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a b s t r a c t

The facies distribution of a reservoir is one of the biggest concerns for geologists, geophysicists, reservoir
modelers, and reservoir engineers due to its high importance in the setting of any reliable decision-
making/optimization of field development planning. The approach for parameterizing the facies distri-
bution as a random variable comes naturally through using the probability fields. Since the prior
probability fields of facies come either from a seismic inversion or from other sources of geologic in-
formation, they are not conditioned to the data observed from the cores extracted from the wells. This
paper presents a regularized element-free Galerkin (R-EFG) method for conditioning facies probability
fields to facies observation. The conditioned probability fields respect all the conditions of the probability
theory (i.e. all the values are between 0 and 1, and the sum of all fields is a uniform field of 1). This
property achieves by an optimization procedure under equality and inequality constraints with the
gradient projection method. The conditioned probability fields are further used as the input in the
adaptive pluri-Gaussian simulation (APS) methodology and coupled with the ensemble smoother with
multiple data assimilation (ES-MDA) for estimation and uncertainty quantification of the facies distri-
bution. The history-matching of the facies models shows a good estimation and uncertainty quantifi-
cation of facies distribution, a good data match and prediction capabilities.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The prior estimation of the facies distribution of a reservoir is
very important for the development of any optimal planning of the
reservoir. The initial knowledge of geology in terms of facies types,
contact between them, sizes, and orientation are gathered, some of
them under uncertainty, in the exploration phase of the reservoir.
This information comes from core observations, outcrop evalua-
tion, and inversion of the seismic data and is the result of the
assessment and interpretation of experts (e.g. geologists, geo-
physicists, geo-modelers, etc) or the output of complex method-
ologies involving machine learning procedures (Hall, 2016; Al-
Mudhafar, 2017; Lee et al., 2022; Noh et al., 2023). This prior in-
formation can be used in two ways. A part of it helps in modeling
cher).
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the geologic architecture of the reservoir. Another part of prior
information is mathematically modeled using variables that
quantify either uncertainty or certainty of the geology. For instance,
geological certainty refers to the type of facies observed at a specific
location in the reservoir domain. This is probabilistically modeled
using the values 0 or 1 (Sebacher et al., 2013). The geologic un-
certainty could be represented by the facies dimensions, facies
orientations, prior facies probability fields (cubes), vertical pro-
portion curves, global facies proportions and many others. Any
geological simulation model should consider the prior information
and conditioning the facies simulation to the available data
generating facies instances preserving the geological realism (Linde
et al., 2015).

One of the important pieces of information, that the geological
simulation needs to be conditioned to, is the probability field of
facies. The truncated pluri-Gaussian simulation model (TPS, Galli
et al., 1994), the multi-point geostatistical simulation model
(MPS, Caers and Zhang, 2004), the sequential indicator simulation
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model (SISIM, Deutsch and Journel, 1992) have the possibility to
generate facies distributions by conditioning the simulation to
probability fields (e.g. soft data integration modules).

Sequential indicator simulation was one of the first stochastic
methods used to create realistic three-dimensional facies instances.
The method is suitable when facies indicators can be modeled with
two-point geostatistics which give a high uncertainty related to
facies geometry and connectivity (Oyeyemi et al., 2018; Abdolahi
et al., 2022). Multi-point geostatistical simulation models are able
to create realistic three-dimensional facies realizations condition-
ing training images to soft data through specialized modules such
as the “tau model” (Krishnan et al., 2005). The MPS models are
superior to SISIM for simulating realistic channelized fluvial sys-
tems, especially for those with strong geometry and continuity (Jha
et al., 2014; Al-Mudhafar, 2018; Zhou et al., 2018; Zhang et al.,
2022), because the simulation takes into account the multiple
point statistics between the domain locations, while SISIM uses
two-points geostatistics only. Besides the MPS and SISIM models,
the object-based simulation models (OBS), Deutsch and Wang
(1996) are able to create realistic complex geological instances
with facies having predefined shapes and geometries (Vevle et al.,
2018; Zhou et al., 2018) where the simulated fields can be condi-
tioned to facies observations taken at the well locations (Deutsch
and Tran, 2002).

Fast model update (FMU, Hanea et al., 2015b) is an integrated
and automated workflow for reservoir modeling and character-
ization, and it is the recommended practice for the modeling and
simulation work in Equinor. It connects all steps and disciplines
from seismic depth conversion to prediction and reservoir man-
agement considering relevant reservoir uncertainty.

FMU delivers an ensemble of geologically consistent and
history-matched model realizations that together characterize the
reservoir uncertainty. The engine of the assisted history matching
process is represented by the ensemble smoother with multiple
data assimilation (ES-MDA, Emerick and Reynolds, 2013). Hence,
the uncertain parameters of interest should be continuous random
variables. The FMU allows updates of the structural model, faults,
and rock properties (such as permeability and porosity). The facies
modeling is an important step in themodeling workflow. The facies
are categorical variables (type A, B, C, etc.), therefore there is a need
for a parametrization that will project the discrete variables into
continuous ones (probabilities). The most informative data about
the facies distribution in a reservoir is the seismic data. Inverted
seismic data provides probability cubes for facies distribution in
each grid cell of a reservoir model. Hence, it is related to the
probability parameterization of the facies. Prior knowledge is the
key to a successful assisted history matching process, and it links
strongly with the geological concept of the formation present in the
reservoir.

The adaptive pluri-Gaussian simulation (APS, Sebacher et al.,
2017) is the method that links the input seismic data (cubes), the
geological concept (expert knowledge), and the truncated pluri-
Gaussian methodology to obtain an ensemble representation of
the reservoir which obeys the hard data, follows the geology and
can be consistently updated. The APS methodology became the
recommended practice in Equinor, for facies modeling and simu-
lations in assets in production since 2017. An example of a com-
parison between the SISIMmethod and APS applied for AHM in the
Peregrino asset in Brazil is presented in Hanea et al. (2016). Three-
dimensional facies simulation with APS was presented in a real
field case in Strom et al. (2016), where an ensemble-based history
matching technique was employed to consistently condition the
dynamic data to facies models.

