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a b s t r a c t

Conventional machine learning (CML) methods have been successfully applied for gas reservoir pre-
diction. Their prediction accuracy largely depends on the quality of the sample data; therefore, feature
optimization of the input samples is particularly important. Commonly used feature optimization
methods increase the interpretability of gas reservoirs; however, their steps are cumbersome, and the
selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data
efficiently. In contrast to CML methods, deep learning (DL) methods can directly extract the important
features of targets from raw data. Therefore, this study proposes a feature optimization and gas-bearing
prediction method based on a hybrid fusion model that combines a convolutional neural network (CNN)
and an adaptive particle swarm optimization-least squares support vector machine (APSO-LSSVM). This
model adopts an end-to-end algorithm structure to directly extract features from sensitive multicom-
ponent seismic attributes, considerably simplifying the feature optimization. A CNN was used for feature
optimization to highlight sensitive gas reservoir information. APSO-LSSVM was used to fully learn the
relationship between the features extracted by the CNN to obtain the prediction results. The constructed
hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature opti-
mization and intelligent prediction, giving full play to the advantages of DL and CML methods. The
prediction results obtained are better than those of a single CNN model or APSO-LSSVM model. In the
feature optimization process of multicomponent seismic attribute data, CNN has demonstrated better
gas reservoir feature extraction capabilities than commonly used attribute optimization methods. In the
prediction process, the APSO-LSSVM model can learn the gas reservoir characteristics better than the
LSSVMmodel and has a higher prediction accuracy. The constructed CNN-APSO-LSSVMmodel had lower
errors and a better fit on the test dataset than the other individual models. This method proves the
effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to
combine DL and CML technologies to predict gas reservoirs.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Conventional machine learning (CML) methods, including sup-
port vector machines (SVM) (Sen et al., 2021; Moosavi et al., 2022),
random forests (RF) (Wang et al., 2020; Otchere et al., 2022) and
artificial neural networks (ANN) (Brantson et al., 2019; Kalam et al.,
and Engineering, Shandong
90, Shandong, China.
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2022), have been extensively applied in reservoir prediction to
mine the internal relationships between data. These methods have
shown good applicability in predicting porosity, permeability, and
lithofacies (Tran et al., 2020; Shao et al., 2022; Dong et al., 2023;
Zou et al., 2023), etc. For a successful prediction using these CML
methods, the features of the sample data should first be optimized
to remove irrelevant and redundant information from the target
data and highlight the sample features that contribute significantly
to it. Seismic attribute analysis technology, as an important reser-
voir characterization method, can highlight or enhance seismic
features related to reservoirs (Hossain, 2020; Dewett et al., 2021;
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Zhumabekov et al., 2021). However, several types of seismic attri-
butes exist and blindly inputting numerous seismic attributes into
CML models can lead to information redundancy and reduce pre-
diction accuracy. Therefore, feature optimization is required to
highlight information that contributes significantly to the predic-
tion target. Commonly used seismic attribute feature optimization
methods include principal component analysis (PCA) and inde-
pendent component analysis (ICA) (Lubo-Robles andMarfurt, 2019;
Babiki et al., 2022; Yao et al., 2022), etc, which have been exten-
sively applied to optimize longitudinal wave seismic attributes.
Multicomponent seismic attributes (MSAs) contain more abundant
reservoir information compared with longitudinal wave attributes;
therefore, they have broader application prospects for reservoir
prediction. However, the large amount of information in MSA data
makes feature optimization more difficult. Yuan et al. (2011) opti-
mized longitudinal and converted shear wave attributes through
PCA and ICA, respectively, and then combined them using an SVM
for reservoir prediction, achieving a prediction result superior to
that obtained using single longitudinal wave. Yang et al. (2021)
optimized MSAs sensitive to gas reservoir through cluster anal-
ysis and then constructed composite attributes through composite
operations (CO) to combine longitudinal and converted shear wave
attributes to complete feature optimization. Finally, the constructed
composite attributes were applied to a deep neural network for
reservoir prediction and good results were obtained.

The aforementioned feature optimization and reservoir predic-
tion methods have limitations. First, the construction of composite
seismic attributes using the CO requires the selection of appropriate
operational methods according to the characteristics of the target
area, which requires further experimental work. In areas with
obvious differences in reservoir characteristics, new composite
seismic attributes must be constructed for feature optimization.
Moreover, their application is limited when the features of the
target area are unclear. Although unsupervised learning methods,
such as PCA, can still be applied to such cases, the reservoir infor-
mation and geological significance provided by them are unclear,
and the relationship between optimized seismic attributes and
target reservoir must be re-established. Second, the steps of the
above feature optimization methods are cumbersome and time-
consuming, and effective information related to reservoir predic-
tion may be lost or redundant information may be highlighted.
Third, although different CML methods have demonstrated good
reservoir prediction capabilities, their limitations are evident. For
example, ANN are prone to overfitting during training (Srivastava
et al., 2014; Nguyen et al., 2021), and the kernel function selec-
tion and parameter optimization of SVM significantly affect the
prediction results (Syarif et al., 2016). Therefore, formulating more
effective strategies to alleviate these problems and obtain prom-
ising predictive results is necessary.

To alleviate the problems of parameter optimization and over-
fitting during the training process of CML models for reservoir
prediction, intelligent prediction models can be constructed by
combining optimization algorithms with CML models to improve
their predictive performance (Nabipour et al., 2020; Gheytanzadeh
et al., 2021). In the training process of CML models, the powerful
search and parameter optimization abilities of intelligent optimi-
zation algorithms could effectively alleviate overfitting problem
and determine the optimal parameters for the CML models. Intel-
ligent prediction models have been widely applied for reservoir
prediction. Commonly used model construction methods combine
CMLmethods, such as ANN, SVM, fuzzy logic systems, and Gaussian
process regression (Bahadori et al., 2016; Zarei and Baghban, 2017;
Kardani et al., 2018), and evolutionary algorithms, such as particle
swarm optimization (PSO), genetic algorithm, and imperialist
competitive algorithms for reservoir prediction (Baghban, 2016;
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Baghban and Adelizadeh, 2018; Bemani et al., 2020a, 2020b). To
construct an intelligent prediction model, we first determine the
appropriate CML method and then select the appropriate optimi-
zation algorithm to optimize its parameters to obtain an intelligent
prediction model that can meet the target prediction requirements.
In seismic-data-based gas reservoir predictions, limited label data
can be obtained owing to the constraints of actual drilling. There-
fore, least-squares SVM (LSSVM), which has strong applicability to
small samples and optimization problems, was used in this study
for gas-bearing prediction. The kernel parameters of the LSSVM
affect its predictive performance, and if not properly selected, they
can lead to unsatisfactory prediction results (Xie et al., 2019;
Seyyedattar et al., 2022). This study adopted PSO algorithm with a
global optimization ability to optimize the parameters of LSSVM.
However, standard PSO algorithm may encounter local optimiza-
tion when optimizing the model parameters (Taherkhani and
Safabakhsh, 2016; Han et al., 2018). To alleviate this problem, this
study improves the parameter optimization ability of PSO algo-
rithm by simultaneously adaptively adjusting inertia weight and
velocity coefficients. This paper proposes an intelligent prediction
model using a combination of adaptive PSO (APSO) and LSSVM for
gas-bearing prediction. The APSO algorithm alleviates the over-
fitting problem of PSO algorithm and adjusts relevant parameters of
the LSSVM to improve its predictive performance. However, the
constructed APSO-LSSVM method can only alleviate the parameter
optimization problem and not its dependence on sample quality.
Therefore, the features of the MSA data must be optimized before
using APSO-LSSVM for MSA-based gas-bearing prediction.

