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a b s t r a c t

Simultaneous source technology, which reduces seismic survey time and improves the quality of seismic
data by firing more than one source with a narrow time interval, is compromised by the massive blended
interference. Therefore, deblending algorithms have been developed to separate this interference.
Recently, deep learning (DL) has been proved its great potential in suppressing the interference. The most
popular DL method employs neural network as a filter to attenuate the blended noise in an iterative
estimation and subtraction framework (IESF). However, there are still amplitude distortion and blended
noise residual problems, especially when dealing with weak signal submerged in strong interference. To
address these problems, we propose a hybrid WUDT-NAFnet, which contains two sub-networks. The first
network is a wavelet based U-shape deblending transformer network (WUDTnet), incorporated into IESF
as a robust regularization term to iteratively separate the blended interference. The second network is a
nonlinear activate free network (NAFnet) designed to recover the event amplitude and further suppress
the weak noise residual in IESF. With the hybrid network, the blended noise can be separated pur-
posefully and accurately. Examples using synthetic and field seismic data demonstrate that the WUDT-
NAFnet outperforms traditional curvelet transform (CT) based method and the deblending transformer
(DT) model in terms of deblending. Additionally, for field applications, the data augmentation method of
bicubic interpolation is applied to mitigate the feature difference between synthetic and field data.
Consequently, the trained network exhibits strong signal preservation ability in numerical field example
without requiring additional training.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Traditional seismic acquisition requires a large time interval to
prevent record overlap, while simultaneous source technology
firing two or more sources to obtain densely sampled data, can
greatly enhance the efficiency of seismic acquisition. Nevertheless,
the benefit of simultaneous source acquisition is hindered by the
intense blended interference (van Borselen et al., 2012; Mahdad
et al., 2011). Direct imaging of simultaneous source data can be
realized by the least-squares reverse time migration (LSRTM) (Xue
et al., 2016; Li et al., 2017). However, achieving accurate direct
imaging becomes challengingwithout precise velocity information.
Zu).
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To give full play to the economic advantage of simultaneous source
technology, an effective deblending algorithm is still urgently
needed.

Simultaneous source technology usually adopts dithering
scheme to generate coherency difference in common receiver
(CRG) or offset gather (COG).With the dithering time, simultaneous
source data in CRG can be sorted into the pseudo-deblended record
where the component of the reference source is coherent while
that of the other sources are incoherent. Based on this character-
istic, many deblending algorithms are developed, which can be
summarized into two categories roughly. The first category is
similar to denoising, directly attenuating the crosstalk noise with
high efficiency. Wapenaar et al. (2012) implemented a direct matrix
inversion method by inserting a filter to the least-squares inversion
algorithm. Sun et al. (2020) used numerically blended field data to
train a convolutional neural network (CNN), which was viewed as a
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filter to denoise the incoherent interference. Nakayama and
Blacqui�ere (2021) proposed a U-net network based on residual
block to implement deblending, trace reconstruction, and low-
frequency extrapolation simultaneously. The second category
views deblending as an iterative estimation problem, which enjoys
high deblending performance. Mahdad et al. (2011) proposed an
iterative estimation and subtraction framework (IESF), and used f �
k filter with thresholding to gradually recover the signal. Since the
incoherent noise and trace missing increase the rank of Hankel
constructed from the monochromatic frequency, Cheng and Sacchi
(2015) introduced an iterative rank reduction method based on
singular spectrum analysis to separate and recover the simulta-
neous source data. Moreover, by formulating the deblending
problem as a regularization problem, the conventional optimiza-
tion methods, e.g., projection onto convex set (POCS) algorithm
(Zhou, 2017), and iterative shrinkage thresholding algorithm (ISTA)
can be introduced to separate the incoherent interference (Qu et al.,
2016). Based on the compressive sensing principle, some re-
searchers introduce the sparse constraint as the regularization term
to the deblending inversion problem. Chen et al. (2014) proposed to
iteratively suppress the blended interference using shaping regu-
larization term in the seislet domain. Gan et al. (2016) introduced
separate blended data in common shot gathers (CSGs) with a novel
iterative seislet-frame thresholding approach. Owning to the fact
that the incoherent interference affects the accuracy of estimated
slope, reducing the sparsity of seislet transform, Zhou et al. (2018)
implemented a seislet transform with the velocity-slope conver-
sion scheme to deal with the blended noise. Since the coherent
signal and incoherent noise have different energy distribution and
values in the Radon domain, Zhang et al. (2015) proposed to solve
deblending in common midpoint domain by using high-resolution
Radon transform. Xue et al. (2017) used a high-order Radon
transform to iteratively suppress the blended interference. Lin and
Sacchi (2020) adopted robust sparse Radon transform with
coherency-pass operator to separate the blended data. Due to the
curvelet coefficient difference between the coherent signal and the
blended interference, Zhang et al. (2021) implemented a non-
equispaced curvelet transform (CT) to suppress the blended inter-
ference in the non-uniformly sampled simultaneous source data.