The probability fields/cubes of facies is one of the main ingre-
dient in the APS methodology, and consequently in the FMU. These
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fields must be created in such a way that is consistent with the
seismic and well-log data. The probability fields of facies inferred
from well-log data are, traditionally, calculated with geostatistical
algorithms involving kriging interpolation (Deutsch, 2002), but one
needs a significant amount of facies data to apply those algorithms.

Another approach is to create, with a geological simulation
model, an ensemble of possible realizations of facies fields condi-
tioned on well observations and calculate the probability field of
each facies from the ensemble (Sebacher et al., 2013). However, this
approach could cause bias due to the geostatistical properties of the
random fields used in the generation process of the facies fields
(Sebacher et al., 2017) and the seismic data are not taken into ac-
count. A different method to build probability fields of facies is by
using inversion techniques applied to the seismic data gathered
during the exploration phase of the reservoir (Abadpour et al.,
2017). Avseth et al. (2001) developed a methodology for gener-
ating the probability field of facies involving a Bayesian inversion of
the seismic acquisitions, and Ng et al. (2008) present a method for
creating the probability fields of the facies combiningwell log facies
information, statistics of the rock physics, and seismic inversion
whileMassonnat (1999) considered the probability of occurrence of
a facies as a function of palaeobathymetry ranges. However, these
fields are not conditioned to facies observations.

A numerical method is developed, outside of the geological
simulation model, in Marzavan and Sebacher (2021). Here, the
finite element method (FEM, Zienkiewicz and Taylor, 1993;
Marzavan, 2022a) is used for the construction of the probability
field of the facies but considers only the facies observations as
input. The method works well under isotropic conditions, but it is
not developed for the anisotropic case and also does not take into
account prior probability fields of facies or global facies pro-
portions. All the presented methods generate probability fields for
facies but without conditioning them both on facies observations at
the well locations and seismic information.

This paper presents a novel methodology to condition the prior
probability fields of facies to facies observations collected at the
well locations. The prior probability fields of facies coming from
seismic inversion are not conditioned to the facies data collected
fromwells. The proposed methodology merges these two pieces of
information that are coming from different sources, providing
conditioned facies probability fields. The method works even in the
absence of seismic information, but using as the prior probability
fields, uniform fields calculated based on global facies proportions.

The method is developed in the element-free Galerkin frame-
work (EFG, Nastasescu et al., 2020) with a regularization procedure
that consistently combines the prior probability fields and facies
observations. This is done in a static regime. The methodology
enhances the one presented in Sebacher et al. (2019) in the sense
that here, it works for any number of facies types, and the condi-
tioned probability fields respect all the rules of the probability
theory (i.e. at each grid cell of any probability field the value is
between 0 and 1 and all the probability fields sum up to 1 at each
cell). This property is achieved by an optimization procedure under
equality and inequality constraints with the gradient projection
method.

The helpfulness of having probability fields of facies is further
demonstrated by introducing them as input in a history matching
process. In the adaptive pluri-Gaussian methodology (APS,
Sebacher et al., 2017), they are themain ingredient and are essential
for preserving facies observations during the assimilation of data.
Consequently, to show their applicability, the conditioned proba-
bility fields constructed with the EFG methodology are introduced
in an adaptive pluri-Gaussian simulation model and coupled with
the ensemble smoother with multiple data assimilation (ES-MDA,
Emerick and Reynolds, 2013) for historymatching. The goals are the
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estimation of facies distribution, its uncertainty quantification, data
match, and predictions.

One of the problems of the history matching of facies models is
the preservation of the facies observations at the well locations,
during the assimilation of data. The estimation of facies distribution
in the truncated pluri-Gaussian simulation (TPS) framework
coupled with an ensemble Kalman filtering method was first pre-
sented in Liu and Oliver (2005), where the prior facies models were
conditioned to facies data based on Gaussian field values at the cells
with observations. The facies observations were preserved during
the history matching with an iterative Kalman filtering process
applied to the Gaussian fields. The same conditioning approach was
adopted in Agbalaka and Oliver (2008), with a distance-based
localization applied to Gaussian fields, and, also in Agbalaka and
Oliver (2009) taking into account non-stationary facies pro-
portions based on trends. This approach, however, decreases the
variability of the Gaussian fields and, consequently, the variability
of the updated ensemble of facies fields. In Astrakova and Oliver
(2014), the facies observations at the well locations are preserved
by merging an ensemble smoother with an interior-point method
with inequality constraints, post-processing procedure that also
modifies the Gaussian field values after data assimilation.

In this paper, the facies observations are kept during the history
matching process without any extra conditioning, due to the main
property of the adaptive pluri-Gaussian simulation method. In the
APS model, this problem is automatically solved by the probability
fields that are conditioned on facies observations (Sebacher et al.,
2017). We history match the facies models generated from the
conditioned probability fields having as the observations, the pro-
duction data, and global facies proportions. The history-matching
result shows a good estimation and uncertainty quantification of
facies distribution, a good data match, and very well prediction
capabilities.

The paper is organized as follows, in the next section is pre-
sented the EFGmethodology and its customized implementation to
work for probability fields of facies. Section 3 presents the facies
simulation with the adaptive pluri-Gaussian method (APS) and
probability fields of facies constructed with the EFG methodology.
Section 4 contains the implementation of the history matching
method and the case study results. The paper ends with
conclusions.

2. Element-free Galerkin setup

This section presents the element-free Galerkin (EFG) procedure
and its customized implementation applied for conditioning the
prior probability fields of facies to facies observations taken at the
well locations.

