
events, which straightforwardly demonstrates the resistance to
erratic disturbance. Fig. 5(c) and (d) are the denoised results by
using the SSA (Trickett, 2008; Oropeza and Sacchi, 2011) and DSSA



Fig. 12. The field data example. (a) Initial data. (b)e(e) Denoised results after using the SSA, DSSA, IR-SSA, and RD-SSA methods, respectively.
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(Huang et al., 2016) methods, respectively. Fig. 5(e) and (f) are the
results after using two iterative methods, namely the iterative
robust SSA (IR-SSA) method (Trickett et al., 2012) and the proposed
RD-SSA method, respectively. Fig. 6 shows the corresponding
denoising errors given by the differences between clean data
(Fig. 5(a)) and denoised results (Fig. 5(c)e(f)). The rank for all the
four methods is 3. The damping factor for the DSSA method is 8,
and linearly increases from 3 to 8 for the proposed RD-SSA method.
The maximum iteration number for each frequency component of
both the IR-SSA and RD-SSA methods is 200. The computation
times for the four methods are 0.0871, 0.875, 5.3065 and 0.8775
respectively. The result demonstrates that the low-rank approxi-
mation with SSA (Fig. 5(c)) turns into an unstable state and gen-
erates a lot of factitious noise. Although the DSSAmethod (Fig. 5(d))
is more robust than the SSA method, it still introduces some noise
in the last several traces. The IR-SSA method suppresses the erratic
noise and estimates the clean data by iteratively implementing the
SSA filtering, which can improve the robustness of the low-rank
approximation. However, for the strong erratic noise, it also
leaves significant artifacts as demonstrated in Fig. 5(e). On the
contrary, the proposed RD-SSA method (Fig. 5(f)) successfully
1678
attenuates the erratic noise and shows a good resistance to erratic
disturbances. Fig. 7 shows the amplitude spectra of the clean data
(Fig. 5(a)), noisy data (Fig. 5(b)) and the four denoised results
(Fig. 5(c)e(f)). It could be seen that the RD-SSA method keeps the
dominant frequency, frequency band, and shape of the amplitude
spectra better than other methods. Fig. 8 presents the convergence
curves of different harmonic frequencies (different colored lines) of
the IR-SSA and RD-SSA methods. In each figure, two detailed parts
of convergence curves are magnified as highlighted by the red ar-
rows. The RD-SSAmethod holds faster convergence than the IR-SSA
method, which achieves convergence for all the frequency com-
ponents with no more than 30 iterations. To make the comparsion
more comprehensive, Fig. 9 demonstrates SNRs of the denoised
results using different methods vary with different number of
erratic traces. The SNR is calculated as (Huang and Wang, 2018)

SNR ¼ 10log



CLEANk2F

CLEAN � NOISYk2F
; (18)

where CLEAN represents the clean data, and NOISY represents the



Fig. 13. The difference sections between the original data (Fig. 12(a)) and denoised
results (a) SSA, (b) DSSA, (c) IR-SSA, and (d) RD-SSA.

Fig. 14. The f � k spectra of Fi
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noisy data.
The second synthetic example explores the performance of low-

rank approximation of the 3D curve events. Because the SSA-based
method relies on the assumption of plane waves, all the four
methods are implemented in local spatial windows (20� 20 traces)
to make the data close to the ideal signal model meeting the low-
rank assumption. 50% overlapping is allowed for every two adja-
cent windows to eliminate the windowing effect. Fig. 10(a) and (b)
are the clean data and the noisy data corrupted by swell noise. The
swell noise in Fig. 10(b) is extracted from a field dataset. The
denoised results using the SSA, DSSA, IR-SSA, RD-SSA approaches
are shown in Fig. 10(c)e(f), respectively. The denoising errors are
presented in Fig. 11. For this experiment, the ranks for all the four
methods are 4. The damping factor for the DSSA method is 8, and
linearly increases from 3 to 6 for the proposed RD-SSA method. The
maximum iteration number for each frequency component of both
the IR-SSA and RD-SSA methods is 20. All the parameters are kept
the same for each local window. The computation times for the four
methods are 59.094, 61.224, 322.021 and 104.975 respectively. As
observed from the results, the SSA reconstruction section is very
noisy with strong energies of erratic noise developed. It is because
the sensibility of erratic disturbance of SSA, which introduces ar-
tifacts. The denoising results of both the DSSA and IR-SSA methods
are much more robust than that of SSA, which attenuate most en-
ergies of the two traces with erratic noise but still introduce arti-
facts. Comparing the denoising results and errors, the proposed RD-
SSAmethod performs better than other methods. Table 1 shows the
quantitative analysis of signal to noise ratio (SNR) of the two syn-
thetic examples.

