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ABSTRACT

The picking efficiency of seismic first breaks (FBs) has been greatly accelerated by deep learning (DL)
technology. However, the picking accuracy and efficiency of DL methods still face huge challenges in low
signal-to-noise ratio (SNR) situations. To address this issue, we propose a regression approach to pick FBs
based on bidirectional long short-term memory (BiLSTM) neural network by learning the implicit Eikonal
equation of 3D inhomogeneous media with rugged topography in the target region. We employ a
regressive model that represents the relationships among the elevation of shots, offset and the elevation
of receivers with their seismic traveltime to predict the unknown FBs, from common-shot gathers with
sparsely distributed traces. Different from image segmentation methods which automatically extract
image features and classify FBs from seismic data, the proposed method can learn the inner relationship
between field geometry and FBs. In addition, the predicted results by the regressive model are contin-
uous values of FBs rather than the discrete ones of the binary distribution. The picking results of syn-
thetic data shows that the proposed method has low dependence on label data, and can obtain reliable
and similar predicted results using two types of label data with large differences. The picking results of
9380 shots for 3D seismic data generated by vibroseis indicate that the proposed method can still
accurately predict FBs in low SNR data. The subsequent stacked profiles further illustrate the reliability
and effectiveness of the proposed method. The results of model data and field seismic data demonstrate
that the proposed regression method is a robust first-break picker with high potential for field
application.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

experienced data analysts can still interpret high-quality FBs by
utilizing the information of neighborhood traces. However, due to

In exploration seismology, first breaks (FBs) are defined as the
moment when the effective seismic wave first arrives at the
geophone through the formation. FBs are necessary information in
seismic reflection processing. For instance, it is helpful for near-
surface velocity estimation and static correction to remove the in-
fluence of the weathering layer on seismic imaging, which is the
cornerstone of subsequent seismic data processing and interpre-
tation (Yilmaz, 2001). Therefore, it is of great significance to pre-
cisely and quickly pick FBs of seismic records.

Manual picking is the most straightforward method. It can
introduce any prior knowledge, such as the spatial continuity of the
first arrival wave. Even for low-quality or irregular seismic traces,
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massive amounts of seismic data for the popularization of two wide
and one high seismic acquisition (i.e., wide azimuth, wide broad-
band, and high density), manual picking is very time-consuming
and expensive to identify FBs, especially in low signal-to-noise
ratio (SNR) seismic data acquired under complex topography and
complex underground structure conditions. Moreover, it is easy to
generate system errors which usually cannot be eliminated.
Therefore, how to identify FBs in extensive and low SNR seismic
data efficiently and precisely remains a crucial challenge.

Various (semi-)automated first-break picking methods have
been proposed and developed to improve the picking efficiency and
to alleviate the pressure of interpreters. Several automatic picking
methods have been proposed in the literature, such as energy-
based methods (Coppens, 1985; Gaci, 2014), entropy-based
methods (Sabbione and Velis, 2010), fractal-based methods
(Boschetti et al., 1996; Jiao and Moon, 2000), Akaike information
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criterion-based methods (Takanami and Kitagawa, 1991, 1993;
Sleeman and Eck, 1999), and higher-order statistics based methods
(Yung and lkelle, 1997; Tselentis et al., 2012). In general, these
methods work well on data with strong peak amplitude, stable
noise, and consistent waveform. They extract a sensitive property
response to FBs, such as fractal dimension, energy, kurtosis etc.
(Saragiotis et al., 2004). However, in the case of rough terrains and
complex subsurface structures, these methods sometimes have
poor performance and suffer from some noise and energy loss.

In contrast to single-trace (semi-)automated methods, multi-
trace methods, such as cross-correlation-based methods
(Gelchinsky and Shtivelman, 1983; Molyneux and Schmitt, 1999),
make use of spatial characteristics of receivers within the array
simultaneously. The classical multi-trace-based method de-
termines the FBs by taking maximum values of the cross-
correlation or convolution results from trace(s) to trace(s). Due to
the simultaneous usage of multiple traces or high-dimension (2D or
3D) seismic data information, the multi-trace-based method can
identify weak signals or pick FBs at low SNR (Gibbons and Ringdal,
2006) to some extent when the spatial waveform of seismic waves
is relatively consistent. However, they often do not adapt to situa-
tions where the waveforms change drastically with the traces and
there exist missing traces or bad traces owing to strong noise and
rugged topography.

Most single- or multi-trace methods compute only one attribute
for each time sample and subsequently select the location with
maximum- or minimum-value attributes as FBs. As a rule, it
generally does not accurately correspond to the FBs based on these
single- or multi-trace methods when noise is heavy or seismic
waveform changes dramatically. To improve the stability and ac-
curacy, neural network methods are introduced to extract multiple
attributes automatically to classify waveforms and to pick FBs. It is
to pick FBs using these methods by statistical criterion (Gelchinsky
and Shtivelman, 1983; Akram and Eaton, 2016) or the fully con-
nected neural networks (Gentili and Michelini, 2006; Maity et al.,
2014; Khalaf et al., 2018) for extracting multiple dimensionless
characteristic parameters or multiple derived attributes from
seismic data correspond to FBs. In geophysics, a basic idea is to
convert seismic data or attributes into regular images, and then
build a network model with deep hidden layers to analyze and
extract multiple first-break attributes to identify FBs. It is very time-
consuming to identify the arrival times by traditional neural net-
works at the cost of tremendous amount of manual workload to
pick FBs first of all. Moreover, the picking quality of the FBs heavily
relied on extracted sensitive attributes, such as amplitude, fre-
quency, instantaneous amplitude and phase, polarity, peak enve-
lope slope, peak amplitude, RMS amplitude ratio, SNR, correlation
between adjacent channels, offset, and wavelet (McCormack et al.,
1993; Maity et al., 2014).