2.1. Element free Galerkin (EFG)

The element-free Galerkin is an interpolation technique in
which the function approximation at the unsampled locations de-
pends on a weighted influence of the values at sampled locations.
Let D4R2 be a discretized bi-dimensional domain and f : D/ R a
real function, defined on D of which values vj ¼ f ðujÞ are known in

some locations fuj; j¼ 1;Ng (N is the number of sampled locations).
Based on these values we perform interpolation and approximate
the value of function f at each unsampled point u2D. First, we set a
cartesian coordinate system on the bi-dimensional space R2 (this is
done in a customized fashion) and assign, for each location u; two
coordinates u ¼ ðx; yÞ. The value of function f at the location u is
approximated with a polynomial expression of degreem � 1 in the
coordinate ðx;yÞ, of type,
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f ðuÞx fmðuÞ ¼
X

0�iþj�m

aijðuÞxiyj: (1)

The optimal coefficients aðuÞ ¼ ðaijðuÞÞi;j, where 0 � iþ j � m

are the ones that minimize the quadratic cost function,

JðaðuÞÞ¼
XN
i¼1

Wðku� uikÞðfmðuiÞ � viÞ2: (2)

In this cost function, the misfit ðfmðuiÞ � viÞ2 is weighted with a
distance-based function W : ½0;∞Þ/½0;1�. The weight function W
is similar with the variogram function in kriging interpolation, and
is decreasing, high differential with Wð0Þ ¼ 1, and with the prop-
erty that exists a positive number r so thatWðhÞ ¼ 0 for each h � r:
The r value is called the radius of the weight function support,
which in the one dimensional case is the interval ½0; r�.

WðhÞ¼

8><
>:1� 6

h2

r2
þ 8

h3

r3
� 3

h4

r4
if 0 � h � r

0 if h> r

(3)

In the literature, there are many weight functions used in the EFG
procedure (Marzavan, 2022b), but for this study, the function
chosen is the quadratic spline function (Eq. (3)) of which repre-
sentation is shown in Fig. 1. The variable r gives the radius of the
support of the weight function. In Eq. (2), the argument of function
W is the distance between the nodes u and ui.

This distance is either the euclidian distance (for the isotropic
case) or a distance that accounts for anisotropy (i.e.

distðui;uÞ ¼ ku� uikB ¼ ðu� uiÞTBðu� uiÞ where B is a 2� 2 posi-
tive definite symmetric real matrix). Consequently, the optimal
coefficients are calculated as a*ðuÞ ¼ argminJðaðuÞÞ and the
approximation is f ðuÞx P

0�iþj�m
a*ijðuÞxiyj.
2.2. Regularized element free Galerkin (R-EFG)

2.2.1. R-EFG methodology
The EFG method is applied to condition the prior probability

field of the facies to facies observations and is presented for a bi-
dimensional case with three facies types. The extension to a case
with more than three facies types is straightforward. This study
consider a reservoir model in which the geology has three facies
types, denoted channel belts, crevasse splays, and floodplain, of
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which prior probability fields are presented in Fig. 2. The prior
geological information about the facies geometry and topology
suggests that the channel belts have features with a horizontal
orientation and the crevasse splays are small formations situated
mainly on the edges of the channel belts.

The floodplain is the geological medium where the other two
facies types spatially propagate. We consider an experiment where
the reservoir domain is a square with a defined discretization of
100 cells in Ox and Oy direction. In the EGF methodology, a single
piece of information is used for function approximation, the
measured values of the function at some locations. In our case, this
corresponds to the facies observations at the well locations. To give
a numerical meaning to this measurement (a categorical type), we
use its probabilistic representation, providing a value of 1 if the
facies type is observed and 0 if the facies type is not observed,
Fig. 3).

Consequently, each sampled location provides three probabili-
ties, one of 1 and two of 0 (three is the number of facies types that
occurs in the reservoir). However, as presented, the EFG method
does not incorporate the prior probability fields of the facies. To do
this, the cost function from Eq. (2) is modified by adding a Tikhonov
regularization term (Eq. (4)).

JðaðuÞÞ¼
XN
i¼1

Wðku� uikÞðfmðuiÞ � viÞ2 þ lðfmðuÞ � pðuÞÞ2: (4)

In Eq. (4), pðuÞ represents the prior probability of the facies type in
cell u, and the regularization term ðfmðuÞ � pðuÞÞ2 accounts for the
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prior probability field of the facies type. The regularized parameter
l will be used to calibrate the importance of the prior information
in the conditioning process.

Let X ¼ XðuÞ ¼ �1 x y x2 xy y2 … ym
�T be the vector

with homogenous forms in the coordinates x and y of the location u,

Xi ¼ XðuiÞ; aðuÞ ¼
�
aij
�T
1�iþj�m the vector of coefficients, the weights

wi ¼ Wðku� uikÞ and the observations obsðuiÞ ¼ vi: Then,
fmðuÞ ¼ XTaðuÞ and the cost function becomes,

JðaðuÞ Þ ¼
XN
i¼1

wi

�
XT
i aðuÞ � obsðuiÞ

�2 þ l
�
XTaðuÞ � pðuÞ

�2
:

(5)

The cost function from Eq. (5) is quadratic in parameters, convex
and has an unique global minimum that is obtained by setting its
gradient to zero VJðaðuÞÞ ¼ 0. Then, the optimal values of the pa-
rameters aðuÞ are

a*ðuÞ ¼
 XN

i¼1

wiX
T
i Xi þ XTX

!�1 XN
i¼1

wiobsðuiÞXi þ lpðuÞX
!
:

(6)