In recent years, deep learning (DL) has been widely used to
iteratively deal with simultaneous-source data. Based on the
inversion principle, Zu et al. (2020) embedded the trained network
as a regularization term into IESF to optimize the deblending per-
formance. Wang et al. (2021) used a U-shape network to iteratively
separate the blended noise and proposed transfer learning for field
data application. Wang and Hu (2021) manually simulated the
blending common shot gathers (CSGs) as training data, which can
adapt to the given survey. Xu et al. (2022a,b) embedded a DnCNN
network with real spectral normalization into alternating direction
method of multipliers (ADMM) framework and trained the
network using the manually blending field CSGs. For better
adapting IESF, Wang et al. (2022a,b,c) presented a multiresolution
ResU-net and trained it using multi-level blended noise. For
improving the feature extraction ability of transformer model to
the blended data, Zu et al. (2022) proposed a deblending trans-
former (DT) network with horizontal, vertical and local self-
attention mechanism. In order to make the trained network fully
adopt to the given survey, Sun et al. (2022) manually blended the
unblended shot gathers, which were gathered at the end to each
sail line. Xu et al. (2022a,b) proposed to solve the deblending
problem by manually blending the CSGs and using them to train a
convolutional autoencoder, which achieved better deblending
performance than traditional training scheme. To make CNN
applicable to the field data,Wang et al. (2022a,b,c) developed a data
augmentation method, which used shuffled deblending noise as
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the input and the inaccurate labels as the output to train the
network. To improve deblending performance and reconstruction
accuracy, Wang et al. (2022a,b,c) designed a novel workflow, which
firstly trained the designedMultiResUnet usingmulti-level blended
noise in the common receiver domain for iteratively joint
deblending and trace reconstruction, then the training data was
used again to fine tune the trained network for pure missing trace
reconstruction in the common shot domain. Wang et al. (2023)
proposed to train the neural network with the blended data, data
with low amplitude blended noise, and unblended data, which can
improve network performance when iteratively deblending. The
previous descried DL based methods, can suppress the blended
interference by iterative framework to some extent, however, the
problem of amplitude distortion and weak noise leakage still exists.

In this article, we first introduce a wavelet based U-shape
deblending transformer model called WUDTnet. WUDTnet is a
multi-level encoder-decoder transformer designed to efficiently
capture local and global representations of the simultaneous source
data. It employs discrete Haar wavelet transform (DHWT) for
down-sampling and inverse Haar wavelet transform (IHWT) for
up-sampling. To accelerate the convergence, an improved DT block
is introduced, which includes additional fusion layer and normali-
zation layers at different sections. The proposed WUDTnet is
considered as the strong denoiser and embedded in IESF to itera-
tively separate the blended noise. Next, we apply the nonlinear
activation free network (NAFnet) to recover the signal with the
weak incoherent residual from the deblended results of IESF, which
adapts to the amplitude range of seismic data by replacing the
nonlinear activation function with a Simple gate module. Experi-
mental results on one synthetic and two field examples demon-
strate that the presented WUDT-NAFnet achieves superior
deblending performance and higher signal fidelity compared to
both the traditional CT based method and the DT model.
2. Theory