3.2. Field example

A field data example is used to further demonstrate the effec-
tiveness of the proposed RD-SSA method. The original field dataset
is a CMP dataset and has 120 traces and 1500 time-samples per
trace as shown in Fig. 12(a). The original data are contaminated by
some erratic energies within the area around trace 40e90. In
addition, the original data are contaminated by incoherent ambient
g. 12(a)e(e), respectively.
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noise and some residual ground roll. Most of the ground roll energy
is removed in advance and the residual presents poor coherency.
Thus, these poorly coherent energies can be roughly treated as
incoherent noise and eliminated by incoherent noise attenuation
techniques. Similar to the synthetic example, the SSA, DSSA, IR-SSA
and RD-SSA algorithms are applied to suppress the incoherent
noise. Theoretically, the rank equals the number of dipping events.
For the field seismic data, it is hard to determine such number.
Therefore, rank for the field seismic data is generally the deter-
mined by the try-and-error method. All the four methods are
implemented in local windows of 40 traces. The rank is 6 for all the
four methods. The damping factor for the DSSA method is 6, and
linearly increases from 3 to 6 for the proposed RD-SSA method. The
maximum iteration number for each frequency component of both
the IR-SSA and RD-SSA methods is 200. The computation times for
the four methods are 2.051, 2.325, 80.632 and 45.604 respectively.
The denoised results are shown in Fig. 12(b)e(e). The four differ-
ence sections (i.e., the difference between the original data
(Fig. 12(a)) and the four denoised results (Fig. 12(b)e(e)) are pre-
sented in Fig. 13. It can be confirmed that all the four SSA-based
methods suppress the incoherent noise to some extent. However,
Fig. 15. The magnified sections of (a) initial data, and (b)e(e) denoised resul
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the RD-SSA method performs better and obtains a cleaner seismic
profile. From all the SSA, DSSA, and IR-SSA denoised results
(Fig. 12(b)e(d)) we can still observe residual erratic noise. There are
no notable signal leakages in all the four difference sections (Fig.13)
which suggests that the signals are preserved well after using all
the four denoising methods. Fig. 14(a)e(e) show the f � k spectra of
Fig. 12(b)e(e), respectively. For a close observation, the small data
sections of trace 65e75 and 2400e3200 ms are magnified from the
original data and the four denoised data, as shown in Fig. 15. The
results show that, the events’ consistencies are much improved
after using the proposed RD-SSAmethod as highlighted by the blue
lines, which indicates a successful performance.
4. Discussion

There are two main shortcomings of the proposed RD-SSA
method. The one is the computational efficiency. On the one
hand, the RD-SSA method needs to take many iterations to obtain
the final result, and will inevitably have more computational time
than the non-iterative method, for instance, the traditional SSA
method. Therefore, to attenuate the incoherent noise without high
ts after using the SSA, DSSA, IR-SSA, and RD-SSA methods, respectively.
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amplitudes, the traditional SSAmethod is recommended because it
is more efficient. On the other hand, the RD-SSA method needs the
SVD of the explicit matrix (which is stored in memory). 5D appli-
cations of the SSA would build matrices that are too big for this
case, and the SVD is prohibitive in this case. The other is that the
RD-SSA method has a limited performance in suppression of
coherent noise, such as multiples and linear interference. The main
reason is that the coherent noise, especially those with high
apparent velocities, have well consistencies in adjacent traces and
therefore accord with low-rank assumption of the Hankel matrix
(Huang et al., 2017b). The coherent noise is hard to separate from
the signal by the SSA-based method because they are mixed in the
singular spectrum. One possible solution is to introduce a
randomization operator following Huang et al. (2017b), to destroy
the consistency of the coherent noise prior to the SSA filtering.