Convolutional neural networks (CNNs) are utilized to effectively
and rapidly detect or classify seismic waveforms and to pick FBs by
a spatiotemporal waveform classification involving the images
within a sliding window (Yuan et al., 2018). Then it is analyzed the
strong importance of label quality in picking FBs. Li et al. (2022,
2023) used CNNs based on computer vision to identify and separate
microseismic waveforms. Compared with CNNs, fully convolutional
networks (FCNs) can extract local and global features of an image
and achieve fine segmentation at the pixel level. The FCNs were
developed based on CNNs, and several variants of FCNs including
U-net (Ronneberger et al., 2015), DeepLab (Chen et al., 2018), Seg-
Net (Badrinarayanan et al., 2017) and DeconvNet (Noh et al., 2015)
have become popular for geophysical exploration in recent years.
The surge of artificial intelligence results in novel research hotspots
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in geophysical exploration, including FBs picking using FCNs (Hu
et al., 2019; Zhao et al., 2019; Chen et al., 2020; Zhang and Sheng,
2020; David et al., 2021; Han et al., 2021; Yuan et al., 2022). The
key advantage of the abovementioned FCNs is the ability to learn
appropriate feature representations in an end-to-end, image-to-
image, pixel-to-pixel manner. However, the end-to-end deep
learning construction is a black box that is not convenient for real-
time quality control. Therefore, some semi-supervised neural net-
works were developed to pick FBs with human interpretation (Tsai
et al., 2020; Duan and Zhang, 2020). We can save a lot of labor and
time costs by CNNs and FCNs in seismic data with high SNR. Deep
learning (DL) techniques are powerful for high-dimensional clas-
sification and have achieved great success in large-scale images
owing to extensive labeled databases. The same as other classifi-
cation tasks, the ultimate efficiency and effectiveness of picking FBs
by DL-based methods depend on huge labels that technicians make
manually at great expense of time and energy (Saxe et al.).
Generally, seismic records are seriously polluted by noise collected
under rugged topography and complex underground structures.
Making labels strictly meeting the conditions of consistent size,
uniform distribution, similar waveforms, and representative fea-
tures in massive data is extremely time-consuming and labor-
intensive work. Therefore, picking FBs based on DL and image
segmentation still faces great challenges in industrial applications.

In this paper, after studying the disadvantages of traditional
image segmentation and classification based FBs picking in detail,
we present a regression approach to directly pick seismic FBs based
on geometric seismology, which uses the deep learning network to
learn the implicit relationships among the elevation of shots, offset
and the elevation of receivers to their seismic travel-time to predict
the unknown FBs, from common-shot gathers with sparsely
distributed traces.

We begin this paper with an introduction of the motivation and
general framework, as well as the description of data preparation,
network architecture design, network model training, model up-
date, and the optimum model application. Two seismic datasets
including one theoretical model and one 3D field seismic data with
9380 shot gathers with low SNR are then adopted to illustrate the
effectiveness of the proposed method from shot gathers. Finally, a
discussion and some conclusions are given.

2. Methodology

2.1. First-break picking based on seismic image and waveform
classification

FBs refer to the earliest arrival traveling time of seismic waves to
receivers in the field of P-wave exploration. Therefore, there is only
one first break in each trace. In the shot gather, the above FBs are
mainly the environment or background noise with poor correla-
tion, and seismic waveform below the FBs shows obvious correla-
tion in space, and this feature is generally used to pick FBs.

The essence of artificial intelligence picking technology with the
concept of image classification is to determine the demarcation
moment of the effective signal and environmental noise in seismic
data sets, which is specifically manifested in the seismic data vol-
ume as the use of neural networks to classify 2D or 3D images. The
classification problem of whether the first arrival wave is converted
into the classification problem of the background noise above the
FBs (pure noise) and the effective signal class below the FBs
(signal + noise), which are represented by vectors [0 1] and [1 0],
respectively, and the boundary between them is the FBs. The
prevalent networks are mainly FCNs and their improved networks
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(U-Net and SegNet). After manually labeling the datasets, a series of
processes are finally used to determine the first arrival time.
However, in exploration areas with complex surface and complex
subsurface structures, the following phenomena usually exist in the
first arrival waves:

1) The first arrival waves include a variety of different types of
waves, such as shallow refracted waves, deep refractive waves,
reflected waves, direct waves, contraflexure waves at different
depths, etc., generally accompanied by a chaotic phase.

2) There are random interference waves before the first arrival
waves and secondary waves with difficulty in recognizing and
picking first arrival waveform from features.