2.1. IESF

Taking a simultaneous source survey with two sources as an
example. In the field, one source is typically designated as the
reference source and does not have delay time. The second source,
on the other hand, fires with a dithering time of G2. Therefore, the
blended common receiver gather (CRG) bble is viewed as the
pseudo-deblended data of the reference source. The blending
process is expressed as

bble ¼b1 þ G2b2 (1)

where bi represents the record of the ith source. Applying G�1
2 to

Eq. (1), we can obtain the pseudo-deblended record of the other
source:

G�1
2 bble ¼G�1

2 b1 þ b2: (2)

Combining Eqs. (1) and (2), the brief equation can be obtained:

B¼ FD (3)

where

B¼
"

bble

G�1
2 bble

#
; F¼

"
I G2

G�1
2 I

#
;D¼

�
b1
b2

�
: (4)

Considering simultaneous source deblending as a denoising

task, the recovered signal bD obtained by using DL method can be
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formulated as

bD¼F ðB;QtrainedÞ (5)

where F ð ,Þ represents the designed neural network,Qtrained is the
trained network parameter. Directly deblending using Eq. (5) is
highly efficient, butmay damages the coherent signal. Therefore, Zu
et al. (2020) embedded the trained network into IESF and
demonstrated the advantage of the iterative scheme, especially in
protecting the weak signal. Combining Eqs. (3) and (5), the IESF can
be expressed as

bDiþ1 ¼F ðB� ðF� IÞbDi;QtrainedÞ (6)

where bDiþ1 denotes the recovered result in the (iþ 1)th iteration. In
this framework, there are two steps to constrain the incoherent
interference. The first step uses the trained network F ð,;QtrainedÞ
to strictly suppress the incoherent interference and preserve the
coherent signal. The second step applies the recovered coherent

signal bDi and blending operator F to estimate the blended noise and
separate it from the incoherent record B. Compared to denoising
task, the IESF scheme provides greater flexibility in separating
blended data. This is because denoising tasks face challenges in
suppressing blended noisewithout causing damage to the coherent
signal. In the IESF scheme, the first step only requires to pass the
coherent signal, allowing for some damage. The second step fo-
cuses on estimating and accurately suppressing the incoherent
interference.
2.2. Hybrid WUDT-NAFnet

In this section, we introduce a WUDTnet architecture, incorpo-
rating an improved DT block, a DHWT down-sampling layer, and an
IHWT up-sampling layer. Subsequently, we embed WUDTnet into
the IESF to gradually recover the coherent signal. To address issues
such as amplitude distortion and weak noise leakage, we employ a
NAFnet for the final data reconstruction (Chen et al., 2022). The
general architecture of our hybrid WUDT-NAFnet is illustrated in
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Fig. 1. The architecture of WUDT-NAFnet. It contains two sub-networks: (a) the de
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Fig. 1.
2.2.1. WUDTnet
The transformer model has demonstrated great potential in

handling image denoising tasks. However, the efficiency of
denoising is compromised by the high computational cost associ-
ated with the self-attention layer. Therefore, Zu et al. (2022) pro-
posed a DT model with feature split based self-attention
mechanism to alleviate this problem and achieve good deblending
performance. The DT model, characterized by its shallow archi-
tecture, performs well when increasing the depth or the hidden
dimension of features. However, this advantage is hindered by the
fact that the cost of memory grows quadratically with the increase
in network depth or width. Although using gradient accumulation
technology or upgrading equipment can address this problem to
some extent, for a better balance between deblending performance
and computational cost, we propose the WUDTnet. The detail ar-
chitecture of the designed network is illustrated in Fig. 1(a). Given a
blended data x2RH�W�1 whose size is H� W , the WUDTnet first
applies an overlap patch embedding layer to obtain shallow hidden
features xo2RH�W�C , where C denotes the number of hidden di-
mensions. Next, these features pass through a multi-level U-shape
architecture. Each level contains multiple improved DT blocks.
Moreover, for efficient features down sampling and up sampling,
we apply DHWT and IHWT, respectively. To flexibly fuse the low-
level features and high-level features, the encoder and decoder
are concatenated via skip connection.
2.2.2. Improved DT block
For computational efficiency, Zu et al. (2022) combined a special