The inverse of the matrix from Eq. (6) is the pseudo-inverse.
Finally, the updated value of the probability of facies at location u is,

pupðuÞ ¼ XTa*ðuÞ: (7)
sse
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There are two types of unsampled locations in the reservoir
domain, the grid cells that have at least one positive weight and the
grid cell for which all the weights are zero. For the second type, the

cost function from Eq. (5) becomes JðaðuÞ Þ ¼ l
�
XTaðuÞ � pðuÞ

�2
of

which global minimum is 0, obtained for all the parameters that
satisfy XTaðuÞ� pðuÞ ¼ 0. This means that the updated value of the
probability is XTaðuÞ ¼ pðuÞ and is equal to the initial value.
Consequently, at the locations where the facies observations have
no influence, the prior probabilities do not change. The influence of
the facies observations is given by the weight function W by the
mean of the radius r of its support. For the implementation, we
have used the idea from the finite element theory (Marzavan and
Nastasescu, 2022), considering the grid cell as a finite element.
Then, for all cells with facies observation, we assign in each node
(vertice) of the cell the probability value found in the cell (Fig. 4(a)).
This trickmultiplies the number of data four times. Consequently, if
the discretization of the reservoir domain is 100� 100, the EFG
method applies for the discretization of 101� 101. In this way, the
EFG method yields a conditioned probability field for a 101� 101
discretization. Then, the conditioned probability fields of each
facies type are calculated at the cell level by averaging the values in
the nodes of the cells (Fig. 4(b)). In all the experiments, the poly-
nomial function used for approximation is of degree m ¼ 1 in co-
ordinates, f1ðuÞ ¼ a1 þ a2xþ a3y, where u ¼ ðx; yÞ. Consequently,
X ¼ ½1 x y �T and aðuÞ ¼ ½ a1 a2 a3 �T.

2.2.2. Results with R-EFG method
Let us apply the EFG method to the reservoir model presented

above. The methodology is separately implemented for channel
belt, crevasse splay, and floodplain. Knowing that the channel belt
has features with a long spatial distribution from east to west but
wider from north to south, we choose to apply the weight function
setting a distance that accounts for this type of spatial correlation
(Eq. (8)):

Wðku� uikÞ ¼ WðriÞ

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
rð1Þi
longr

!2

þ
 

rð2Þi
shortr

!2
vuuut

rð1Þi ¼ ðx� xiÞcos aþ ðy� yiÞsin a

rð2Þi ¼ �ðx� xiÞsin aþ ðy� yiÞcos a

(8)

In these equations, the angle a is the angle that gives the facies
orientation, and longr and shortr are the radiuses in the principal
and secondary directions, respectively. For the floodplain, we
choose the same setup as the channel belt, whereas for the crevasse
splays, the distance is euclidian (isotropic case). Fig. 5 shows the
probability field of channel belt, crevasse, and floodplain obtained
conditioning independently of the prior probability fields to facies
observations. The parameters used are as follows, for channel belt
and floodplain longr ¼ 21 cells, shortr ¼ 7 cells, a ¼ 90� and for
crevasse longr ¼ shortr ¼ 5 cells, a ¼ 0�.

From the figure, it can be seen that in each cell the values are
between 0 and 1, but in some cells, the sum of all probability values
is not 1 (picture from the right side of Fig. 5). Consequently, the
fundamental condition of the probability theory does not fulfil.

2.3. Regularized element free Galerkin with gradient projection
method

To solve this issue, we create a new cost function that
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incorporates the information from all the probability fields but
under constraints. The new constrained optimization problem is
defined as follows:

min J
�
a1ðuÞ; a2ðuÞ; a3ðuÞ

�
¼
XN
i¼1

w1
i

�
XT
i a

1ðuÞ � obs1ðuiÞ
�2

þl1

�
XTa1ðuÞ � p1ðuÞ

�2 þXN
i¼1

w2
i

�
XT
i a

2ðuÞ � obs2ðuiÞ
�2

þ l2

�
XTa2ðuÞ � p2ðuÞ

�2 þXN
i¼1

w3
i

�
XT
i a

3ðuÞ � obs3ðuiÞ
�2

þ l3

�
XTa3ðuÞ � p3ðuÞ

�2

subject to

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

XT
ua

1ðuÞ þ XT
ua

2ðuÞ þ XT
ua

3ðuÞ ¼ 1

0 � XT
ua

1ðuÞ � 1

0 � XT
ua

2ðuÞ � 1

0 � XT
ua

3ðuÞ � 1

(9)

In this equation, variables that are estimated in the minimization
problem are ai ¼ ðaijÞj¼1;2;3; i ¼ 1;2;3: The parameters l1; l2; l3

from Eq. (9) are used for calibrating the influence of the prior
probability fields in the conditioning process, so considering that all
prior probability fields must have the same impact, the parameter
values will be equal l1 ¼ l2 ¼ l3. Eq. (9) presents a minimization
problem under equality-inequality constraints, but it can be
transformed into a minimization problem under inequality con-
straints only by substituting one of the variables as a function of all
the others.

From the equality constrain XT
ua

1ðuÞ þ XT
ua

2ðuÞ þ XT
ua

3ðuÞ ¼ 1
we have a11ðuÞ ¼ 1� a12ðuÞx� a13ðuÞy� XT

ua
2ðuÞ � XT

ua
3ðuÞ and a

new cost function is defined as follows:

J1
�
a12; a

1
3; a

2
1; a

2
2; a

2
3; a

3
1; a

3
2; a

3
3

�
¼ J
�
1� a12x� a13y� XTa2

� XTa3; a12; a
1
3; a

2
1; a

2
2; a

2
3; a

3
1; a

3
2; a

3
3

�
(in this equation the current location u ¼ ðx; yÞ is no longer speci-
fied). The same substitution modifies all the inequality constraints,
and a new minimization problem is defined as follows:

min J1
�
a12; a

1
3; a

2
1; a

2
2; a

2
3; a

3
1; a

3
2; a

3
3

�
subject to8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

a21 þ a22xþ a23yþ a31 þ a32xþ a33y � 1

�a21 � a22x� a23y� a31 � a32x� a33y � 0

a21 þ a22xþ a23y � 1

�a21 � a22x� a23y � 0

a31 þ a32xþ a33y � 1

�a31 � a32x� a33y � 0

(10)

The optimization problem from Eq. (10) is solved with the
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Fig. 4. Discretization in EFG implementation (a) and discretization after EFG update (b).
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gradient projection method (GPM, Nocedal and Wright, 2006). The
gradient projection method is an iterative method with good re-
sults in quadratic optimization under equality and inequality con-
straints. The method uses the steepest gradient descent but under
the condition that, at each iteration, the point remains in the ad-
missible space. To fulfill this condition, the gradient suffers a pro-
jection. The problem described in Eq. (10) is rewritten in the form
(Eq. (11)) that allows for the implementation of the gradient pro-
jection method.

min J1ðaÞ
subject to A$a � B

(11)

where a ¼
�
aji
�T

, is the variable vector of dimension 8, A is the 6� 8

matrix from the system of constraints (Eq. (10)) and B ¼
½1 0 1 0 1 0 �T.