Compared with the existing robust SSA variants, there are two
main contributions. The first one is that it finds the damping
operator can not only improve the performance of SSA to separate
signal and noise, but also improve its robustness to erratic noise.
Another is that it incorporates the damping operator into a Tukeys
bisquare norm-based iteratively reweighting framework, in which
the damping operator changes with iterations. In the early phase of
iterations, it imposes a strong damping effect to attenuate the
artificial disturbance introduced by the low-rank projection of the
erratic noise. In the late phase of iterations, it imposes a weak
damping effect to accelerate convergence and preserve the signal
amplitude.
5. Conclusions

We have further extended the DSSA method to robustify the
low-rank reconstruction of seismic data, and proposed a reweigh-
ted version of DSSA (RD-SSA) for robust seismic noise suppression.
With the damping operator interposing, the RD-SSA method can
weaken the artificial disturbance introduced by the low-rank pro-
jection of both erratic and random noise. The damping factor can be
adjusted to project both erratic and random noise to an acceptable
level and avoid the error accumulated with iterations. The Tukey's
bisquare measure is adopted to make the inversion process of
denoising less sensitive to the outlier samples. The RD-SSA updates
alternately Tukey's bisquare weight and the low-rank approxima-
tion within iterations. Based on the application on both synthetic
and field data examples, despite the higher computational costs
due to its iterative nature, the RD-SSA method offers a good per-
formance in the seismic incoherent noise suppression and exhibits
robustness to strong erratic disturbances compared with the SSA,
DSSA and IR-SSA methods.
CRediT authorship contribution statement

Wei-Lin Huang: Writing e review & editing, Writing e original
draft, Software, Methodology. Yan-Xin Zhou: Writing e review &
editing, Visualization. Yang Zhou: Writing e review & editing,
Methodology. Wei-Jie Liu: Writing e review & editing, Writing e

original draft, Methodology, Investigation. Ji-Dong Li: Writing e

review & editing, Writing e original draft.
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
1681
Acknowledgments

This work was supported by the National Natural Science
Foundation of China under grant no. 42374133, and the Beijing
Nova Program under grant no. 2022056, and the Fundamental
Research Funds for the Central Universities under grant no.
2462020YXZZ006, and the Young Elite Scientists Sponsorship
Program by CAST (YESS) under grant no. 2018QNRC001. We would
like to thank four anonymous reviewers for their constructive
suggestions.

References

Anvari, R., Mohammadi, M., Kahoo, A.R., 2019. Enhancing 3-D seismic data using the
t-SVD and optimal shrinkage of singular value. IEEE J. Sel. Top. Appl. Earth Obs.
Rem. Sens. 12, 382e388. https://doi.org/10.1109/JSTARS.2018.2883404.

Anvari, R., Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Mohammadi, M., 2017. Seismic
random noise attenuation using synchrosqueezed wavelet transform and low-
rank signal matrix approximation. IEEE Trans. Geosci. Rem. Sens. 55,
6574e6581. https://doi.org/10.1109/TGRS.2017.2730228.

Bahia, B., Sacchi, M., 2019. Robust singular spectrum analysis via the bifactored
gradient descent algorithm. In: SEG Technical Program Expanded Abstracts
2019. Society of Exploration Geophysicists, pp. 4640e4644. https://doi.org/
10.1190/segam2019-3215465.1.

Beaton, A.E., Tukey, J.W., 1974. The fitting of power series, meaning polynomials,
illustrated on band-spectroscopic data. Technometrics 16, 147e185. https://
doi.org/10.1080/00401706.1974.10489171.

Bekara, M., van der Baan, M., 2009. Random and coherent noise attenuation by
empirical mode decomposition. Geophysics 74, V89eV98. https://doi.org/
10.1190/1.3063881.

Chen, K., Sacchi, M.D., 2014. Robust reduced-rank filtering for erratic seismic noise
attenuation. Geophysics 80, V1eV11. https://doi.org/10.1190/geo2014-0116.1.