feature split method with self-attention mechanism, which ex-
tracts global representations horizontally, vertically and locally. The
self-attention mechanism can be expressed as follows:

½Q ;K;V� ¼ LinearðztÞ (7)
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W ¼ Softmax

 
QKTffiffiffiffi

D
p

!
(8)

AttenðQ ;K;VÞ¼W V (9)

where Q , K and V denotes the query, key and value sets, respec-
tively. Given an input zt2RN�D in the self-attention layer, ½Q ;K;V�
2RN�3D can be obtained through linear layer, whereN is the length
of the sequence and D is the dimension of the sequence.W2 RN�N

denotes the attention feature map, where Wi;j are based on the
pairwise correlation between the query Q i and key Kj representa-

tions, and 1=
ffiffiffiffi
D

p
is applied to normalize the gradient. Finally, the

attentioned zt 02RN�D can be computed by the matrix product of
attentionmapW and value set V. Furthermore, themulti-head self-
attention (MHSA) can be achieved by dividing Q , K and V into M
groups. Each group of Q , K and V extracts different representations
in parallel. In the improved DT block, the input z2 RH�W�C of
feature split based MHSA module is transformed to zt2 RN�D,
where t2ðh;v;lÞ. For horizontal MHSA, we split the feature into zh2
RN�ð1,W,CÞ, where ð1 ,WÞ denotes the horizontally extracted win-
dow and N ¼ H,W=ð1 ,WÞ. For vertical MHSA, we split the feature
into zv2RN�ðH,1,CÞ, where ðH ,1Þ denotes the vertically extracted
window and N ¼ H,W=ðH ,1Þ. For local MHSA, we split the feature
into zl2ℝN�ðL,L,CÞ, where ðL ,LÞ denotes the locally extracted win-
dow whose size is L and N ¼ H,W=ðL ,LÞ. These special features
split scheme can efficiently balance the computational cost and
deblending performance.

To further explore the advantages of the transformer model and
expedite the network convergence, we develop an improved DT
block. As shown in Fig. 1(a), each improved DT block contains three
successive transformer layers with different self-attention mecha-
nism. Before feeding into feature split based MHSA module, a layer
normalization operation is used to alleviate the vanishing gradients
problem and stable the network training. Moreover, to enhance ef-
ficiency and enable flexible feature fusion, the convolutional feed-
forward network (CFFN) module is applied, which consists of four
parts: a 1� 1 convolution layer with 4C kernels, a 3� 3 depth-wise
convolution layer with 4C kernels, Gaussian error linear unit (GELU)
activation function, and a 1� 1 convolution layer with C kernels.
Besides, we employ a residual connection between the
NormþMHSA layer and Normþ CFFN layer (He et al., 2016). Finally,
a 3� 3 convolution layer with LeakyReLU activation is implemented
to fuse the attention feature after every transformer layer.
2.2.3. DHWT
The DHWT in WUDTnet is closely related with the down sam-

pling operation. Traditional down sampling layer, for instance,
pooling layer, and convolutional down sampling layer, only retains
the part of information in the original image. In contrast, DHWT
considers the characteristics of frequency and location, making the
WUDTnet can correctly recover the detailed textures. Assuming A is
a H �W matrix, where H and W are even. The 2D DHWT can be
realized by:

Е¼ THAT
T
W ¼

�
A H
V D

�
(10)

where Е is the transformed feature, TH denotes the column-wise

DHWT, TTW denotes row-wise DHWT, and A , V , H and D are
approximate matrices, vertical details, horizontal details and di-
agonal details, respectively. Defining ai;j is the element in the ith
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row and the jth column of A, hi;j, bi;j, gi;j and di;j are the element of
A , V , H and D , respectively, the expression is as follows:

hi;j ¼ a2i�1;2j�1 þ a2i�1;2j þ a2i;2j�1 þ a2i;2j
2

bi;j ¼ �a2i�1;2j�1 þ a2i�1;2j � a2i;2j�1 þ a2i;2j
2

gi;j ¼ �a2i�1;2j�1 � a2i�1;2j þ a2i;2j�1 þ a2i;2j
2

di;j ¼ a2i�1;2j�1 � a2i�1;2j � a2i;2j�1 þ a2i;2j
2

: (11)
2.2.4. NAFnet
The NAFnet is utilized for preserving more coherent signal and

suppressing the weak blended residual (Chen et al., 2022). As
shown in Fig. 1(b), NAFnet is a multi-scale U-shape architecture
with convolution down sampling layer and PixelShuffle up sam-
pling layer (Shi et al., 2016). The encoder and decoder of NAFnet are
based on NAFblock, which mainly consists of layer normalization,
convolutional operator, Simple gate module, and simplified chan-
nel attention (SCA) module. The Simple gate can be realized by an
element-wise multiplication:

Simple gateðxo1; xo2Þ¼xo11xo2 (12)

where xo12RH�W�C=2 and xo22RH�W�C=2 are the two different
parts of xo2RH�W�C , and 1 denotes element-wise multiplication.
Furthermore, the SCA module is introduced into NAFblock to cap-
ture the global information and enhance computational efficiency:

SCAðxÞ¼x*poolðxÞ (13)

where pool denotes the adaptive average pooling operation, which
extracts a scale factor of each channel, and * represents the
channel-wise product operation.
3. Experiments

In this section, we assess the effectiveness of the proposed
WUDT-NAFnet using synthetic and field data. Additionally, we
compare the deblending performance by embedding the DT model
and the CT-basedmethod into IESF. The number of iterations in IESF
plays a significant role in suppressing blended interference. For a
fair comparison, we set the number of iterations in IESF for
WUDTnet to 19, DT to 20, and the CT method to 40. Moreover, we
use Eq. (14) to determine the best-recovered result in this range to
ensure reliability, where L2 representsmean-square error. Specially,
to quantitatively and qualitatively analysis the contribution of each
sub-network, we also illustrate the deblended results of WUDTnet,
which is embedded in IESF.

Loss¼ L2ðВ; FbDiÞ (14)

To quantitatively assess the signal recovery capability of
different algorithms, the metrics of the signal-to-noise ratio (SNR)
is applied in all the following experiments:

SNRðdBÞ¼10 log10
kyk2

ky � byk2 (15)

where y represents the ground-truth seismic record and by denotes
the estimated result. A higher SNR, indicates better deblending
performance.
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3.1. Implementation details

3.1.1. Training set
DL is a data-driven method where the richness of training

samples is vital for obtaining effective neural network parameters.
Our training set contains 673 synthetic CRGs and 400 raw field
CRGs. The validation set contains 117 synthetic CRGs and 99 field
CRGs. In addition, for field data application, 63 synthetic CRGs are
resized from 1024� 512 to 1500� 300 by bicubic interpolation
algorithm to simulate the low horizontal resolution feature of field
data, which shortens the characteristic difference between the
synthetic and real acquisition data. Moreover, before feeding the
network, the unblended CRG is manually blendedwith a delay time
of [�0.8 s, 0.8 s], and then cropped into patches, whose size are
64� 64.
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3.1.2. Loss function
As a common denoising task, we optimize theWUDTnet with L2

loss, which is expressed as

L2ðQÞ¼ kF ðX;QÞ � Yk2F ; (16)

where X stands for the input of the network, F ð ,Þ denotes the
adopted network architecture, Q is the corresponding parameters
to be updated, and Y represents the ground-truth.