A solution consists of a vector

a ¼
h
a12 a13 a21 a22 a23 a31 a32 a33

iT
for which exist the

Lagrange multipliers m ¼ ½ m1 m2 m3 m4 m5 m6 �T that fulfill
the Karush-Kuhn-Tucker (KKT, Nocedal and Wright, 2006)
conditions:

8>>>>>><
>>>>>>:

VðJ1ðaÞ þ mðA$a� BÞ Þ ¼ 0
A$a� B � 0
m � 0
for each i21;6 with Ai$a� Bi|fflfflfflfflfflffl{zfflfflfflfflfflffl}

restriction i

¼ 0; then mi >0
(12)

The implementation of the method for our problem consists of
Floodplain

20 40 60 80 100

20

40

60

80

100

Crevasse

20 40 60 80 100

20

40

60

80

100 1

0 0.5 1.0 0 0.5 1.0

Fig. 5. Conditioned probability fields o

1688
two steps, the setup of the starting point and the iterative process
(the stopping criterion). For each unsampled location, the initial
point could be the one for which all the variables involved in the
cost function from Eq. (11) are zero. This corresponds to choosing
the probabilities (1,0,0). However, this is not a good choice because
the iterative process would be too long. Instead, the primary cost
function from Eq. (9) is minimized, and if the solution does not
meet the constraints, the variables are projected in the admissible
space ðA $a� B� 0Þ. By setting the gradient equal to 0 ði:e:VJ
ða1; a2; a3Þ¼ 0Þ we obtain the solution,

aj;*ðuÞ ¼
 XN

i¼1

wj
iX

T
i Xi þ XTX

!�1 XN
i¼1

wj
iobsðuiÞXi þ lpjðuÞX

!
;

where j2f1;2;3g represents the floodplain, crevasse and channel
belt, respectively. In the above equation, the weights are set based
on the following rule. If at a location u, is observed a facies type, all
the weights w1

i ¼ w2
i ¼ w3

i from Eq. (9) are equal and calculated
with the weight function having the characteristics given by the
facies type observed at the location. This means that, at that loca-
tion, the observed facies gives the weights for the EFG procedure.
The updated probabilities are calculated as pupj ¼ XTaj;*;j2f1;2;3g.
If these values fulfill the restrictions of Eq. (10) then they are the
updated probabilities. If not, we project them in the admissible
space (i.e they must belong to [0,1] interval and sum up to 1) and

calculate the variables aji; i; j2f1;2;3g that are the initial point in

the GPM process. If pup ¼ aup1 þ aup2 xþ aup3 y<0, then we define

a1 ¼ aup1 � pup which makes the new probability 0. If pup ¼ aup1 þ
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aup2 xþ aup3 y>1, then we define a1 ¼ aup1
pup; a2 ¼ aup2

pup; a3 ¼ aup3
pup which

makes the new probability 1. If the sum of all probabilities is not 1,
the probabilities are normalized by dividing them by the sum. The
above procedure gives the initial guess (starting point) of the iter-
ative GPM process. The i-iteration step of the GPM is

ai ¼ ai�1 þ ai�1$diri�1 (13)

where diri�1 is the direction that can be either � VJ1ðai�1Þ, as in
steepest gradient descent, or the projection of the�VJ1ðai�1Þ on the
space defined only by the tight constraints (the constraints fulfilled
with equality) and ai�1 is the learning rate. The tight and loose
constraints are defined as follows:

�
Tight constraints Tc ¼ fi21;6;Ai$a� Bi ¼ 0g
Loose constraints Lc ¼ fi21;6;Ai$a� Bi <0g : (14)

Then,

�
if Tc ¼ ∅; diri�1 ¼ �VJ1ðai�1Þ
if Tcs∅;diri�1 ¼ �P$VJ1ðai�1Þ; (15)

where the projection matrix is P ¼ I8 � AT
Tc$
�
ATc$AT

Tc

��1
$ATc and

ATc is the sub-matrix of A constructed with only the coefficients of
the tight constraints. The learning rate is calculated in two steps.
First, we calculate the learning rate as it comes from the steepest
gradient method,

a
ð1Þ
i�1 ¼ argmin

t�0
J1ðai�1 þ t $ diri�1Þ

and second we calculate the learning rate that keeps the point in-
side of the loose constraints domain,

a
ð2Þ
i�1 ¼min

j2Lc

(
Aj$ai�1 � Bj
ALc j$diri�1

					� Aj$ai�1 � Bj
ALc j$diri�1

> 0

)

where ALc is the submatrix of A, constructed with only loose con-
straints coefficients, and ALc j is the j row of the matrix. Finally,

ai�1 ¼min
n
a
ð1Þ
i�1;a

ð2Þ
i�1

o
: (16)

The Lagrange multipliers, necessary for checking the KKT con-
ditions are calculated based on the following equation, but only for
the tight constraints,

mi�1 ¼
�
ATc$A

T
Tc

��1
$ATc$diri�1: (17)

The algorithm of the gradient projection method for condi-
tioning the prior probability field of facies to facies observations is
presented in the algorithm 1 and applies for the unsampled cell u,
of cartesian coordinate u ¼ ðx; yÞ where at least one of the con-
straints of Eq. (10) do not fulfill.
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The method was presented for the case of three facies types.
However, it can be generalized for any number k of facies types. In
this case the constrained optimization problem from Eq. (9)
becomes

min J
�
a1ðuÞ; :::; akðuÞ

�
¼
Xk
j¼1

 XN
i¼1

wj
i

�
XT
i a

jðuÞ � obsjðuiÞ
�2

þlj

�
XTajðuÞ � pjðuÞ

�2!

subject to

8>><
>>:
Xk
j¼1

XT
ua

jðuÞ ¼ 1

0 � XT
ua

jðuÞ � 1; j2f1; :::; kg
(18)

All the steps necessary to solve the problem from Eq. (18) are
similarly with the ones presented in algorithm 1.