3) In general, there is bad spatial consistency of the seismic first
arrival waveform, due to random absent traces and irregular
field seismic acquisition.

4) There is ambient noise whose frequency and waveform char-
acteristics are different from the first arrival waves. These pha-
ses of interferences among traces are highly random, resulting
in difficult to track peaks or troughs for the first arrival waves
among adjacent traces.

2.2. First-break picking based on geometric seismology and
regressive model

The above phenomena make it difficult to accurately and quickly
identify the boundary of effective signal and noise by image seg-
mentation in massive low SNR seismic data records.

When seismic waves propagate in a medium, each spatial point
has its own traveling time of the wave-front. The traveltime of
wave-front t can be seen as a function of spatial position in
Euclidean space, noted as t = g(xs, x;). It is a function that represents
the time it takes for the wave-front to travel from the source point
through the medium to any receiver point. The Eikonal equation
describes the relationship between the traveltime from the source
to the receiver point and the velocity parameter of the 3D subsur-
face heterogeneous medium (Noack and Clark, 2017). In a medium
with complex surfaces and complex subsurface structures, the
traveltime equation for the seismic first arrival wave can be
expressed as
tr = F(Vr, Es, Er,0) (1)
where t; is the traveltime of the first arrival wave, F(e) is a nonlinear
function, Vr is the velocity of the subsurface medium below the
receiver, Es is the elevation of the shot, Er is the elevation of the
receiver, and O is the offset from shot to receiver.

From Eq. (1), it can be seen that the FBs only depend on the
parameters of the geometry without relying on the seismic data
itself by solving the Eikonal equation. Therefore, the issue of picking
FBs can be transformed into the regression problem based on ge-
ometry parameters, rather than seismic waveform classification on
image segmentation.

At this point, the key problem is to identify the nonlinear
mapping relationship between the information of geometry and
the first arrival wave traveling time by deep neural network. In
Cartesian coordinates, for a certain seismic trace, we can build the
implicit Eikonal equation Regpicker(e) on the ground of FBs label t,,
the elevation of the shot Es, the elevation of the shot Er and the
offset O to predict traveltime t, at the geophone at the current
medium space, described as
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tp = Regpicker(x;w;b) (2)
where x is a vector consisted of the geometry parameters Es, Er and
0, and w and b denote weights and biases of deep neural network,
respectively. When Regpicker(e) approximates F(e) in Eq. (1),
traveltime t, predicted by the deep neural network approaches the
label t;.

In this paper, the artificial intelligence regression method for
picking FBs based on sparsely labeled data from shot gather is
presented, which mainly includes data preparation and normali-
zation processing, network frame design, network model evalua-
tion, and application of the optimal model.

2.3. Data preparation

To obtain effective and generalizable trained models or network
parameters, it is necessary to prepare three types of seismic data:
training set, validation set, and test set. The training set data is used
to train the model to obtain optimal network parameters. The
validation set is used to evaluate whether the trained network
parameters are underfitted or overfit to determine whether the
important hyper-parameters selected in the training set are
appropriate. If these phenomena occur, the optimal parameters of
the network model should be retrained by adjusting the number of
hidden layers, the learning rate, the minimum batch size, the
maximum number of iterations, and the evaluation function. The
test set is considered to investigate the generalization ability of the
well-trained model to unseen shot gathers. The data of the training
set, validation set, and test set are spatially distributed arbitrarily,
and they do not require regularity and continuity. To learn the
model stably, fast, and effectively, all samples in different sets
should be further preprocessed mainly including normalization,
mapping the data into the range of 0—1.

The above three types of set data all include four kinds of data:
elevation of receiver, elevation of shot, offset, and FBs. In this paper,
the input data x for the deep neural network are selected as three
parameters, elevation of receiver, elevation of shot, and offset. The
output data are the vector of FBs arranged in the order of seismic
trace. Since the output data is seismic FBs which are randomly and
sparsely distributed rather than a regular image, the FBs picked by
automatic or manual method can be used as label data to improve
the efficiency of making labels. In this paper, the high-order sta-
tistical method (Saragiotis et al., 2004; Tselentis et al., 2012) is used
to pick FBs first, and then an automatic algorithm is designed to
choose reliable FBs as labels. The label doesn't need to be a regular
and continuous high-density image, and the data preparation
process does not need a series of complex preprocessing work, such
as manually picking the FBs, eliminating the anomalous value,
surface wave attenuation, filtering, and clipping et al., which is
necessary for the CNN-based classification network. For the pro-
posed method, making labels is flexible and efficient, the data
preparation process is simple and fast, and we can focus on opti-
mizing network parameters and improving the picking accuracy.