However, L2 loss may cause the problem that the predicted
events are too continuous. In order to alleviate this matter and
adapt the real seismic events, we apply Charbonnier loss function
with ε ¼ 1e�6 to optimize the NAFnet, which can handle outliers
and improve reconstructing performance:

CharðQÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kF ðX;QÞ � Yk2 þ ε

2
q

: (17)
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3.1.3. Parameters
The WUDTnet employs a three level U-shape encoder-decoder.

From the first level to the third level, the number of attention
heads is [2, 4, 8], and the number of channels is [64, 128, 256]. For
NAFnet, we implement a four level U-shape encoder-decoder, the
number of channels is [32, 64, 128, 256].

The training procedure of theWUDT-NAFnet is shown in Table 1.
We individually optimize the WUDTnet and NAFnet. The WUDTnet
is firstly trained with blended inputs Bd and corresponding labels
Table 1
The implemented training procedure of the proposed method.

Input: Blended seismic data Bd and corresponding labels Dd, delay times Fd,
WUDTnet model with parameters QW, NAFnet model with parameters QN, the

epoch number of WUDTnet Mepoch
W , the epoch number of NAFnet Mepoch

N

1: Initialize parameters QW and QN under uniform distribution

2: for i ¼ 1;2;/;Mepoch
W do

3: Update QW according to Eq. (16) with pairs of Вd and Dd

4: end for 5: for j ¼ 1; 2;/;Mepoch
N do

6: Initialize Lmin ¼ 1:0, k ¼ 1

7: bDð1Þ
d )F ðВd;QWÞ, Lcur)L2ðВd;Fd bDð1Þ

d Þ
8: while Lmin > Lcur do
9: k)kþ 1, Lmin)minðLmin;LcurÞ,
10: bDðkÞ

d )F ðВd � ðFd � IÞbDðk�1Þ
d ;QWÞ, Lcur)L2ðВd;Fd bDðkÞ

d Þ
11: end while

12: bDd
0
)Вd � ðFd � IÞbDðk�1Þ

d

15: Update QN according to Eq. (17) with pairs of bDd
0
and Dd

16: end for 17: Output: Optimized parameters QW and QN
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Dd. Next, we start to update the NAFnet parameters, the blended
inputs Bd are recovered by the trained WUDTnet with IESF. The
iteration of IESF stops when L2 loss reaches its minimum. Finally,

NAFnet will be trained by the output of IESF bDd
0
and corresponding

ground-truth Dd.
The networks used in the experiment are all trained by AdamW

optimizer, where b1 ¼ 0:9, b2 ¼ 0:999, the weight decay rate is set
to 1e�3, and the batch size is 264. The WUDTnet and NAFnet are
separately optimized by L2 and Char loss function for 100 epochs
with the basic learning rate 5e�4 gradually reduced to 2:5e�4 with
the cosine learning rate scheme. For DT model, we optimize it by L2
loss function for 200 epochs with the basic learning rate 5e�4

gradually reduced to 1e�8. The network training is implemented on
a personal workstation with an Intel(R) Xeon(R) Platinum 8180
processor and four Quadro GP100 GPUs. The training of DT,
WUDTnet and NAFnet costs 73.62, 57.98 and 49.66 h, respectively.