2.3.1. Results with the R-EFG implemented with GPM
In the experiments, the tolerance for the euclidian norm of the

gradient was set at 10�5.
Fig. 6 presents the conditioned probability field of the channel

belt, crevasse, and floodplain (first three figures from left to right)
obtained with the optimization procedure based on the gradient
projection method and regularized element-free Galerkin. The
methodology was implemented on a cell-by-cell basis, but the GPM
procedure was necessary for a small number of cells. This happens
because, for many locations (with facies observations), the weights
are 0, and consequently, the prior probability of that facies does not
modify. In addition, for other cells, the constraints were fulfilled by
the solution obtained with the unconstrained optimization pro-
cedure. The cells for which the GPM iterative process applies are
those where more than one location with facies observation has
positive weights. However, this phenomenon is controlled by the
values of longr and shortr from the weight function.

From Fig. 6, we can see that all the values of the updated fields
are between 0 and 1, and in each cell, the probability fields sum up
to 1. The parameters used in the conditioning process are the same
as in the initial experiment (i.e. for channel belt and floodplain
longr ¼ 21 cells, shortr ¼ 7 cells, a ¼ 90o and for crevasse
longr ¼ shortr ¼ 5 cells, a ¼ 0o, while the regularization co-
efficients l1 ¼ l2 ¼ l3 ¼ 0:01. The value of the regularized
parameter l impacts the influence of the prior probability fields in
the conditioning process. The higher value of the parameter gives
higher importance to the prior probability fields of facies and less
impact on the facies observations. This is seen in Fig. 7 where are
presented the conditioning results for values of
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l ¼ 1;0:1;0:01;0:001;0:0001 (from top to bottom). Consequently,
the setting of this parameter must be done based on the influence
we want to give to the facies observations versus prior probability
fields. The methodology leaves to the practitioner the freedom to
choose their own parameter with which control the influence of
the data. If they want to give a higher importance to the prior
probability fields they need to increase the value of parameter l and
viceversa. The method applies even for cases where the prior
probability fields of facies are not available but are known global
facies proportions. Then we consider the prior probability fields of
each facies as the uniform fields with the value in each cell equal to
the global proportion. This is done in the history matching section.

3. Facies simulation with the adaptive pluri-Gaussian
simulation model

The reservoir geology consists of three facies types denoted
channel belt, crevasse splay, and floodplain. The prior geological
information about the facies geometry and topology suggests that
the channel belts have features with a horizontal orientation and
the crevasse splays are small formations situated mainly on the
edges of the channel belts. The floodplain is the geological medium
where the other two facies types spatially propagate. The in-
gredients of the APS methodology are the Gaussian fields, the
simulation map layout, and the prior probability fields of facies. In
the pluri-Gaussian simulation framework, we model the geo-
statistical properties of the Gaussian fields as follows, the first
Gaussian field denoted Y1, anisotropic with a long correlation range
of 70 grid cells, short correlation range of 10 grid cells and principal
direction horizontal. This Gaussian field models the spatial distri-
bution of the channel belt. The second Gaussian field, denoted by
Y2, is related to the crevasse splays and is chosen isotropic with the
correlation range of 10 grid cells. Both Gaussian fields have
Gaussian variogram structure and marginally are standard normal.

The construction of the simulation map layout takes into ac-
count the topological information of the facies distribution (i.e. the
crevasse splays are small formations situated mainly on the edges
of the channel belts). Fig. 8 shows the layout of the simulation map
of the APS methodology. The simulation (truncation) map consists
of a decomposition of the ½0;1� � ½0;1� square in three parts, each
assigned to a facies type with the area equal to the facies
probability.

In this experiment, the prior probability fields of facies are
considered uniform fields in each grid cell with the values
respectively equal to the expected facies proportions. The expected
facies proportions are as follows, 0:43 for the channel belt and
floodplain and 0:14 for crevasse splays. Applying the R-EFGmethod
with longr ¼ 21 cells, shortr ¼ 7 cells, a ¼ 90o for channel belt and
floodplain, and longr ¼ shortr ¼ 5 cells, a ¼ 0o for crevasse and
with the regularization coefficients l1 ¼ l2 ¼ l3 ¼ 0:01, we obtain
1690
the conditioned facies probability fields (Fig. 9).
We denote these probability fields by p1 for channel belt, p2 for

floodplain, and p3 for crevasse splays. The facies simulation in the
APS methodology consists of taking the following steps as pre-
sented in Sebacher et al. (2017),

1. Given the prior probability fields p1, p2 and p3 and information
of facies connections, create the layout of the simulation map
(Fig. 8).

2. Generate unconditioned samples from the (stationary) Gaussian
random fields, Y1 and Y2.

3. Transform the Gaussian random fields to uniform random fields,
Y1 and Y2, using the integral transform. For each j from 1 to

10,000, calculate aj1 ¼ F1ðYj
1Þ and aj2 ¼ F2ðYj

2Þwhere F1 and F2

are the marginal Gaussian cumulative distribution functions of
Y1 and Y2.

4. For each j from 1 to 10,000, built the simulation map of the grid
cell j from the layout (Fig. 8) and set the facies type in grid cell j,

to Facies type k if the point of coordinate aj ¼ ½aj1;a
j
2�2 Facies

type k area.

The APS methodology ensures the correct conditioning of the
simulated facies fields to facies observations (Sebacher et al., 2017).
The initial ensemble of facies fields is created by the simulation of
ne ¼ 120 pairs of unconditioned Gaussian fields with the previ-
ously defined geostatistical properties. For all the experiments, the
Gaussian fields were generated with the sequential Gaussian
simulation method implemented in SGeMS (the Stanford Geo-
statistical Software, Remy, 2005). The first three pairs of Gaussian
fields and their facies simulations are presented in Fig.10 where the
first row has the first Gaussian field, the second row has the second
Gaussian field, and the third row has the facies field simulations
with the APS method.