2.4. Long short-term memory network

The models of the traditional recurrent neural network (RNN)
will only focus on the processing of information in the current
moment and will not infer whether the processing of information
in the previous moment will help in the next moment, and the
problems of local minima, gradient disappearance, and gradient
explosion are prevalent when performing model training. For
example, the gradient disappearance generated by RNN during
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Fig. 1. Internal structure of LSTM.

backpropagation can lead to the inability to capture long-term
dependence. Long short-term memory network (LSTM) is a spe-
cial implementation of RNN. The structure of the LSTM hidden unit
is shown in Fig. 1, which improves the implicit layer and introduces
the concept of temporal order on top of RNN neural networks so
that the output of one moment can have a direct impact on the
input of the next moment. In Fig. 1, X; represents the input sequ-
nence, h; represents the output, c; represents the cell state at the
moment noted by t, and ¢; represents the candidate cell at the
moment of t. LSTM uses three types of gating: input gate i,
forgetting gate f;, and output gate o; to store and update informa-
tion in long term. The forgetting gate f;, in the cell state transfer
determines what information should be discarded. The input gate i,
controls the decision of what new information to add to the “cell
state”. The output gate o; controls the storing of the information of
the cell at the moment ¢ to the hidden state of h;. The sigmoid layer
determines which values need to be updated, and the tanh layer
determines what new values to add.

The input gate i; control information updates, and the calcula-
tion formula is shown as follows:

ir=0(W; - [he_1.X(]+by) (3)
where ¢ is a sigmoid function, W; is the weight of the input gate,
and b; is the deviation of the input gate. The forgetting gate f; is
used to control the forgetting degree of information in cell ¢, Wy
is the weight of the forgetting gate, and by is the deviation of the
forgetting gate, and the calculation formula is shown as follow:

fe—o (W - [he 1 x]+by ) (4)
The function tanh obtains the information of the candidate cell
¢, and the calculation formula is written as

¢ =tanh(W¢ - [hy_1 X¢]+bc) (5)
where W, is the weight of the cell state, and by is the deviation of
the cell state.

Updating the information of old cell ¢;.; based on i; and h, can
acquire the information of new cell ¢;, and the updating formula is
shown as follow:

ce=ir - €+ ¢4

(6)

The output gate o; controls the output of information and the
calculation formula is shown in Eq. (7). And at the moment of t, the
calculation formula for the hidden layer h; is shown in as follows:
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0 = 6(Wo-[h_1,X¢] +bo ) (7

ht = 0t~tanh(ct) (8)
where W, and b, represent the weight and bias of the output gate
respectively.

LSTM improves the gradient disappearance or explosion prob-
lem that occurs in traditional RNNs due to its complex gated
memory mechanism and outperforms other recurrent architec-
tures in dealing with sequential tasks with long-term de-
pendencies. However, it is worth noting that the LSTM structure
can only use positive dependencies, and some useful information
will be filtered in the long-term gated memory chain. In the process
of picking FBs, the FBs at the current moment are correlated with
the information before and after the current moment. In actual
processing, we hope to deduce the FBs before and after the seismic
trace from current FBs. To achieve the goal, this paper adopts the
BiLSTM to better capture contextual long-term dependencies in
sequence tasks and facilitate more precise predictions. Therefore,
the current network model depends on both the previous and
future FBs and their related information. Then, we propose the
artificial intelligence regression approach based on BiLSTM to pick
FBs in this paper.

2.5. Regression approach based on BiLSTM

BiLSTM is an improvement of LSTM, consisting of two LSTM
layers in different directions, two independent LSTM layers, one for
inputting the forward sequence and the other for inputting the
reverse sequence. It combines the forward and backward hidden
layers. The structure of the regression approach is based on BiLSTM
as shown in Fig. 2. When dealing with timing issues, BIiLSTM can
better capture contextual long-term dependencies in sequence
tasks and improve prediction accuracy. The regressive network
architecture is composed of the input layer, the BiLSTM unit
(including two independent LSTM layers and one LSTM hidden
layer), the full collected layer (FC), the regression layer (regressor),
and the output layer. Supposing in the shot gather there are n traces

Output layer

Regression layer Regressor

Full connection layer

ht—1

Reverse chann
LSTM layer

Forward channel

Input layer

[ \

)00 (o) (20) (@) ) ) 00

Fig. 2. The network structure of the BiLSTM based regressive model for picking FBs.
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and m reliable labels which are made manually and by higher-order
statistics based methods, noted as FB; (j = 1, 2, ..., m). The elevation
of the receiver, elevation of the shot and offset at the geophone
point are denoted by Er;, Es;, and O; (j = 1, 2, ..., m) respectively. In
this method, the input layer is X which is a matrix consisting of Er;,
Es;, and 0;, and the output is FB, which is a vector consisting of the
FBs labels. Then we can create the nonlinear relationship mapping
the observed variables in the field to the FBs through BiLSTM and
FC. Taking the prediction of the FBs at the t-th seismic trace as an
example, the forward LSTM and reverse LSTM output at t moment

— — .
are h; and h;, respectively.

In Fig. 2 and Egs. (9) and (10), hy_q, E) and h represent the
hidden layer neuron nodes model propagating forward; h;_1, E
and h;.; represent the hidden layer neuron nodes propagating
backward. The forward and backward implied state outputs of the
BiLSTM are connected and fed into the same FC, and the output
implied layer state is considered as input using the FC.

h = LSTM(E,xt) 9)

h; = LSTM (hHl,xt) (10)

He = [, I | (11)
The final FB estimated by the model at the time of t is

FB; = WiH+br (12)

where H represents the input of the FC, Wr and bg represent the
weight matrix of the FC and the deviation of the output regression
layer, respectively. In the BiLSTM networks, we have two groups of
LSTM blocks, one as a backward layer and another as a forward
layer, which provide two ways for transferring information: one
from future to past and another from past to future. As a result,
BiLSTM networks have a high ability in feature extraction and good
performance in trace order to forecast traveltime.