As a feature optimization method, feature extraction transforms
the original data into a set of features representing different attri-
butes, which is conducive for gas reservoir prediction (Guyon et al.,
2006). Deep learning (DL) methods can capture deep representa-
tions from input data (LeCun et al., 2015; Karimpouli et al., 2020;
Cao et al., 2021; Wang et al., 2022). In contrast to CML methods, DL
can directly extract important features of a target from original data
without requiring careful feature optimization, thus simplifying the
process. Convolutional neural network (CNN) has demonstrated
robust performance in pattern recognition and image processing
(Krizhevsky et al., 2012; Sun et al., 2020, 2021; Lou et al., 2022; Ma
et al., 2023). Furthermore, CNN has demonstrated its potential for
feature extraction by automatically extracting numerous robust
and invariant features from raw data (Fang et al., 2020). Therefore,
we applied it to the prediction of gas-bearing distribution using
MSAs because it simplifies the tedious feature optimization steps
and extracts important features from input variables to provide a
better description for gas-bearing prediction.

This study proposes a hybrid fusion DL model that combines a
CNN and APSO-LSSVM for feature optimization and gas-bearing
prediction. First, the original MSAs that were sensitive to the gas
reservoirs were selected through cluster analysis. Cluster analysis
does not change the original attribute characteristics; that is, it is
only used for feature selection. The selected MSAs were then
entered into the CNN-APSO-LSSVM model for training through
blind-well cross-validation, and the model parameters were
adjusted to obtain the trained CNN-APSO-LSSVM model. Finally,
the improved effect of the developed model on a single model was
evaluated through comparing it with a single CNN and APSO-
LSSVM models. To evaluate the feature extraction capability of
CNN, the gas-bearing prediction result of CNN-APSO-LSSVM was
compared with that obtained by inputting sensitive seismic attri-
butes obtained from PCA and CO into the APSO-LSSVM model. In
contrast to these two feature optimization methods, the CNN-
APSO-LSSVM model adopts an end-to-end algorithm structure
that does not need tedious feature optimization processes after
cluster analysis. However, the data can be directly input into a
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hybrid fusion model for prediction, which has good universality
and operability. To analyze the improvement effect of APSO on
LSSVM model, the model prediction performances with and
without optimization using the APSO algorithm were compared.
The results indicate that the proposed hybrid fusion DL model
achieved better feature optimization effects and prediction results
than common used feature optimizationmethods. It had the lowest
error and highest fit among all the compared hybrid models,
demonstrating excellent prediction performance of the gas-bearing
distribution.
2. Methods

The key steps of feature optimization and gas-bearing predic-
tion using the proposed hybrid fusion DL model are as follows
(Fig. 1). First, the MSAs sensitive to gas reservoirs were selected
using cluster analysis to reduce their dimensionality, and training
and testing datasets were constructed. Subsequently, PCA, CO
feature optimization, and CNN feature extraction were performed
on the selected original MSAs that were sensitive to gas reservoirs.
The obtained features were input into the APSO-LSSVM model for
training, and three hybrid models were constructed to predict the
gas-bearing probability distribution (GPD). Finally, the prediction
performances of these hybrid models were evaluated using the
testing dataset, and the predicted gas-bearing distribution results
were comprehensively evaluated using actual drilling information.
Fig. 1. Workflow for feature optimization and gas-bearing
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2.1. CNN

Compared to CML methods such as SVM and RF, CNN has fea-
tures such as local connections and parameter sharing owing to the
existence of convolutional layers, which can effectively extract data
features and alleviate the shortcomings of CML methods to some
extent (Zhang et al., 2022c). When a CNN is used for seismic-data-
based gas reservoir prediction, the most common method is to use
curved shapes as features and input them into neural networks as
images for classification (Yuan et al., 2018). However, this method
has a high labor cost and low efficiency. In contrast, a one-
dimensional (1D) CNN can perform convolution operations
directly on 1D samples of the target reservoir and automatically
extract target features from original data (Wang and Cao, 2021).
Therefore, this method has higher efficiency and lower computa-
tional cost.

A 1D convolutional layer is a basic layer type in a CNN used to
process data with a sequence structure (Kiranyaz et al., 2021; Xue
et al., 2022). It can extract local features from sequential data and
encode them into higher-level representations. A 1D convolutional
layer typically contains several learnable convolutional kernels,
each of which performs a 1D convolution on an input sequence to
obtain a new set of feature sequences. The output is

yl ¼ f
�
wl*xl�1 þ bl

�
(1)
prediction using the proposed hybrid fusion model.
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where xl�1 and yl are the outputs of the convolutional layers l�1
and l, respectively; wl is the convolutional kernel of the lth con-
volutional layer; bl is the bias; and * denotes the convolution
operation.

f ð $Þ is a non-linear activation function. This study selected the
ReLU, and its expression is as follows:

fReLUðxÞ¼maxð0; xÞ (2)

The pooling layer is an important part of CNN and is used to
reduce the space size of feature maps, thereby reducing model
parameters and alleviating overfitting. The pooling operation usu-
ally involves statistical analysis of each small domain in the input
feature map to obtain a summarized feature value. The mathe-
matical expression for the pooling layer of a 1D CNN is

yi ¼poolingðxi:iþl�1Þ (3)

where x and y are the input and output 1D signal sequences,
respectively; l is the pooling window size; and i is the starting
position of the pooling window. In this study, a max-pooling
operation was adopted.

The fully connected (FC) layer receives the results of alternating
outputs from the previous convolutional and pooling layers, in-
tegrates and extracts the features, rearranges them into a 1D
feature vector, and transmits them to the output layer. The opera-
tion process is

yr ¼ f
�
wr $ yr�1 þ br

�
(4)

where yr�1 and yr are the outputs of layers r�1 and r, respectively;
f ð $Þ is the activation function; wr is the weight matrix; br is the
bias; and $ is the matrix dot product.