The second main result of the APS method is that if the number
of Gaussian field samples goes to infinity, the probability fields of
facies calculated from the simulated ensemble of facies fields go to
the prior facies probability fields (Sebacher et al., 2017). However,
our simulation has only 120 members, but even so, the probability
fields of facies calculated from the simulated ensemble, presented
in Fig. 11, resemble the prior facies probability fields (Fig. 9).
4. History matching of facies models

The history matching method used for the facies estimation is
the ensemble smoother with multiple data assimilation (ES-MDA,
Emerick and Reynolds, 2013). This method has been successfully
applied for channelized reservoirs simulated with multi-point
geostatistical simulation methods (Ma and Jafarpour, 2018;
Canchumuni et al., 2019; Sebacher and Toma, 2022) and gave good
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results when applied with APS for a real field case (Hanea et al.,
2016). The history matching aims the facies estimation and its
uncertainty quantification, data match and prediction capabilities
of the updated facies models.
4.1. Reservoir model

The reservoir domain is the one presented in Section 2, a square
discretized in a number of 10,000 grid cells, each having dimension
30� 30� 20 ft. The reservoir geology is of the type previously
presented. We design the reservoir model as a water-flooding black
oil model, with four injection wells and nine production wells
(Fig. 12). The reservoir is filled initially with oil at a constant uni-
form saturation of 0.8 (the connatewater saturation is 0.2) andwith
a uniform pressure of 3000 psi in every grid cell. The producers
work under constant bottom hole pressure (BHP) with a value of
3000 psi, and the injectors operate at 3500 STB/D constrained by a
maximum BHP of 100,000 psi. The measurements were gathered
through forward simulation of a synthetic model presented as the
“reference field”. For the construction of the reference model
(Fig.12), a facies model was randomly simulatedwith APS having as
the input the probability fields obtainedwith the EFGmethodology.
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The simulated facies field was manually adjusted to the shape
presented in Fig. 12, where in green is the channel belt, in blue is
the floodplain and in red is the crevasse.

The measurement errors of the production data (water rates
(WR) and oil rates (OR) at the producers and bottom hole pressures
(BHP) at the injectors) are considered Gaussian with 0 mean and
standard deviations of 3% from actual measurements. We use these
values for generating noisy observations from the reference model.
In addition, the Gaussian distribution is used to perturb the ob-
servations of production data in the analysis step of the ES-MDA
process. Water injection starts from the first day and continues
thereafter for 351 days of production. We assimilate data at 60-day
intervals resulting in a total of 6 assimilation steps. The perme-
ability values are set at 300 mD for the channel belt, 30 mD for the
crevasse, and 3 mD for the floodplain. The porosity is 0.3 for the
channel belt, 0.2 for the crevasse, and 0.1 for the floodplain. During
the HM process, the permeability and porosity are kept constant,
although they could be considered uncertainwithin each facies and
estimated together with facies positions (Hanea et al., 2015a).
4.2. Ensemble smoother with multiple data assimilation (ES-MDA)

In the ensemble smoother with multiple data assimilation (ES-
MDA) the observations are iteratively assimilated multiple times,
with a number Na of assimilation cycles (or iterations) a priorly
defined. To preserve the mathematical consistency of the method,
the error covariance matrix of the observations ðCDÞ multiplies, at
iteration l21;Na with a scalar (named inflating factor denoted by

al) so that
PNa

l¼1
1
al
¼ 1: The last condition ensures that, in the case of

a linear (dynamical) model and a Gaussian prior, the updated states
are correctly sampling from the Gaussian distribution pðXjobsÞ.

We denote by ml
i; i21;ne the model parameters, at iteration l2

1;Na and by G, the function that projects the parameter values to
simulated observations (i.e., Gðml

iÞ is the predicted measurements
associated to member i). Consequently, the state vector X for the i
ensemble member, in iteration l defines as

Xl
i ¼


 �
ml

i

�T
G
�
ml

i

�T �T
; i21;ne; (19)

where ne the number of ensemble members and T is the transpose
operator. Based on this augmentation, we denote by H ¼ ½0 I � the
binary matrix that linearly projects Xl

i on the observation space

ðHXi
l ¼ Gðml

iÞÞ. At each iteration l21;Na, after the forecast, the
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parameter values remain unchanged (i.e., ml;f
i ¼ ml

i), but, the

forecast yields new simulated measurements ðGðml
iÞÞ. The param-

eter values are modified in the updated step when all the obser-
vations are assimilated. The Kalman-based equation of the update
step is

Xl;a
i ¼ Xl;f

i þ CXl;f HT
�
HCXl;f HT þ alCD

��1�
dlobs;i � HXl;f

i

�
; (20)

where Xl;a
i is the updated (analyzed) state vector, CXl;f is the

covariance matrix of the forecasted state vector calculated from the
ensemble and dlobs;i ¼ dobs þ ε

l
i are the perturbed observations for
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the ensemble member i at the l-iteration (dobs are the available
observations and ε

l
i is a random sampling from a Gaussian distri-

bution with 0 mean and covariance matrix alCD). From Eq. (20) of
interest are the updated parameters and, retaining the model pa-
rameters, it is written as

ml;a
i ¼ ml

i þ Cml;dl
obs
HT
�
Cdl

obs
þ alCD

��1�
dobs þ ε

l
i � G

�
ml

i

��
:

(21)

In Eq. (21), Cml ;dl
obs

is the cross-covariance matrix between the prior

model parameters and simulated observations (at iteration l) and
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Cdl
obs

is the covariance matrix of the simulated observations, at

iteration l. Both matrices are calculated from the current ensemble.
4.3. ES-MDA implementation

The ES-MDA method is used with four data assimilations (iter-
ations) with decreasing inflation factors of ð9 : 333 : 7 : 4 : 2Þwith a
number of ensembles of ne ¼ 120members. The state vector for the
ensemble member i at the iteration l is defined as