After creating the framework to pick FBs, the training, evalua-
tion, and application of the network model are further developed.
The process of training network parameters can be considered as
the process of constructing the implicit Eikonal equation using
forward and reverse labels. In this paper, the quantitative outputs
are continuous prediction values, instead of the two logical classi-
fication values of 0 and 1. The error between the predicted value
and the label value at each trace affects the trained model. The
difference between the network output and the label is evaluated
by using the sum absolute error (SME) as Eq. (13) to make sure the
predictions are approximate to each label in the training set. The
SME can be calculated by
L= Zj"; | Regpicker (Er;, Es;, O;, 0) — FB;| (13)

The network is trained to minimize the loss L using adaptive
moment estimation (Adam) (Kingma and Ba, 2014).The network
weights 0 (a collection of Wgand bg, WE is initialized at random, and
br is initialized to zero) in the network are updated as

01 =0, — VoL (0) (14)

where k is the iteration index, 7 is the learning rate, and VyL(0) is
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the gradient.

A set of labeled data sets (the validation set) is used to evaluate
the network performance during the training. When the training
loss decreases, whereas the validation loss increases (known as
overfitting) or remains stable for a certain period of iterations, the
training is stopped and the weights 0,y are saved as the result of
the training run. The saved optimal weights are used to predict the
FBs on unseen data (or the testing set) with the following equation:

FBiest= Regpicker (Ertesu EStest, Otest, eopt) (15)

3. Examples

The proposed method is tested on one model dataset and one
land field dataset with low SNR. The flowchart of picking FBs based
on the regressive model is shown in Fig. 3. The input data is the
seismic data with the format of SEGY with geometry information.
PT and PV denote the value of the proportion of the training set and
the validation set in the label set, which is 0.75 and 0.25 respec-
tively. The symbol Itermax means the maximum number of itera-
tions, which is 4 in this paper. The symbol Th0 means the maximum
time error, which is defined as 10 ms. When the absolute error
between predicted FB values and true FB values in the validation set
is less than ThO, the regressive model trained by training set is
considered effectively and can be used to predict the FBs of test set.
Otherwise, it must retrain the regressive model after removing the
training set data corresponding with the errors greater than 10 ms,
and recreate the training set, the validation set, and the test set. By
constructing the above-mentioned flowchart, the machine can
make, optimize, and automatically reconstruct labels, with training
and predicting FBs in a closed-loop environment. In each example,
the number of hidden layers of the BiLSTM is 25, the initial learning
rate is 0.008, the factor is reduced by 0.25 per 125 epochs, and the
minimum learning rate is 0.001, the maximum number of epochs
for training is assigned to 400, the sum absolute error is set to 0.001.

| Seismic data ‘

|Effective FBSH FBs picking | | Extract geometry information ‘

| FBT (Training set) | %|
| FBV (Validation set) | | PT, PV, itermax,ThO ‘

PR I |

| Regressive model ‘

|

Es, Er, O |

| Regpicker H FBVP (Predict validation set) |
iter =
iter + 1| Remove abnormal FBVP-FBV)<ThO FBT
label in training set & iter<iterma (Test set)

Fig. 3. Flowchart of picking FBs based on regressive model.



H. Yuan, S.-Y. Yuan, J. Wu et al.

Petroleum Science 21 (2024) 1584—1596

0
H;=200m V; =500m/si Vs =150 m/s P; = 1161.667 kg/m®
200
H, =400im V|, =800 m/s{ Vi, =375m/s P,=1404.167 kg/m®
400
600
H;=200m Vi =1500 m/s Vi=900m/s P;=1970 kg/m®
800

1000

1200

1400

Fig. 4. The four-layer velocity model. H, V,, Vs, and P in Fig. 4 represent the height, P-wave velocity, S-wave velocity, and density in each layer.

3.1. Test of numerical simulated data

The survey line is distributed along the horizontal surface, and
shot points range from —200 m to 200 m, with an interval of 50 m.
The receiver point distance is 25 m, evenly distributed
along —4000 m to 4000 m, a total of 321 traces. A Ricker wavelet
with a dominant frequency of 30 Hz with a length of 90 ms is used
as the source, sampled at 2 ms and recorded for 5 s, simulating a
total of 9 shots with 2989 traces. A four-layer velocity model is used
in this section shown in Fig. 4. The total depth of the model is
1500 m. Depth of the four layers’ bottom are 200, 600, 800 and
1500 m; P-wave velocity of the four layers are 500, 800, 1500, and
2500 m/s; S-wave velocity of the four layers are 150, 375, 900, and
1450 m/s; and density of the four layers are 1161.667, 1404.167, 1970
and 2200 kg/m>. The numerical simulated data set is produced by
elastic wave equations with mixed staggered-grid finite-difference
schemes (Liu, et al., 2022).