Chen, X., Cao, J.-J., Yang, H.-L., Shi, S.-J., Guo, Y.-S., 2022. Diffraction separation and
imaging based on double sparse transforms. Petrol. Sci. 19, 534e542. https://
doi.org/10.1016/j.petsci.2021.12.002.

Chen, Y., Zhang, M., Bai, M., Chen, W., 2019. Improving the signal-to-noise ratio of
seismological datasets by unsupervised machine learning. Seismol Res. Lett. 90,
1552e1564. https://doi.org/10.1785/0220190028.

Cheng, J., Chen, K., Sacchi, M.D., 2015. Application of robust principal component
analysis (RPCA) to suppress erratic noise in seismic records. In: SEG Technical
Program Expanded Abstracts 2015. Society of Exploration Geophysicists,
pp. 4646e4651. https://doi.org/10.1190/segam2015-5869427.1.

Cheng, J., Sacchi, M.D.. A fast rank-reduction algorithm for 3D deblending via ran-
domized QR decomposition, pp. 3830e3835. https://doi.org/10.1190/
segam2015-5850767.1.

Ding, Y., Selesnick, I.W., 2015. Artifact-free wavelet denoising: non-convex sparse
regularization, convex optimization. IEEE Signal Process. Lett. 22, 1364e1368.
https://doi.org/10.1109/LSP.2015.2406314.

Golub, G.H., Loan, C.F.V., 1996. Matrix Computations. The Johns Hopkins University
Press.

G�omez, J.L., Velis, D.R., 2016. A simple method inspired by empirical mode
decomposition for denoising seismic data. Geophysics 81, V403eV413. https://
doi.org/10.1190/geo2015-0566.1.

Herrmann, F.J., Hennenfent, G., 2008. Non-parametric seismic data recovery with
curvelet frames. Geophys. J. Int. 173, 233e248. https://doi.org/10.1111/j.1365-
246X.2007.03698.x.

Holland, P.W., Welsch, R.E., 1977. Robust regression using iteratively reweighted
least-squares. Commun. Stat. 6, 813e827. https://doi.org/10.1080/
03610927708827533.

Huang, W., Liu, J., 2020. Robust seismic image interpolation with mathematical
morphological constraint. IEEE Trans. Image Process. 29, 819e829. https://
doi.org/10.1109/TIP.2019.2936744.

Huang, W., Wang, R., 2018. Random noise attenuation by planar mathematical
morphological filtering. Geophysics 83, V11eV25. https://doi.org/10.1190/
geo2017-0288.1.

Huang, W., Wang, R., Chen, Y., Li, H., Gan, S., 2016. Damped multichannel singular
spectrum analysis for 3D random noise attenuation. Geophysics 81,
V261eV270. https://doi.org/10.1190/geo2015-0264.1.

Huang, W., Wang, R., Li, H., Chen, Y., 2017a. Unveiling the signals from extremely
noisy microseismic data for high-resolution hydraulic fracturing monitoring.
Sci. Rep. 7, 11996.

Huang, W., Wang, R., Yuan, Y., Gan, S., Chen, Y., 2017b. Signal extraction using
randomized-order multichannel singular spectrum analysis. Geophysics 82,
V69eV84.

Lan, N.-Y., Zhang, F.-C., Yin, X.-Y., 2022. Seismic data reconstruction based on low
dimensional manifold model. Petrol. Sci. 19, 518e533. https://doi.org/10.1016/
j.petsci.2021.10.014.

Li, H., Wang, R., Cao, S., Chen, Y., Huang, W., 2016. A method for low-frequency noise
suppression based on mathematical morphology in microseismic monitoring.
Geophysics 81, V159eV167. https://doi.org/10.1190/geo2015-0222.1.