Xl
i ¼

h
YT
1 YT

1 BHPT WRT ORT facies propT
il;T
i
: (22)

Themodel parameters, in the pluri-Gaussian simulationmodels,
are the sampled Gaussian fields Y1 and Y2. The observations used in
the history matching process are the bottom hole pressures at the
injectors, the water and oil rates at the producers and global facies
proportions (Eq. (23)). The facies proportions are considered ob-
servations, based on our experience with facies models with more
than three types. We have obtained poorer result, in terms of
estimation and uncertainty quantification, not considering facies
proportion as the observations, fact also proved in Sebacher et al.
(2017). The value facies_prop, for ensemble member i and facies
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type k are calculated as,

facies propki ¼
1
ng

Xng

j¼1

In : dk;iðjÞ; (23)

where the sum is over all ng ¼ 10000 grid cells and the indicator
function for grid cell j is given by,

In: dk;iðjÞ¼

8><
>:

1 if cell j2facies type k for ensemble member i

0 if cell j;facies type k for ensemble member i

The measured facies proportions are the expected facies pro-
portions, (floodplain: channelbelt: crevasse) ¼ (0.43 : 0.43 : 0.14)
with an error following a Gaussian distribution with 0 mean and
standard deviation of 3% for each facies type. The state vector (Eq.
(22)) does not contain the petrophysical properties (permeability,
porosity, etc.) of the facies type because these values are kept
constant throughout the assimilation period, even though those
could be considered uncertain and estimated as in Hanea et al.
(2015a). We consider that the uncertainty in the system is due to
the poor knowledge of the facies distribution in the reservoir
domain.

4.4. History matching results

Fig. 13 shows, at the top, the real position in the reservoir
domain of the floodplain, channel belt and crevasse. The pictures
are extracted from the reference field (Fig. 12). At the bottom of the
same figure are presented the probability fields of the facies
calculated from the updated ensemble. By a visual comparison it
can be seen a good estimation of the facies position in the reservoir
domain, especially for channel belt and floodplain. In addition, from
the updated probability fields one can observe that the updated
ensemble of facies fields has remained with a good variability. The
facies proportion of the reference field are, (floodplain: channelbelt:
crevasse) ¼ (0.464: 0.405: 0.131) and the average of facies pro-
portions calculated from the updated ensemble is (floodplain:
channelbelt: crevasse) ¼ (0.4519: 0.4106: 0.1375) close to the refer-
ence value. The facies estimation in the reservoir domain can also
be evaluated by looking at the individual facies fields in the updated
ensemble.

Fig. 14 presents the first three facies fields of the updated
ensemble. From the pictures, it can be seen that the main features
of the reference field are present in the updated facies fields.
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Fig. 13. True position of the facies types (top) and probability fields of facies calculated from the updated ensemble (bottom).
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Fig. 15 shows the water rates profiles in the prior ensemble.
From the figure, it can be seen that the initial ensemble covers the
water rate profiles of the reference field with a high uncertainty.

Fig. 16 shows the water rate profiles in the updated ensemble.
From the figure, it can be seen a good reduction in variability, with
the updated models covering the water rates profile of the refer-
ence field. As an observation, the first two producers do not have
water cut during the assimilation period, and this behavior is
comprised by the updated facies models.

Fig. 17 shows the water rates prediction for 591 days, the first
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Fig. 14. First three members
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351 days represent the data assimilation period, and the next 240 is
the prediction period. The blue vertical line delimitates those two
periods. From the figure, one can see good prediction profiles, even
for the first producer, when all the models do not have water cut
yet.
5. Conclusions and discussions

This paper presents a novel methodology to consistently con-
dition the prior probability fields of facies to facies observations.
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in updated ensemble.
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Fig. 15. WR profiles in initial APS ensemble.
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Fig. 16. WR profiles in updated APS ensemble.
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Fig. 17. WR prediction profiles in updated APS ensemble.
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These two pieces of information come from different sources. The
initial probability fields of facies come after a seismic inversion (soft
data) and are usually not conditioned to facies observations. The
facies observations are the result after examination of the cores
extracted at the well locations (hard data). The method presented
in this paper is developed under an element-free Galerkin frame-
work with a Tihonov regularization that accounts for the prior
probability fields. To generate probability fields that respect the
conditions of the probability theory, is used an optimization tech-
nique under equality and inequality constraints involving the
gradient projection method. The results are the conditioned prob-
ability field for each facies. Themethodology leaves the practitioner
the freedom to weights the importance of the two sources of
Table 1
Term abbreviations used in this work.

Full Name Abbreviation

Element-free Galerkin EFG
Regularized element-free Galerkin R-EFG
Adaptive pluri-Gaussian simulation APS
Ensemble smoother with multiple data assimilation ES-MDA
Truncated pluri-Gaussian simulation TPS
History matching HM
Fast model update FMU
Multi-point geostatistical simulation MPS
Sequential indicator simulation SISIM
Object-based simulation OBS
Finite element method FEM
Gradient projection method GPM
Bottom hole pressure BHP
Water rates WR
Oil rates OR
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information (soft and hard data) based on the parameters of the
regularization technique. The conditioned probability fields of
facies are input in the adaptive pluri-Gaussian simulation (APS).
The conditioning to facies observations is crucial because during
the history matching process is not necessary extraconditioning to
facies observation. In the paper, the ensemble-smoother with
multiple data assimilation (ES-MDA) was chosen as the history-
matching algorithm. It was coupled with the APS for the history
matching of facies models. The history-matching results show a
good estimation and uncertainty quantification of facies distribu-
tion, a good data match, and very well prediction capabilities. The
method is presented for a bi-dimensional case, representing a layer
of a three-dimensional reservoir. The extension to a three-
dimensional reservoir must take into account vertical correlations
and was not tackled in this study. In addition, the behavior of
different weight functions, depending on the specificity of the
depositional environments, will be also the subject of a future
investigation.
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