Fig. 5 shows the 5th shot gather. From the shot gather we can
see that, the first arrival wave includes a direct wave and a refracted
wave, and two obvious refractive first arrival waves appear after
1.6 s, as shown by the red arrow in Fig. 5. The lateral amplitude
changes obviously at the junction of the direct wave and the
refractive first arrival wave, resulting in the first arrival wave

Time, s

Trace No.

Fig. 5. The 5th shot gather.
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waveform not clear, and brings great difficulties to identify and pick
FBs.

The peaks of the first arrival waves are manually picked as the
FBs of the seismic trace, and the label set is randomly selected to
verify the method. The data are divided into three categories, the
training set is composed of 644 traces (accounting for 22.3%), the
validation set is composed of 199 traces (accounting for 6.7%), and
the test set is composed of 2046 traces (accounting for 71%). Using
the proposed method to conduct simulation tests. For the regres-
sive network structure shown in Fig. 2, the input data is offset, the
output is FBs, and map relationship is from offset to the FBs.

Seen from Fig. 6(a), the labels of FBs are continuous values be-
tween 0 and 3.7 s, with a minimum offset of 0 m and a maximum
offset of 4200 m. The distribution of the predicted and true first
arrival with offset for the training set, the validation set, and the
test set is shown in Fig. 6(a)—(c) respectively. At the offset of 775
and 1550 m calculated by the least square linear fitting for FBs
versus offset, the slope which responds to velocity for the FBs
before and after it changes suddenly, and the entire first arrival
curve can be divided into three segments with obvious differences.
After optimal fitting, the three-segment velocities of the training
set are 490.8, 796.4, and 2500 m/s, respectively. The three-segment
velocities of the validation set are 494.5, 791.7, and 2500 m/s,
respectively. The apparent velocities of the test set are 494.5, 791.7,
and 2500 m/s, respectively. It can be seen that the network trained
by this method has perfect generalization ability. The absolute error
between the predicted and the true FBs of the training set, the
validation set, and the test set are shown in Fig. 7(a)—(c),
respectively.

From Fig. 7(a) we can see that the absolute error between the
FBs predicted by the trained neural network and the true FBs in the
training set is up to 4 ms, and the error of 639 samples is less than 4
ms, accounting for 99.22%. From Fig. 7(b) we can see that the ab-
solute error between the FBs predicted by the trained neural
network and the true FBs in the validation set is up to 4 ms, and the
error of 198 samples is less than 4 ms, accounting for 99.5%. From
Fig. 7(a) and (b), we can see that the neural network trained with
randomly selected labels has good generalization ability, and can
achieve relatively accurate picking results in both the training set
and the validation set. Applying this network to the test data, the
error is shown in Fig. 7(c), with a total of 1978 traces less than 4 ms,
accounting for 96.68%. Therefore, we can conclude that the
network trained by the label data accounting for 22.3% of all data,
also has good prediction ability for the unknown seismic data, ac-
counting for 71%.
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To analyze the adaptability of this proposed method to the Fig. 7. Statistical errors of BiLSTM picked FBs in the training set (a), the validation set
missing seismic data more clearly, we will analyze FBs predicted by (k). and the test set (c), respectively.
the trained neural network of the 5th shot in details. The FBs of the
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Fig. 8. Comparisons of manually picked FBs and FBs predicted by the proposed
regression method in the training set (a), the validation set (b), and the test set (c) of
the 5th shot gather, respectively.
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Fig. 9. Observation system information of the 5th shot gather.

training set and the 5th shot gather are shown in Fig. 8(a), from
which we can see that the training set is randomly distributed with
an obvious lack of traces, and the red circle indicates continuously
missing 27 seismic traces which mainly correspond to the refracted
wave at the third layer with a P-wave velocity of 1500 m/s and a
thickness of 200 m. The FBs of the validation set and test set are
shown in Fig. 8(b) and (c) respectively. As shown in Fig. 9, the blue
points represent the offset information of the 5th shot gather, and
the solid red circles represent the offset information of the label
data set. From in Figs. 8 and 9, it can be seen that even if there is no
label data corresponding to the refracted first arrival wave at the
third layer in the training set, the distribution of first arrival in the
local area in this shot can still be learned out perfectly by this
method.

Through the above analysis, it can be seen that our method has
obvious advantages in label production and training set construc-
tion, the trained network has strong generalization ability, and its
predicted results of unknown seismic data have high accuracy and
small error. In order to further verify the dependence of this
regressive method on labels, in this paper we randomly select the
second type of label data, training set consisted of 646 traces (ac-
counting for 22.36%), the validation set consisted of 188 traces
(accounting for 6.51%), and test set consisted of 2055 traces (ac-
counting for 71.13%).

Shown in Fig. 10, the blue hollow circle represents the first type
of label training set analyzed above, and the red points represent
the second type of label training set. It can be seen from Fig. 10 that
the two types of training sets selected randomly have great dif-
ferences in location and distribution in shot gather, and both of
them have random and continuous lack of seismic traces.