2.2. APSO-LSSVM

After sample feature extraction by the CNN, LSSVMwas used for
GPD prediction. The kernel function selection in the LSSVM
significantly affects its predictive performance. As the LSSVM
model using radial basis function (RBF) had the best prediction
effect among the different kernel functions for MSA-based GPD
prediction (Yang et al., 2023b), it was selected for this study. The
kernel parameters also affect the prediction accuracy. APSO was
used to optimize the kernel parameters and achieve excellent
prediction results.

In the classical PSO algorithm, the inertia weight and velocity
coefficients are often fixed; however, with progressive iterations,
they often become too large or too small, leading to local optimi-
zation and reducing the optimization ability (Chaitanya et al.,
2021). To alleviate these problems, we adopted adaptive inertia
weight and velocity coefficients that automatically adjusted during
the iteration (Eqs. (5) and (6), respectively).

8>><
>>:

wðtÞ ¼ wmin þ ðF � fminÞ$ðwmax �wminÞ�
favg � fmin

� ; F � favg

wðtÞ ¼ wmin þ ðwmax �wminÞ$ðT � tÞ
.
T ; F > favg

(5)

8>>>><
>>>>:

c1 ¼ C1 þ
F � favg

favg � fmin

c2 ¼ C2 �
F � favg

favg � fmin

(6)
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where w(t) is the adaptive inertia weight; c1 and c2 are the velocity
coefficients; fmin and favg are the minimum and mean fitness,
respectively; F is the current fitness; wmax and wmin are the
maximum and minimum of the set inertial weight, respectively; t
and T are the current and maximum iterations, respectively; C1 and
C2 represent the initial minimum and maximum velocity co-
efficients, respectively.

During training of the APSO-LSSVM model, its kernel function
parameters were set as the particle position vectors. When the
fitness value satisfied the accuracy requirement, training was
completed. The optimal result was set as the parameters for LSSVM
(Fig. 2).

2.3. Construction and performance evaluation of the proposed
hybrid fusion model

The proposed hybrid fusion model uses CNN model to auto-
matically extract important features from input variables, which
are then used in the APSO-LSSVM to obtain the GPD prediction
results (Fig. 3). First, the CNN model was trained using a training
dataset. The trained CNN was used to extract sensitive features of
the gas reservoir using sensitive MSAs selected by cluster analysis.
The extracted features and label data were then used to construct a
new dataset for the APSO-LSSVM model training, wherein APSO
was used to optimize model parameters. Finally, the trained APSO-
LSSVM model was used to predict the GP. The trained CNN-APSO-
LSSVMmodel was applied to the selected study area to predict GPD.

Detailed parameter information for the proposed CNN-APSO-
LSSVM model is presented in Tables 1 and 2. In the DL model,
model hyperparameters control the structure of the network and
are set before training begins. These hyperparameters are different
from the model parameters (weights) obtained during the training
process and are usually set manually and adjusted through
repeated experimentation. The predictive performance of the
models trained with different hyperparameters varied significantly.
Therefore, the selection of appropriate hyperparameters is crucial.
In this study, the hyperparameters of the CNNmodel were obtained
through previous experience and comparative experiments. The
detailed parameters and training algorithms for the CNN are listed
in Table 1. The CNN model consisted of input layer, feature layer
(four alternately arranged convolutional and pooling layers), FC
layer, and output layer. The Adam algorithm was used as the opti-
mization algorithm.

The values of the kernel function parameters in LSSVM are
crucial for model prediction performance. This study selected the
RBF kernel function, which must determine the penalty factor C
and kernel parameter s. We used APSO algorithm for optimization.
Table 2 lists the detailed information on the proposed APSO-LSSVM
model. In contrast to the standard PSO algorithm, APSO adaptively
adjusts the values of inertia weight and velocity coefficients during
training; therefore, only their initial ranges need to be set. In the
APSO algorithm, the swarm size was 200, maximum inertia weight
wmax was 0.8, minimum inertiaweightwminwas 0, initial minimum
value of the velocity coefficient C1 was 1.5, and initial maximum
value of the velocity coefficient C2 was 2.5. In the LSSVMmodel, the
kernel function parameters C and swere optimized using the APSO
algorithm and the final APSO-LSSVM model was obtained. The
specific optimization process is shown in Fig. 2.

In CML methods, cross-validation is typically adopted to train
models and eliminate potential overfitting problems. However, in
contrast to CML models, CNN need to extract local feature infor-
mation from the input data and using conventional cross-validation
will lead to data discontinuity and destroy effective feature infor-
mation. Therefore, to ensure the continuity of the sample data and
maximize the full use of the training samples, we adopted a blind-



Fig. 2. Flowchart of APSO-optimized LSSVM.

Fig. 3. Structure of the hybrid CNN-APSO-LSSVM model.

Table 1
Model hyperparameters setting of CNN model.

Model Model hyperparameters setting

Structure Other hyperparameters

CNN 1 Convolutional layer (64 filters, 4 kernel_size, ReLU activation, padding ‘same’);
MaxPooling (1 pooling size); 1 Convolutional layer (64 filters, 4 kernel_size, ReLU
activation, padding ‘same’); MaxPooling (1 pooling size); 1 Convolutional layer
(128 filters, 4 kernel_size, ReLU activation, padding ‘same’); MaxPooling (2
pooling size); 1 Convolutional layer (128 filters, 4 kernel_size, ReLU activation,
padding ‘same’); MaxPooling (2 pooling size); 1 Dense layer (1 neuron).

Optimizer is the Adam optimization algorithm; the learning rate is 0.001, the
time steps are 5, the batch size is 10, the dropout is 0.2, the maximum epochs are
500, and the loss function is root mean squared error.

J.-Q. Yang, N.-T. Lin, K. Zhang et al. Petroleum Science 21 (2024) 2329e2344
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Table 2
Detail information of the proposed APSO-LSSVM model.

LSSVM APSO

Type Value/comment Type Value/comment

Cross-validation Five-fold Swarm size 200
Kernel function RBF wmax 0.8
Kernel function parameter C,s wmin 0
Optimization method APSO C1 1.5
Iteration 500 C2 2.5

Fig. 4. Forward modeling of the wave equation of (a) part of the Marmousi2 model, (b)
longitudinal and (c) converted shear wave migration profiles, (d) actual gas reservoir
distribution.
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well cross-validation method for training. Specifically, for the
training dataset, sample data provided by one well each time were
set aside as a validation subset, and sample data provided by the
remaining wells were used as training subset. This process was
repeated until all the wells were verified. Using this technique,
multiple random transformations are performed on the training
and validation subsets to obtain the optimal hyperparameters for
constructing the CNN model. Subsequently, we used the features
extracted by the CNN model and label data to form a new training
dataset for APSO-LSSVM model training. The five-fold cross-vali-
dation was adopted to divide training and validation subsets and
ultimately obtain the optimal parameters to construct the APSO-
LSSVM model. After the two training processes are completed,
the final CNN-APSO-LSSVM model was obtained.