Li, L., Zhang, G.-Z., Liu, J.-Z., Han, L., Zhang, J.-J., 2021. Estimation of fracture density

https://doi.org/10.1109/JSTARS.2018.2883404
https://doi.org/10.1109/TGRS.2017.2730228
https://doi.org/10.1190/segam2019-3215465.1
https://doi.org/10.1190/segam2019-3215465.1
https://doi.org/10.1080/00401706.1974.10489171
https://doi.org/10.1080/00401706.1974.10489171
https://doi.org/10.1190/1.3063881
https://doi.org/10.1190/1.3063881
https://doi.org/10.1190/geo2014-0116.1
https://doi.org/10.1016/j.petsci.2021.12.002
https://doi.org/10.1016/j.petsci.2021.12.002
https://doi.org/10.1785/0220190028
https://doi.org/10.1190/segam2015-5869427.1
https://doi.org/10.1190/segam2015-5850767.1
https://doi.org/10.1190/segam2015-5850767.1
https://doi.org/10.1109/LSP.2015.2406314
http://refhub.elsevier.com/S1995-8226(24)00018-9/sref12
http://refhub.elsevier.com/S1995-8226(24)00018-9/sref12
https://doi.org/10.1190/geo2015-0566.1
https://doi.org/10.1190/geo2015-0566.1
https://doi.org/10.1111/j.1365-246X.2007.03698.x
https://doi.org/10.1111/j.1365-246X.2007.03698.x
https://doi.org/10.1080/03610927708827533
https://doi.org/10.1080/03610927708827533
https://doi.org/10.1109/TIP.2019.2936744
https://doi.org/10.1109/TIP.2019.2936744
https://doi.org/10.1190/geo2017-0288.1
https://doi.org/10.1190/geo2017-0288.1
https://doi.org/10.1190/geo2015-0264.1
http://refhub.elsevier.com/S1995-8226(24)00018-9/sref19
http://refhub.elsevier.com/S1995-8226(24)00018-9/sref19
http://refhub.elsevier.com/S1995-8226(24)00018-9/sref19
http://refhub.elsevier.com/S1995-8226(24)00018-9/sref20
http://refhub.elsevier.com/S1995-8226(24)00018-9/sref20
http://refhub.elsevier.com/S1995-8226(24)00018-9/sref20
http://refhub.elsevier.com/S1995-8226(24)00018-9/sref20
https://doi.org/10.1016/j.petsci.2021.10.014
https://doi.org/10.1016/j.petsci.2021.10.014
https://doi.org/10.1190/geo2015-0222.1


W.-L. Huang, Y.-X. Zhou, Y. Zhou et al. Petroleum Science 21 (2024) 1671e1682
and orientation from azimuthal elastic impedance difference through singular
value decomposition. Petrol. Sci. 18, 1675e1688. https://doi.org/10.1016/
j.petsci.2021.09.037.

Li, Z.-C., Qu, Y.-M., 2022. Research progress on seismic imaging technology. Petrol.
Sci. 19, 128e146. https://doi.org/10.1016/j.petsci.2022.01.015.

Lin, R., Bahia, B., Sacchi, M.D., 2021. Iterative deblending of simultaneous-source
seismic data via a robust singular spectrum analysis filter. IEEE Trans. Geosci.
Rem. Sens. 60, 1e10. https://doi.org/10.1109/TGRS.2021.3086834.

Mousavi, S.M., Langston, C.A., Horton, S.P., 2016. Automatic microseismic denoising
and onset detection using the synchrosqueezed continuous wavelet transform.
Geophysics 81 (4), V341eV355. https://doi.org/10.1190/geo2015-0598.1.

Naghizadeh, M., Sacchi, M., 2013. Multidimensional de-aliased Cadzow recon-
struction of seismic records. Geophysics 78, A1eA5. https://doi.org/10.1190/
segam2012-0494.1.

Oropeza, V., Sacchi, M., 2011. Simultaneous seismic data denoising and recon-
struction via multichannel singular spectrum analysis. Geophysics 76,
V25eV32. https://doi.org/10.1190/1.3552706.

Sacchi, M.D. Fx Singular Spectrum Analysis. Cspg Cseg Cwls Convention, Citeseer,
392e395. https://www.researchgate.net/publication/255663970.

Shen, H.Y., Li, Q., Yan, Y.Y., Li, X.X., Science, P., 2020. Separation of diffracted waves
via svd filter. Petrol. Sci. 1e13. https://doi.org/10.1007/s12182-020-00480-8.