Fig. 11 shows the FBs are picked manually and predicted by the
neural network trained based on the two types of label data sets.
The blue circles represent the FBs predicted by the neural network
trained by the first type of label data set, the red circles represent
the FBs predicted based on the second type of label data set, and the
black circles represent the FBs picked manually. It can be seen from
Fig. 11 that the result predicted by this method is consistent with
the trend of the FBs picked manually, and the values are almost
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Fig. 12. Statistical errors of FBs predicted by the proposed regression neural network
trained by the second type of label data set.

equal. Fig. 12 shows the error distribution of FBs predicted by the
neural network trained with the second type of label data set, and
there are 1987 traces with an error of less than 4 ms, accounting for
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96.69%. That's to say the network trained with the second type of
label data set can also precisely predict FBs, and also has good
generalization ability.

According to the results of the above two types of randomly
selected training set, validation set, and test set, it can be seen that
even if there were large differences in the distribution and quantity
of label data set, FBs can be predicted accurately for unknown
seismic data. Therefore, our method has strong adaptability to
random and continuous missing traces, and low dependence on
labels. Even if large differences exist in the label data set, a rela-
tively accurate implicit regressive model that characterizes the
relationship between the information of geometry and FBs can be
trained to predict FBs perfectly. This advantage provides a good
foundation for industrial application of picking FBs based on arti-
ficial intelligence methods.

3.2. Test of low SNR field seismic data

There are a total of 9380 common-shot gathers and 4209709
traces in this area. The surface is relatively gentle, and the surface
elevation ranges between 460 m and 680 m with the terrain high in
the south and low in the north. The source elevation and geophone
elevation of the area are shown in Fig. 13(a) and (b) respectively.
The seismic data in this area are excited by a vibrator source, and
the SNR of seismic data are relatively low. The amplitude of the first
arrival wave in the shot gather is weak, and the spatial consistency
of the waveform is poor. In addition, scattering waves, surface
waves, and other noise interference are widely existed, which
brings great trouble to picking FBs. Fig. 14 gives two typical shot
gathers in this area. According to the method provided in this pa-
per, the model is retrained and the FBs are picked in the whole work
area.

In the field data, we introduce the proportion of three data sets
as a whole seen detailed in Table 1, and the training set is composed
of 712779 traces (accounting for 16.93%), the validation set is
composed of 237593 traces (accounting for 5.64%), and the test set
is composed of 3259337 traces (accounting for 77.43%). The total
cost time of picking FBs by commercial software is 763 min in the
entire process, while it takes 143 min to pick FBs using the pre-
sented method in this paper, more details seen in Table 2. From
Table 1, we can see that the numbers of FBs edited manually after
picking used commercial software and only through the presented
method are 2432501 (accounting for 57.78%) and 3959876 (ac-
counting for 94.07%) respectively. As can be seen from Table 2 and it
spends most of the time on pre-processing (accounting for 36.17%)
and post-processing (accounting for 52.69%) using commercial
software, while it spends most of the time focusing on model
training (accounting for 79.02%) used presented method. It is
needed to remind that other elapsed time, such as reading and
writing seismic data, is incorporated into label creation and test set
data prediction respectively. From the two tables, it can be
concluded that it takes less time with more efficiency and less
manpower to use the presented method than using commercial
software.

A prevalent commercial software and the proposed method are
separately used to pick FBs of the whole area, and the results of FBs
versus offset are shown in Fig. 15(a) and (b), respectively. The main
strategy of the commercial software is to manually pick part of the
shot gathers as a seed shot, and then use the prior information of
the seed shot to extract the sensitive attribute parameters corre-
sponding to the first arrival wave to automatically pick FBs among
whole seismic data in the work area. In the tomographic inversion
static correction technology based on FBs, the information of FBs
with small offset is very important in inverting the surface and
shallow velocity model, and also has a great influence on the
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Table 1
Data information and processing result in two cases.
Method Total shot number Total trace number Picked FBs number Total time, min
Commercial software 9380 4209709 2432501 763
Regression method 3959876 143
Table 2
Running time in two cases.
Commercial software Regression method
Pre-process time, min Auto picking time, min Post-process time, min Label set Training set Validation set
Number Time, min Number Time, min Number Time, min
276 85 402 — — — — — —
_ - - 950372 14 712779 113 237593 16
3 3 3 3
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Fig. 15. FBs picked by commercial software (a) and the proposed regression method (b), respectively.
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Fig. 16. Comparisons of FBs of shot ID282—391 picked by different methods. (a) FBs
labels, (b) FBs picked by the conventional commercial software, (c) FBs picked by our
regression method. In each subfigure, the symbols Recvld, Shotld and Time represent
the receiver point position, the shot point position, and the first arrival time,
respectively.

1594

Petroleum Science 21 (2024) 1584—1596

7
7
7 =
= e
S e PR
e
. ¥ )

ression ||

SHTT
il

Time, s

7

Trace No.