To evaluate the prediction performance of the hybrid fusion
model, we first compared its results with those of the individual
APSO-LSSVM and CNN models to analyze the degree of improve-
ment in the proposed model. Sensitive MSAs selected by cluster
analysis were then processed using PCA and CO feature optimiza-
tion. The obtained seismic attributes were input into the APSO-
LSSVM for GPD prediction, and their results were compared with
those of the hybrid model to analyze the feature extraction capa-
bility of CNN. Finally, the extracted features were input into the
LSSVM model without the APSO algorithm for parameter optimi-
zation during training to analyze the impact of APSO algorithm on
the model performance.
3. Synthetic data examples

3.1. Data preparation and feature selection

This prediction scheme was validated using synthetic data
generated by the Marmousi2 model (Martin et al., 2006). Fig. 4(a)
shows the longitudinal wave velocity of a part of the Marmousi2
model that includes a gas reservoir (blue area). Staggered-grid
finite-difference forward modeling was performed using the
dual-phase first-order velocity stress equation (He et al., 2022) to
obtain the migration profiles of the longitudinal (Fig. 4(b)) and
converted shear waves (Fig. 4(c)). The yellow and blue parts in the
gas profile of the Marmousi2 model (Fig. 4(d)) represent tight
sandstone gas reservoirs and gas-free mudstone, respectively.
Three seismic traces were selected as pseudo-wells (white dotted
lines), on which the gas- and non-gas-reservoir characteristics
were marked to create gas reservoir labels.

Sensitive seismic attributes were selected based on the designed
scheme (Fig. 1). Features of the MSAs were selected using cluster
analysis to reduce their dimensions. Note that cluster analysis does
not transform the seismic attribute features. After dimension
reduction, it selects the original MSAs that are sensitive to gas
reservoirs and facilitates subsequent feature optimization or
extraction. Six sensitive attributes, instantaneous amplitude,
instantaneous frequency, instantaneous phase, RMS amplitude,
average peak amplitude, and arc length (Fig. 5), were selected using
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cluster analysis (Zhang et al., 2019; Yang et al., 2021). To analyze the
sensitivity of the selected attributes, we extracted the characteris-
tics of different seismic attributes and label data for the three
pseudo-well seismic traces (Fig. 6). Except for the instantaneous
phase attribute, all other attributes were observed to contribute to
gas reservoir prediction. Considering the diversity of sample data
and to retain more gas reservoir characteristic information, the five
contributing seismic attributes in the synthetic data were selected
as input samples for the hybrid fusion DL model.
3.2. Feature optimization and gas-bearing prediction

After sample data generation, three pseudo-wells were used for
CNN model training by blind-well cross-validation; that is, during
each iteration, one well was set aside for validation until all three
wells were validated. After network training, the predicted sample
features were obtained (Fig. 7). The CNN model integrates the ad-
vantages of the original attributes, and the extracted features
effectively highlight sensitive gas reservoir information while
suppressing non-gas reservoir information, making the prediciton
features more consistent with the label and proving the effective-
ness of CNN for feature extraction. The features extracted by the
CNN model and label data were then used to form a new training
dataset to train the APSO-LSSVM model. During training, the APSO
algorithm continuously optimized the relevant parameters of the
LSSVM until the accuracy requirements were satisfied, and the
entire CNN-APSO-LSSVM model training was completed.

The obtained CNN-APSO-LSSVMmodel accurately predicted the
distribution of gas reservoirs (Fig. 8(e)) with a small error (Fig. 8(f)).



Fig. 5. Selected original MSAs sensitive to gas reservoirs in the synthetic data: (a1) and (a2) instantaneous amplitude, (b1) and (b2) instantaneous frequency, (c1) and (c2)
instantaneous phase, (d1) and (d2) RMS amplitude, (e1) and (e2) average peak amplitude, and (f1) and (f2) arc length attribute. ((a1)e(f1) longitudinal waves and (a2)e(f2)
converted shear waves).
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To verify its advantages, we compared it with the prediction results
obtained by directly inputting sensitive MSA data into the APSO-
LSSVM and CNN models. The APSO-LSSVM performed poorly in
gas reservoir prediction (Fig. 8(a)) and had significant errors
(Fig. 8(b)) because the raw data were directly input into the model
without feature optimization, and the gas reservoir features were
not obvious. In contrast, the hybrid fusion model significantly
improved the prediction ability of APSO-LSSVM. The CNN model
made relatively accurate predictions owing to its powerful feature
extraction ability (Fig. 8(c)); however, the obtained prediction re-
sults had higher errors compared to the CNN-APSO-LSSVM model,
and there was some redundant information in the non-gas reser-
voir areas (Fig. 8(d)). The APSO-LSSVM can further optimize the
features extracted by the CNN to obtain better prediction results.
Overall, the constructed hybrid fusion model improved the per-
formance of both CML and DL models, verifying its effectiveness.

3.3. Performance evaluation of the hybrid fusion model

To analyze the feature extraction capability of CNN, we
compared it with the predicted results obtained by inputting
sample features obtained from PCA and CO into the APSO-LSSVM
model for gas-bearing prediction. The sample features optimized
by PCA and CO are shown in Figs. 9 and 10. The principal compo-
nents were obtained by the PCA of sensitive seismic attributes with
a threshold of 90%. Finally, three principal components, each of
longitudinal and converted shear wave attributes, were obtained
(Fig. 9). Although the principal components obtained by the PCA
synthesized the characteristics of the sensitive seismic attributes
(Fig. 6) and reduced their dimensions, they still contained consid-
erable redundant information. Three composite attributes (Fig. 10)
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were obtained by performing CO (Zhang et al., 2019) on sensitive
seismic attributes. Compared with the principal components
(Fig. 9), the three composite attributes (Fig. 10) better highlighted
the sample characteristics because the latter were combined with
the target reservoir characteristics to select the appropriate CO
method. PCA uses the internal relationships of seismic attributes to
obtain principal components, reflecting their statistical character-
istics. Therefore, for a target area with known gas reservoir char-
acteristics, the composite attributes reflected the gas reservoir
characteristics better than the principal components.