In addition, we spend 4.68 h to get the output of IESF bDd
0
using the

trained WUDTnet. Therefore, the total training computation cost of
our proposed algorithm is 112.32 h. The learning and validation
curve of DT, WUDTnet and NAFnet are shown in Fig. 2(a)e(c),
respectively, where the black line represents the learning curve,
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and the red dashed represents the validation curve.
3.2. Synthetic experiment

In this section, we conduct the comparison experiment among
the CT based method, the DT model, the WUDTnet, and the WUDT-
NAFnet on complex synthetic CRG. The complex synthetic CRG
contains 512 traces and each trace has 1024 sampling points with
the time interval of 4 ms. The numerical pseudo-deblended CRG is
obtained by a dither time with a range of [�0.4 s, 0.4 s]. To avoid
verbosity, only the reference source record is illustrated. As shown
in Fig. 3(b), discrete crosstalk interference contaminates the
coherent signal. Fig. 4(a)e(d) display the deblended results of the
CT based method, the DT model, the WUDTnet model, and the
WUDT-NAFnet. We manually remove the blended noise above the
first arrival before applying it to each method due to its impact on
the deblending results of the CT based method. At first glance, the
incoherent interference in Fig. 3(b) can be partially suppressed by
these methods. However, upon observing the deblended errors in
1655
Fig. 4(e)e(h), we find that the traditional CT based method poorly
preserves amplitude at the boundary. The main reason is that the
weak coherent signal has the similar curvelet coefficients as the
strong incoherent interference. For the DT method, the perfor-
mance is better than that of the CT based method but still exhibits
some weak noise residual. Fig. 4(h) shows the deblended error of
the proposed approach, indicating that the error is the minimum
among the three deblended errors, highlighting that our hybrid
method achieves the best deblending performance. Moreover, the
recovered SNRs of the CT based method, the DT model, the
WUDTnet, and the WUDT-NAFnet are 16.62, 20.84, 22.46, and
23.51 dB, respectively. It is evident that the designedWUDT-NAFnet
excels in handling weak noise and minimizing signal damage.

To intuitively view the damage to the frequency-wavenumber
(f � k) components of signal, the f � k spectra of the deblended
errors of Fig. 4(e)e(h) are estimated. The f � k spectra of the
deblended errors of the CT based method, the DT model, the
WUDTnet and the presented method are shown in Fig. 5(a)e(d),
respectively. It can be observed that the WUDT-NAFnet damages
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the least amount of signal when compared with the other three
methods. This example shows the superiority of our method in
retaining useful signal and circumventing amplitude artifacts over
the traditional CT based method and the DT method.
3.3. Field data experiments

To further evaluate the effectiveness of the presented algorithm,
we compare it with the CT based method, the DT model, and the
1656
WUDTnet using two numerical pseudo-deblended field CRG ex-
amples. For each field example, we set the dither time to a range of
[e0.4 s, 0.4 s]. Moreover, it is worth noting that in our experiments,
we didn't employ the strategy of training with additional blended
CSGs (Wang and Hu, 2021) or fine-tuning the network parameter
using pairs of target zone CRGs (Wang et al., 2021). This omission is
intentional to demonstrate the robustness of the proposed WUDT-
NAFnet.

The first field test CRG is collected from an ocean-bottom-cable
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Fig. 9. The 64th CRG of the Gulf of Suez field dataset. (a) Unblended CRG. (b) Pseudo-deblended CRG.
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survey. Fig. 6(a) shows the unblended CRG, and Fig. 6(b) shows the
simulated pseudo-deblended CRG of the reference source. From
Fig. 5(b), it can be observed that the useful signal of the reference
source is contaminated by a large amount of strong crosstalk
interference generated from the second source. Fig. 7 illustrates the
deblended results and corresponding errors of the CT based
method, the DT model, the WUDTnet, and the WUDT-NAFnet, with
recovered SNRs of 12.04, 15.95, 17.06, and 18.55 dB, respectively. In
addition, the 102nd trace of the true amplitude (the red line), the
deblended result by WUDT-NAFnet (the cyan line), the deblended
result by WUDTnet (the blue line), and the deblended result by DT
(the black line) are shown in Fig. 8. It is obvious that the presented
method can restore finer details and more effectively suppress the
strong blended noise when compared to the CT based method and
the DT model. Furthermore, when compared to the presented
WUDTnet, our proposed hybrid method demonstrates superior
signal preservation ability. This field example proves that the pro-
posed algorithm can directly apply to separate the field blended
CRG and has a more satisfactory deblending performance toward
field records than other methods.