Sternfels, R., Viguier, G., Gondoin, R., Le Meur, D., 2015. Multidimensional simul-
taneous random plus erratic noise attenuation and interpolation for seismic
data by joint low-rank and sparse inversion. Geophysics 80, WD129eWD141.
1682
https://doi.org/10.1190/geo2015-0066.1.
Trad, D.O., Ulrych, T.J., Sacchi, M.D., 2002. Accurate interpolation with high-

resolution time-variant radon transforms. Geophysics 67, 644e656. https://
doi.org/10.1190/1.1468626.

Trickett, S., 2008. F-xy cadzow noise suppression. In: SEG Technical Program
Expanded Abstracts 2008. Society of Exploration Geophysicists, pp. 2586e2590.
https://doi.org/10.1190/1.3063880.

Trickett, S., Burroughs, L., Milton, A., 2012. Robust rank-reduction filtering for erratic
noise: SEG technical program expanded abstracts 2008. Society of Exploration
Geophysicists SEGe2012. https://doi.org/10.1190/segam2012-0129.1.

Wang, R., Li, Q., Zhang, M., 2008. Application of multi-scaled morphology in
denoising seismic data. Appl. Geophys. 5, 197e203. https://doi.org/10.1007/
s11770-008-0033-3.

Wang, Y.-Q., Wang, Q., Lu, W.-K., Ge, Q., Yan, X.-F., 2022. Seismic impedance
inversion based on cycle-consistent generative adversarial network. Petrol. Sci.
19, 147e161. https://doi.org/10.1190/segam2019-3203757.1.

Wu, B., Yu, J., Ren, H., Lou, Y., Liu, N., 2020. Seismic traffic noise attenuation using lp-
norm robust PCA. Geosci. Rem. Sens. Lett. IEEE 17, 1998e2001. https://doi.org/
10.1109/LGRS.2019.2955737.

Zhu, Z., Cao, D., Wu, B., 2019. Seismic high amplitude noise attenuation based on the
deep learning method: 81st EAGE conference and exhibition 2019. Eur. Assoc.
Geoscientists Eng. 1e5. https://doi.org/10.3997/2214-4609.201901356.

Zwartjes, P., Gisolf, A., 2007. Fourier reconstruction with sparse inversion. Geophys.
Prospect. 55, 199e221. https://doi.org/10.1111/j.1365-2478.2006.00580.x.

https://doi.org/10.1016/j.petsci.2021.09.037
https://doi.org/10.1016/j.petsci.2021.09.037
https://doi.org/10.1016/j.petsci.2022.01.015
https://doi.org/10.1109/TGRS.2021.3086834
https://doi.org/10.1190/geo2015-0598.1
https://doi.org/10.1190/segam2012-0494.1
https://doi.org/10.1190/segam2012-0494.1
https://doi.org/10.1190/1.3552706
https://www.researchgate.net/publication/255663970
https://doi.org/10.1007/s12182-020-00480-8
https://doi.org/10.1190/geo2015-0066.1
https://doi.org/10.1190/1.1468626
https://doi.org/10.1190/1.1468626
https://doi.org/10.1190/1.3063880
https://doi.org/10.1190/segam2012-0129.1
https://doi.org/10.1007/s11770-008-0033-3
https://doi.org/10.1007/s11770-008-0033-3
https://doi.org/10.1190/segam2019-3203757.1
https://doi.org/10.1109/LGRS.2019.2955737
https://doi.org/10.1109/LGRS.2019.2955737
https://doi.org/10.3997/2214-4609.201901356
https://doi.org/10.1111/j.1365-2478.2006.00580.x

	A reweighted damped singular spectrum analysis method for robust seismic noise suppression
	1. Introduction
	2. Theory
	2.1. Problem formulations
	2.2. Reweighted damped SSA
	2.2.1. Reweighting operation
	2.2.2. Damping operation
	2.2.3. Algorithm implementation


	3. Example
	3.1. Synthetic example
	3.2. Field example

	4. Discussion
	5. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