We analyzed the prediction results obtained using the three
feature optimization methods (Fig. 11). Although the prediction
results obtained using principal components as input (PCA-APSO-
LSSVM) (Fig. 11(a)) reduced redundant information and prediction
error comparedwith the prediction results obtained using sensitive
seismic attributes (Fig. 8(a)), they still contained redundant infor-
mation (Fig. 11(b)), which is consistent with the sample charac-
teristics (Fig. 9). Meanwhile, the prediction results obtained using
the three composite attributes as inputs (CO-APSO-LSSVM)
(Fig. 11(c)) were superior to that of PCA-APSO-LSSVM (Fig. 11(a)),
with improved accuracy and significantly suppressed non-gas
reservoir information (Fig. 11(d)). Furthermore, the prediction re-
sults (Fig. 11(c)) were similar to those of the CNN-APSO-LSSVM
(Fig. 8(e)), with small prediction errors (Figs. 8(f) and 11(d)). This
indicates that the features extracted by the CNN and those obtained
from CO can better reflect the gas reservoir information. Using a
CNN for feature extraction reduced the tedious steps of feature
optimization present in CO and improved the feature optimization
efficiency, proving its advantages in feature extraction. The feature
samples obtained by the three feature optimization methods above
were all input into the APSO-LSSVM model for prediction, among



Fig. 6. Sample features of original MSAs for the three pseudo-wells in Fig. 4(d) and
their label information. Note: insampdinstantaneous amplitude, insfreqdinstanta-
neous frequency, insphasedinstantaneous phase, rmsdRMS amplitude, apadaverage
peak amplitude, aldarc length.

Fig. 7. Sample features for the three pseudo-wells in Fig. 4(d) predicted by CNN model
and their label information.

Fig. 8. Prediction results and errors of the APSO-LSSVM, CNN, and CNN-APSO-LSSVM
models in the synthetic data. (a) Prediction result and (b) error of APSO-LSSVM; (c)
prediction result and (d) error of CNN; (e) prediction result and (f) error of CNN-APSO-
LSSVM.
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which the CNN-APSO-LSSVM demonstrated the best results owing
to the application of the CNN. Compared to the other two MSA
optimization methods, the CNN extracted clearer sample features
and improved the quality of the sample data. Moreover, the con-
structed CNN-APSO-LSSVM adopted an end-to-end algorithm
structure that exhibited good universality and operability.

To analyze the influence of APSO algorithm on the prediction
result, the sample data obtained by CO and CNNwere input into the
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LSSVM model (CO-LSSVM and CNN-LSSVM, respectively) for gas-
bearing prediction (Fig. 12). Both models yielded relatively accu-
rate predictions because both feature optimization methods (CO
and CNN) effectively extracted sensitive gas reservoir information
and highlighted the gas reservoir characteristics. However, they
showed larger errors compared with the results of the CO-APSO-
LSSVM (Figs. 11(c) and (d)) and CNN-APSO-LSSVM (Fig. 8(e) and
(f)) models with relatively unclear gas reservoir boundaries. The
relationship between MSAs and gas-bearing is complicated, and
high-quality input data are insufficient. An intelligent prediction
model with a good performance is imperative to fully explore the
relationship between them and obtain more accurate results.
Optimizing the parameters of the LSSVM using the APSO algorithm



Fig. 9. Sample features for the three pseudo-wells in Fig. 4(d) optimized by PCA and
their label information.

Fig. 10. Sample features for the three pseudo-wells in Fig. 4(d) optimized by CO and
their label information.

Fig. 11. Prediction results and errors of the PCA-APSO-LSSVM and CO-APSO-LSSVM
models in the synthetic data. (a) Prediction result and (b) error of PCA-APSO-
LSSVM; (c) prediction result and (d) error of CO-APSO-LSSVM.

J.-Q. Yang, N.-T. Lin, K. Zhang et al. Petroleum Science 21 (2024) 2329e2344
can further improve its prediction and gas reservoir boundary
characterization abilities, thereby improving its prediction accu-
racy and validating its effectiveness of the APSO algorithm. It was
observed that even though the CNN-LSSVM model did not use
APSO to optimize the relevant parameters during training, the
obtained prediction results still had smaller errors than those of the
CNN model, validating the effectiveness of integrating the two
models into a hybrid fusion model. By optimizing the relevant
parameters using the APSO algorithm, the hybrid fusion model
performance was further improved, yielding better results.

4. Real data examples

4.1. Feature selection and dataset construction

We applied the proposed method to GPD prediction using
multicomponent seismic data from the Fenggu structural area of
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the Western Sichuan Depression (WSD) in China. Detailed
geological conditions of the WSD are available in Duan et al. (2023)
and Zhang et al. (2022a). We selected T3X4

6 member of the Xujiahe
Formation as the target layer for GPD prediction. Detailed multi-
component seismic data for the target layer are available in studies
by Zhang et al. (2022b) and Yang et al. (2023a).

Feature selection is an important step in the use of DL methods
for feature extraction and prediction. There are many types of
MSAs, and the seismic attributes that contribute significantly to
gas-bearing predictions were first selected using feature selection.
In this study, cluster analysis was used to select the important



Fig. 12. Prediction results and errors of the CO-LSSVM and CNN-LSSVM models in the
synthetic data. (a) Prediction result and (b) error of CO-LSSVM; (c) prediction result
and (d) error of CNN-LSSVM.
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attributes sensitive to gas reservoirs from the original MSAs. The six
MSAs obtained through cluster analysis are shown in Fig. 13. All six
MSAs provided different gas reservoir information to a certain
extent. To obtain as much characteristic information of the target
reservoir as possible, all six MSAs were used in the CNN-APSO-
LSSVM for feature optimization and GPD prediction.

The target layer has a limited degree of exploration with only 11
wells, making it difficult to obtain more labels by relying solely on
drilling data. Therefore, the following process was adopted: the GP
of dry wells was set to 0, the GP of gas wells with the highest gas
content was set to 1, and the GP of other gas wells was calculated
proportionally through their gas content and ranged between 0 and
Fig. 13. Selected original MSAs sensitive to gas reservoirs in the real data: (a1) and (a2) instan
phase, (d1) and (d2) RMS amplitude attribute, (e1) and (e2) average peak amplitude, and (f1
converted shear waves).
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1. The GP around the well was determined using correlation cal-
culations (Lin et al., 2018; Song et al., 2022). An average of
approximately 20 subtrace sets were extracted around each well;
each subtrace set had a length of 64 sampling points, the sliding
time window had a length of 16 sampling points, and the sliding
step length was one sampling point; approximately 960 sample
points were extracted around each well. Using this method, addi-
tional sample data were obtained from known wells. This method
can obtain the GP, rather than the gas-bearing classification. The
obtained GP can contain more gas reservoir characteristic infor-
mation, which aids the hybrid fusion model in GPD prediction.