Fig. 17. First arrival of shot ID282 picked by a popular commercial software (blue as-
terisks) and our regression method (the red line).

quality of the medium and deep imaging. From Fig. 15, we can see
that FBs picked by our method have better focus and consistency
within the same offset range than those picked by commercial
software. Along the upper boundary of the FBs, compared with
Fig. 15(a), there are two clear inflection points at an offset of 550
and 1000 m in Fig. 15(b). It can also be seen that the FBs are divided
into three obvious segments which correspond to the three layers
of the geological model, and the three slope values represent the
apparent slowness values for each layer. The reciprocal of these
three apparent slowness values as the initial velocity for tomog-
raphy inversion can not only improve the inversion efficiency, but
also improve the inversion accuracy of the velocity model. The
maximum FBs in Fig. 15(a) is less than 2.5 s and the maximum value
in Fig. 15(b) is about 2.9 s, which indicates that there is a huge
difference in the accuracy of FBs and the range of larger offset
successfully picked FBs by the proposed method. Generally, under
conditions of accurate FBs, the bigger the FBs corresponding to the
far offset, the stronger the ability to depict the deep velocity model.

To further study the reliability and accuracy of the proposed
method, a total of 10 shots with ID382—391 containing 4800
seismic traces are extracted for fine comparison. Fig. 16(a) repre-
sents the FBs label data set for the proposed method, and Fig. 16(b)
and (c) give the results picked by commercial software and our
artificial intelligence regressive method respectively. The label data
set in Fig. 16(a) composed of randomly selected 1857 traces, ac-
counting for 33.06%, which distributes non-uniformly, especially
lack of the middle and far offset labels. Fig. 16(b) gives the FBs
picked by commercial software, and only randomly distributed
2803 traces’ FBs, rarely existing in middle and far offset. The result
picked by our method is shown in Fig. 16(c), and all seismic traces
can be picked even if lack middle-far offset labels. Fig. 17 gives the
FBs of one shot with ID382, the blue asterisks and the red line
respectively represent the FBs picked by commercial software and
those picked by our method. As can be seen from Fig. 17, there is
serious noise in the shot data with low SNR and poor lateral con-
sistency of the seismic waveform. The FBs picked by commercial
software are concentrated on the near offset, accompanied with
low pick-up rate and poor precision with sparse FBs distributed in
middle-far offsets. However, the result predicted by the proposed
regressive method is perfect, accompany with high enough and
accurate FBs ranging from near-offset to mid-far-offset. Comparing
Figs. 16 and 17, it can be seen that the FBs picked by the proposed
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Fig. 18. Stacked profiles with static correction based on FBs picked by commercial software (a) and the proposed regression method (b), respectively.

method are much higher than those picked by the commercial
software in terms of accuracy and pick-up rate.

To get static correction calculated with the tomography inver-
sion method based on FBs using the conventional commercial
software following the same parameters and process flow. A main
survey line is extracted from the 3D seismic area, and we will use
the image quality of the stacked profiles to evaluate the quality of
the FBs. The same stack velocity is used to superimpose each of
them and analyze the imaging. Fig. 18(a) and (b) respectively gives
the stacked profile with static correction. Comparing Fig. 16(a) with
Fig. 16(b), we can see that, from the shallow to the deep, the stack
profile given in Fig. 18(b) has better transverse continuity in seismic
events with higher SNR. Moreover, due to the higher picking quality
and higher picking density of the far-offset seismic traces in this
method, the deep event around 5.5 s (indicated by the red circle) in
Fig. 18(b) has obviously better imaging quality.

4. Conclusions

In this paper, a regressive artificial intelligence FBs picking
method is proposed to overcome the shortcomings of the DL
method based on image segmentation in recent years, which is
difficult to apply in seismic data with low SNR and is difficult to
balance the picking efficiency and accuracy.

It is difficult and inefficient to make regular seismic image labels
with the same size in massive seismic data, and this end-to-end
input mode greatly limits the practicality of DL technology based
on image segmentation for first arrival picking. The input of our
method is a vector composed of the known seismic observation
information, and the output is the FBs of the seismic trace. Only a
part of the sparsely accurate FBs are selected for network training,
which greatly reduces the difficulty for label production, circum-
vents the high requirements for seismic data quality, and improves
the adaptability of artificial intelligence technology to pick FBs.

The label data set of our method is composed of randomly
distributed seismic traces’ first arrival time, which does not need to
be one-size and regular high-dimensional label. A part of the FBs
picked by traditional automatic or manual picking method can be
used as a label, so the label production is more flexible, convenient,
and fast, which provides favorable conditions for our regressive
artificial intelligence approach for picking FBs to realize
industrialization.

The model data test shows that the two label data sets with
different distributions, quantity, and location can finally obtain
satisfactory and similar results, which indicates that the depen-
dence of our method on the label data set is very low.

The test of 3D field seismic data with low SNR shows that the
operation process of our method is simple and easy, without
cumbersome preprocessing work, and the picking results are rarely
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affected by the quality of seismic data. Even though the seismic
data with low SNR and irregular acquisition, the accuracy of FBs and
pick-up rate are very high, and the subsequent imaging quality is
very good. Thus our method has good application effectiveness and
promotion value.

The trained neural network model based on the proposed
method in this paper is only suitable for the data of the work area
itself and cannot be directly applied to other work areas, which
reduces the operation efficiency of this method in field data. In the
follow-up research, it is necessary to further study the transfer
learning technology and optimize the trained deep learning
network after optimizing the label data or changing the areas, so
that it can be directly and quickly generalized to the new work area
with high efficiency.
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