Next, we investigate the applicability of the developed approach
in field data via experimenting on an open data acquired from the
area of Gulf of Suez, which contains 128 gathers and each gather
consists of 128 traces with 512 sampling points and the corre-
sponding time interval is 4 ms. To ensure the representativeness of
the experimental example, we randomly blended the 64th raw
CRG. Fig. 9(b) shows the pseudo-deblended field CRG, because the
second source is close to the reference source, the coherent signal is
severely obscured by the massive crosstalk noise. The deblended
results by the CT based method, the DT model, the WUDTnet, and
the proposed approach are shown in Fig. 10(a)e(d), respectively.
The corresponding residuals in Fig. 10(e)e(h) show that the pro-
posed approach preserves the most useful components than the
other three methods. The recovered SNRs of Fig. 10(a)e(d) are 7.23,
13.43, 15.54, and 16.01 dB, respectively. For the traditional CT based
method, the reason for its poor deblending performance is that the
coefficient of the curvelet transform is related to the coherency and
amplitude value. Although the coherency of the blended noise of
the first arrival is poor, its amplitude is large, so the curvelet
1657
coefficient difference between the weak coherent signal and the
strong incoherent interference is small. In contract, the data-driven
based three DL methods can better handle the strong crosstalk
noise in this example. Compared to the DT method, the proposed
method provides a substantial gain of 2.7 dB. Compared to the
WUDTnet, the proposed method has better signal preservation
ability, confirming the effectiveness of the WUDT-NAFnet.

To study the generalization ability and flexibility of the pre-
sented method, we extract 25 CRGs from the above field dataset
with 5-receiver interval for a comprehensive deblending perfor-
mance analysis. Fig. 11 shows the signal fidelity scores of the
different deblendingmethods, where the black triangle denotes the
CT basedmethod, the blue plus stands for the DTmethod, the green
circle represents the WUDTnet model, and the red star represents
the proposed method, the proposed method significantly out-
performs the other schemes. The average recovery SNRs of the CT
based method, the DT model, and the presented approach are
10.38, 14.52, 17.56, and 18.15 dB, respectively. Compared to the CT
based method, the presented method achieves 4.28e11.53 dB
improvement. For DL based methods, the WUDT-NAFnet yields
2.63e4.45 dB improvement over the DT model, and an improve-
ment of 0.16e1.08 dB over theWUDTnet model. It can be concluded
that, the presented algorithm achieves satisfactory deblending
performance in the application of field CRGs.
4. Conclusion

In this paper, we present a novel simultaneous source
deblending method based on a hybrid WUDT-NAFnet. The WUDT-
NAFnet leverages the strengths of both WUDTnet and NAFnet.
Specifically, the WUDTnet serves as a powerful filter and is inte-
grated into the iterative estimation and subtraction framework,
while the NAFnet is focused on preserving signal amplitude and
rejecting interference residuals. Besides, the designed WUDTnet,
incorporating discrete Haar wavelet transform and the improved
DT block, exhibits favorable performance and faster convergence
compared to the DT model. Numerical experiments on synthetic
and field CRG examples demonstrate that our method is more
effective in deblending than the traditional CT based method and
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Fig. 10. Deblended results by (a) the CT based method, (b) the DT method, (c) the WUDTnet, and (d) the proposed method. Deblended errors corresponding to (e) the CT based
method, (f) the DT method, (g) the WUDTnet, and (h) the proposed method.
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the DT model. Moreover, for field data application, our approach
robustly separates the blended interference in numerical field
pseudo-deblended CRGs without requiring prior knowledge of the
study area's characteristics.
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Fig. 11. The recovered SNRs of 25 numerical pseudo-deblended CRGs, where the black
triangle is related to the CT based method, the blue plus stands for the DT model, the
green circle represents the WUDTnet model, and the red star corresponds to the
proposed method.
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