4.2. Hybrid fusion model training and testing

The sample data provided by three wells (including two gas
wells and one dry well) and their surrounding areas were used for
testing, whereas sample data provided by the remaining eight wells
and their surrounding areas were used for training. The ratio of the
training to testing datasets was approximately 7:3 (Anifowose et al.,
2016). For the training dataset, the training and validation subsets
were divided by blind-well cross-validation, and the CNN model
was trained to determine the parameters of the model. The CNN
model for feature extraction was obtained after the errors satisfied
the accuracy requirements. A new training dataset was built using
the features extracted by CNN to train APSO-LSSVM model,
wherein APSO was used to optimize the relevant parameters until
the error met the accuracy requirements, ultimately obtaining the
CNN-APSO-LSSVM model for predicting GPD. The detailed param-
eter settings of the CNN-APSO-LSSVM model are presented in
Tables 1 and 2.

After training, the CNN-APSO-LSSVM model was applied to
testing dataset to evaluate its effectiveness. To test the advantages
of the hybrid fusion model over single models, we compared its
prediction performance with those of CNN and APSO-LSSVM
models (Fig. 14). Error analysis of the testing dataset showed that
CNN-APSO-LSSVM improved the prediction performance of CNN
and APSO-LSSVM. For the predicted GP of CNN-APSO-LSSVM
taneous amplitude, (b1) and (b2) instantaneous frequency, (c1) and (c2) instantaneous
) and (f2) arc length attribute. ((a1)e(f1) show longitudinal waves and (a2)e(f2) show



J.-Q. Yang, N.-T. Lin, K. Zhang et al. Petroleum Science 21 (2024) 2329e2344
model, 46% of the test data points had a relative error of <5%,
compared to 37% and 28% for the CNN and APSO-LSSVM models,
respectively. Moreover, CNN and APSO-LSSVM models had 2‒4
times more data points with relative errors >20% than the CNN-
APSO-LSSVM model. This proves the superior prediction accuracy
of the CNN-APSO-LSSVM compared to the CNN and APSO-LSSVM
models.

4.3. Prediction results and performance analysis

The GPD prediction results of the APSO-LSSVM (Fig. 15 (a)) show
a poor gas reservoir boundary and inaccurate prediction of gas
wells. This is because the six original MSAs were directly inputted
into the APSO-LSSVM for GPD prediction without feature optimi-
zation, which seriously affected the learning ability of the CML
model, making it impossible to fully utilize its advantages to
explore the intrinsic characteristics of the input samples, thereby
reducing its prediction ability. Feature optimization is a crucial step
in the CML model for make non-linear and successful predictions
for practical applications. Therefore, it is important to obtain
sample data with clear characteristics by optimizing the features of
the original MSAs for gas-bearing predictions. Compared with the
original MSAs (Fig. 13), the CNN model fully extracted the gas
reservoir characteristics and achieved better GPD results (Fig. 15
(b)). However, considerable redundant information were
observed in the predicted results. Nevertheless, the results were
considerably superior to those of the APSO-LSSVM model, because
compared with the latter, the CNN model could better learn the
distribution characteristics and internal relationships of the sam-
ples owing to the existence of convolutional layers. The prediction
results of CNN-APSO-LSSVM (Fig. 15(c)) further highlight the gas-
bearing information compared to those of the CNN (Fig. 15(b)).
The gas reservoir boundaries were clearly delineated, and the re-
sults better reflected the variation characteristics of the gas reser-
voirs. Moreover, among the three models, the gas reservoir
information described by the proposed CNN-APSO-LSSVM was
similar to that described by the CNN, indicating its considerable
influence on the proposed hybrid fusion model. Although APSO-
LSSVM has the advantage of a small sample size, it requires high-
quality sample data. Feature optimization of MSA using a CNN
Fig. 14. Stacked histogram of GP prediction with relative error distribution of the
APSO-LSSVM, CNN, and CNN-APSO-LSSVM models for the testing dataset.

Fig. 15. GPD prediction results of the (a) APSO-LSSVM, (b) CNN, and (c) CNN-APSO-
LSSVM models.
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improves the quality of sample data and the prediction perfor-
mance of APSO-LSSVM.
5. Discussion

5.1. Comparison of different feature optimization methods

The CNN-APSO-LSSVMmodel constructed in this study includes
two processes: feature optimization and intelligent prediction. In
the feature optimization process, we used a CNN for feature
extraction of MSAs. To analyze the feature extraction capability of
CNN, the prediction results of CNN-APSO-LSSVM were compared
with those obtained using PCA-APSO-LSSVM and CO-APSO-LSSVM
(Fig. 16). The prediction results obtained by the former (Fig. 16(a))



Fig. 17. Performance comparison of LSSVM optimization using PSO and APSO algo-
rithms on training dataset.

Table 3
Performance comparison of CNN-APSO-LSSVM, PSO-LSSVM and LSSVM on the
testing dataset.

Model Performance indicators

MSE RMSE R2

CNN-LSSVM 0.0109 0.1042 0.9693
CNNePSO-LSSVM 0.0099 0.0995 0.9717
CNN-APSO-LSSVM 0.0095 0.0976 0.9739
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were better than those obtained by the APSO-LSSVM model using
the original MSAs (Fig. 15(a)), with slightly improved consistency
with actual drilling data; however, the improvement was not sig-
nificant. The prediction results of CO-APSO-LSSVM (Fig. 16(b))
improved considerably compared with those of APSO-LSSVM and
PCA-APSO-LSSVM, with abundant gas information. CNN-APSO-
LSSVM (Fig. 15(c)) depicts the gas reservoir boundary more
clearly and improves the prediction accuracy compared to PCA-
APSO-LSSVM and CO-APSO-LSSVM, indicating the effectiveness of
CNN for the feature optimization of sample data under real con-
ditions compared to the two feature optimization methods, PCA
and CO. For the synthetic data, the prediction results of CO-APSO-
LSSVM and CNN-APSO-LSSVM were similar; however, for the real
data, significant differences were observed in their prediction re-
sults. The CNN-APSO-LSSVM showed better gas reservoir boundary
characterization ability than CO-APSO-LSSVM, indicating that CNN
has better feature extraction ability than the CO feature optimiza-
tion method, further highlighting the advantages of CNN. When
applied to complex data (real data), a CNN can still use its powerful
advantages to directly extract features and simplify feature opti-
mization while obtaining more effective gas reservoir information.

5.2. Performance analysis of intelligent prediction models

By comparing the prediction results of different feature opti-
mizationmethods, we verified the advantages of the CNNmodel for
feature optimization. The APSO algorithm was adopted for the
intelligent prediction process of the hybrid fusion model. We
further analyzed the impact of APSO algorithm on the performance
of LSSVM model (Fig. 17). The intelligent prediction model opti-
mized by APSO has faster error reduction and model convergence
than that optimized by PSO during training. This indicates that the
APSO optimization algorithm improved the optimization ability of
PSO, enabling faster and more accurate optimization of LSSVM.

We compared the performance of the prediction models ob-
tained by entering the features extracted by CNN into the unopti-
mized LSSVMmodel (CNN-LSSVM), the LSSVMmodel optimized by
PSO (CNNePSO-LSSVM), and the LSSVM model optimized by APSO
(CNN-APSO-LSSVM) (Table 3). The prediction results of LSSVM
optimized using APSO (CNN-APSO-LSSVM) have a higher goodness
of fit (R2 ¼ 0.9739) than those of the LSSVM optimized using PSO
(PSO-LSSVM) (R2 ¼ 0.9717), indicating that the APSO-LSSVMmodel
exhibits better predictive performance than the PSO-LSSVM on the
testing dataset. Combining their performance on the training
dataset (Fig. 17), although the PSO-LSSVM also reached a lower
error level during training, it used more iterations, and its test
performance was inferior to that of the APSO-LSSVM. This indicates
that, compared with the PSO algorithm, the APSO algorithm can
Fig. 16. GPD prediction results of the (a) PCA-AP
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better perform global optimization during training to obtain the
optimal model parameters, and the obtained intelligent prediction
model performs better.

In addition, compared to the CNN-LSSVMmodel, which was not
optimized using intelligent algorithms (MSE ¼ 0.0109,
RMSE ¼ 0.1042, R2 ¼ 0.9693), the CNN-APSO-LSSVM model had
lower error (MSE ¼ 0.0095, RMSE ¼ 0.0976) and higher fit
(R2 ¼ 0.9739), significantly improving the prediction performance.
For further analysis, we input the sample features extracted from
the CO and CNN optimizations into the LSSVM model (without
APSO algorithm optimization) for GPD prediction (Fig. 18). The
prediction results showed unclear gas reservoir boundaries; in
particular, the GP obtained by the CO-LSSVM (Fig. 18(a)) was lower
than that obtained by the CO-APSO-LSSVM (Fig. 16(b)). Parameter
optimization of the LSSVM using the APSO algorithm improved its
prediction ability, and the obtained prediction results further
highlighted the gas reservoir characteristics. The features of the
MSAs obtained by the CO differed from those extracted by the CNN
model. When using the two different feature datasets for GPD
prediction, the prediction results obtained using the APSO-
optimized intelligent models (CO-APSO-LSSVM and CNN-APSO-
LSSVM) were better than those obtained without optimization
(CO-LSSVM and CNN-LSSVM), verifying the effectiveness of the
APSO-LSSVM.
SO-LSSVM and (b) CO-APSO-LSSVM models.



Fig. 18. GPD prediction results of the (a) CO-LSSVM and (b) CNN-LSSVM models.

Table 5
Performance of different models for the testing dataset.

Model Performance indicators

MSE RMSE R2

APSO-LSSVM 0.0417 0.2042 0.8813
PCA-APSO-LSSVM 0.0337 0.1836 0.9283
CO-LSSVM 0.0113 0.1062 0.9678
CO-APSO-LSSVM 0.0097 0.0983 0.9731
CNN 0.0129 0.1136 0.9437
CNN-LSSVM 0.0109 0.1042 0.9693
CNN-APSO-LSSVM 0.0095 0.0976 0.9739
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5.3. Comprehensive evaluation of hybrid fusion model performance

We further analyzed the coincidence between the prediction
results of hybridmodels and actual drilling (Table 4), which showed
poor consistency for the APSO-LSSVM model, with an overall
coincidence of 6/11. The coincidence of PCA-APSO-LSSVM
improved slightly, mainly in the dry well, indicating that redun-
dant information was reduced after PCA optimization. The coinci-
dence between the prediction results of CO-APSO-LSSVM and CNN-
APSO-LSSVM was similar, indicating the effectiveness of CO and
CNN in feature optimization and extraction, respectively. However,
the direct feature extraction ability of CNN simplifies the complex
process used by CO for feature optimization, proving that the
former is more effective. Note that both models predict gas well N3
as a dry well because it has the lowest gas content of all gas wells;
therefore, the GP obtained through correlation calculation is also
the lowest, resulting in inaccurate predictions in both scenarios.
Furthermore, the coincidence of CO-LSSVM was lower than that of
CO-APSO-LSSVM, verifying the effectiveness of the APSO algorithm.
Although the coincidence of the prediction results of CNN-LSSVM
and CNN-APSO-LSSVM was similar, the distribution prediction re-
sults for the entire region showed that the CNN-APSO-LSSVM could
depict a clearer gas reservoir boundary (Fig. 15(c)). Thus, the
effectiveness of the DL method for feature extraction and the CML
method for gas-bearing distribution prediction was demonstrated.

To analyze the prediction performances of the different hybrid
models more intuitively, we compared their errors on the testing
dataset (Table 5). The CNN-APSO-LSSVM model improved the
prediction ability of both APSO-LSSVM and CNN with an increased
R2 of 10.51% and 3.20%, respectively. The fitting degree of the APSO-
LSSVM was significantly improved, as CML models could success-
fully predict reservoir distribution, mainly using high-quality
sample data. Compared to the PCA-APSO-LSSVM (MSE ¼ 0.0337,
RMSE ¼ 0.1836, R2 ¼ 0.9283) and CO-APSO-LSSVM (MSE ¼ 0.0097,
Table 4
Coincidence between prediction results of different hybrid models and actual drilling da

Model Well name

M1 M2 M3 M4 N1 N2

Actual Gas Gas Gas Gas Dry Gas
APSO-LSSVM Gas Gas Dry Dry Dry Gas
PCA-APSO-LSSVM Gas Gas Gas Dry Gas Gas
CO-LSSVM Gas Gas Gas Gas Dry Gas
CO-APSO-LSSVM Gas Gas Gas Gas Dry Gas
CNN Gas Gas Gas Gas Gas Gas
CNN-LSSVM Gas Gas Gas Gas Dry Gas
CNN-APSO-LSSVM Gas Gas Gas Gas Dry Gas
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RMSE ¼ 0.0983, R2 ¼ 0.9731) models, the error of CNN-APSO-
LSSVM model was smaller (MSE ¼ 0.0095, RMSE ¼ 0.0976), and
the fitting degree was higher (R2 ¼ 0.9739). Although all three
models used APSO-LSSVM for prediction, their prediction perfor-
mances were different, and CNN-APSO-LSSVM had better predic-
tion performance, demonstrating the advantage of CNN for feature
extraction. The MSE and RMSE of the CO-APSO-LSSVMmodel were
lower than those of the PCA-APSO-LSSVM model, indicating better
feature optimization by CO than by PCA. However, CO is highly
dependent on the reservoir characteristics and is not as applicable
as PCA optimization. Moreover, compared to CNN-LSSVM and CO-
LSSVM, APSO effectively improved the prediction ability of the
LSSVM. The CO-APSO-LSSVM showed reduced MSE and RMSE by
14.16% and 7.44%, respectively, compared with the CO-LSSVM. The
CNN-APSO-LSSVM showed reduced MSE and RMSE by 12.84% and
6.33%, respectively, compared with the CNN-LSSVM. The prediction
model optimized by APSO has a lower error, further validating the
efficiency of the CNN-APSO-LSSVM model.

Furthermore, the APSO-LSSVM and CNN models both used the
six original attributes for GPD prediction, and CNN had a better
predictive performance. Even with the PCA optimization of the
ta (the inconsistent prediction results of each model are marked in bold).

Coincidence

N3 N4 O1 O2 P1 Total Gas Dry

Gas Dry Dry Dry Gas
Gas Gas Gas Dry Dry 6/11 4/7 2/4
Dry Dry Dry Dry Dry 7/11 4/7 3/4
Dry Dry Dry Dry Dry 9/11 5/7 4/4
Dry Dry Dry Dry Gas 10/11 6/7 4/4
Gas Dry Gas Dry Gas 9/11 6/7 3/4
Dry Dry Dry Dry Gas 10/11 6/7 4/4
Dry Dry Dry Dry Gas 10/11 6/7 4/4
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input MSAs, the prediction results still exhibited large errors,
indicating better feature extraction and prediction abilities of the
CNN for the original data with unclear sample features, which can
further improve prediction accuracy. These analyses indicate that
the proposed CNN-APSO-LSSVM model has the highest fitting de-
gree and lowest error, thereby proving its efficiency and feasibility.

5.4. Strengths and limitations of the proposed model

GDP prediction using multicomponent seismic data is chal-
lenging because of the complex and unclear relationships between
them. The use of CML models for gas-bearing prediction requires
optimization of the features of sample data to remove irrelevant
and redundant information, highlighting the sample features that
contribute significantly to the target data. In the feature optimi-
zation process of MSAs, commonly used methods require manual
intervention. During this process, insufficient subjective awareness
and experience may lead to the loss of effective information related
to reservoir prediction or highlight redundant information unre-
lated to reservoir prediction, affecting the effect of feature opti-
mization, and thus the prediction effect of CML models.

In this study, a CNN model was used to perform feature
extraction instead of the aforementioned feature optimization
process, and the CNN model was combined with the APSO-LSSVM
model to build an end-to-end hybrid fusion model. The model
directly inputs the features extracted by CNN into the CML model
for training and prediction, thereby reducing manual intervention,
simplifying the steps of feature optimization, and achieving excel-
lent feature optimization results. Moreover, the parameter opti-
mization of CML models during training is also an important issue.
This study used the APSO algorithm to adaptively determine the
optimal parameters of the LSSVM based on its powerful optimi-
zation ability. During the optimization process, the APSO algorithm
adaptively adjusts the inertia weight and velocity coefficients, re-
duces the influence of improper parameter settings, and improves
its optimization ability. In general, the CNN-APSO-LSSVM model
constructed in this study improved the prediction accuracy of GPD
from two aspects: feature optimization and intelligent prediction.
The constructed model has adaptability and strong learning ability,
and can automatically learn the features and rules of data during
the training process, thereby simplifying the problem of manually
setting features and constraints.

However, the proposed method has some limitations. When
using a CNN model for feature extraction, there may be a risk of
suppressing some key small-scale features while reducing redun-
dant information. This is due to their inherent characteristics. A
CNN extracts features using a local receptive field and weight
sharing, which helps reduce redundant information. However, in
some cases, this mechanism may neglect key small-scale features.
To alleviate this problem, we carefully selected hyperparameters
through blind-well cross-validation based on the characteristics of
MSAs, and determined the network structure of CNN model
through extensive experimental work. By adjusting network
structure and model parameters, the risk of suppressing key small-
scale features can be reduced to a certain extent. The results of this
study also indicate that the CNN effectively reduces redundant in-
formation, and the CNN-APSO-LSSVM achieves an excellent pre-
diction effect. However, this phenomenon cannot be disregarded.
In future studies, we will consider introducing an attention
mechanism into the CNN model to improve its ability to capture
key small-scale features. In addition, the proposed APSO algorithm
can effectively improve the prediction performance of LSSVM. In
future studies, we plan to search for the key hyperparameters of the
CNN to obtain a topology that can better match MSAs and further
improve the feature extraction capability of CNN.
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In gas-bearing predictions using seismic data, the quality of
sample data is crucial for the construction and training of DLmodel.
We hope to obtain abundant sample data to train DL model fully
and improve its predictive ability. However, available sample data
are often limited by the degree of exploration of the target area. In
future studies, we will consider enhancing the diversity of the
sample data and improving the generalizability of the developed
model by generating synthetic data.

6. Conclusions

This study utilizes the advantages of CML and DLmethods in the
prediction of GPD using multicomponent seismic data, and de-
velops a method that combines them for GPD prediction. This
method improves prediction accuracy from the two aspects of
feature optimization and intelligent prediction. In the feature
optimization process, a CNN can fully utilize its powerful feature
extraction capability to effectively extract gas reservoir character-
istics contained in MSAs. During the prediction process, the APSO
algorithm is used to optimize the LSSVM model, improving its gas-
bearing prediction ability. By applying this method, the following
conclusions were drawn:

(1) The GPD prediction performance of the constructed CNN-
APSO-LSSVM model was superior to that of CNN and APSO-
LSSVM models. The CNN and APSO-LSSVM demonstrated
2e4 times more test data points with relative errors >20%
than that of the CNN-APSO-LSSVM. This method effectively
reduces the error of a single model and improves the pre-
diction performance of CML and DL models. In particular, the
ability of CNN to extract deep-level attribute features im-
proves the quality of sample data, which significantly im-
proves the prediction ability of APSO-LSSVM.

(2) The feature optimization of MSAs using the CNN model can
extract gas reservoir features better than those using the PCA
and CO feature optimization methods. The extracted gas
reservoir information was inputted into the APSO-LSSVM for
GPD prediction, which achieved better prediction results
than the PCA-APSO-LSSVM and CO-APSO-LSSVM models.

(3) The APSO algorithm improved the GPD prediction perfor-
mance of LSSVM. The CNN-APSO-LSSVM reduced the MSE
and RMSE by 12.84% and 6.33%, respectively, compared with
the CNN-LSSVM. The CO-APSO-LSSVM reduced the MSE and
RMSE by 14.16% and 7.44%, respectively, compared to the CO-
LSSVM. Thus, the APSO algorithm improves the prediction
performance of the LSSVM for different feature optimization
sample data.

In general, this study demonstrates the feasibility of using DL
technology for feature extraction and combining it with the CML
method for gas-bearing prediction. This method reduces the
interference of manual feature optimization and simplifies the
steps of feature optimization. The constructed deep hybrid fusion
model has excellent universality and operability. The effective
implementation of this method can provide a reference for pre-
dicting gas-bearing distributions in other regions or datasets.
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