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a b s t r a c t

The subsea production system is a vital equipment for offshore oil and gas production. The control
system is one of the most important parts of it. Collecting and processing the signals of subsea sensors is
the only way to judge whether the subsea production control system is normal. However, subsea sensors
degrade rapidly due to harsh working environments and long service time. This leads to frequent false
alarm incidents. A combinatorial reasoning-based abnormal sensor recognition method for subsea
production control system is proposed. A combinatorial algorithm is proposed to group sensors. The long
short-term memory network (LSTM) is used to establish a single inference model. A counting-based
judging method is proposed to identify abnormal sensors. Field data from an offshore platform in the
South China Sea is used to demonstrate the effect of the proposed method. The results show that the
proposed method can identify the abnormal sensors effectively.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The subsea production control system is an important equip-
ment for offshore oil and gas production. Safety accidents will cause
the damage to the environment, production and person (Yang et al.,
2023a,b). There are three main types of failures in subsea produc-
tion control system, that is sensor failures, electrical component
failures, and mechanical or hydraulic failures (Kong et al., 2022).
Sensors are the core of system state detection. However, subsea
sensors degrade rapidly due to the harsh working environments
and long service time. This leads to the monitoring signal distortion
and frequent false alarm (Ren et al., 2022). The abnormal sensor is a
great obstacle to fault diagnosis for the system (Narzary and
Veluvolu, 2022). An effective anomaly recognition method for
sensors is very important.

Anomaly recognition is considered as the pre-processing step of
fault diagnosis. The purpose of fault diagnosis is to explore the
cause of the fault, locate and classify the fault. For the fault diag-
nosis of subsea production system, the accuracy of sensor readings
is more concerned. Sensor failures cannot be diagnosed by the early
y Elsevier B.V. on behalf of KeAi Co
methods of fault diagnosis. Therefore, the accurate identification of
system fault and sensor fault became the blind spot of many fault
diagnosis systems. In the 1980s, the fault diagnosis and anomaly
recognition of sensors attracted attention. The physical-
redundancy method was first adopted for detecting and diag-
nosing sensor faults in nuclear-power plants (Dorr et al., 1997).
Even though the physical-redundancy approach can often be
effective, the cost and complexity of incorporating redundant
sensors might make this approach unattractive to some extent in
other less critical applications. In addition, this approach is not
realistic for space-limited equipment such as the subsea production
system. Model-based approaches were later proposed to detect
sensor-faults. It replaces physical-redundancy with analytical
redundancy (Ding et al., 2004). After that, the data-driven methods
gradually prevail in anomaly recognition and fault diagnosis of
sensor (Du and Jin, 2008).

At present, the model-based method and data-driven method
are themost widely used (Rahme andMeskin, 2015; Bakhtiaridoust
et al., 2023). The model-based method is to establish a reasoning
model to analyze and reproduce the system response. In this
method, the accumulation of abnormal data sample sets is not
required. Model-based method generally requires that the mathe-
matical model of the target system be known. At the same time, the
mathematical model is required to have high accuracy in practical
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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engineering applications (Li et al., 2019). However, the contradic-
tory issue is that it is usually difficult to establish accurate mathe-
matical models for complex dynamic systems. The complexity of
the models affects computational efficiency. The practical applica-
tion and effectiveness of model-based method is greatly limited
(Wang et al., 2021). The data-drivenmethod utilizes a large amount
of available historical data for learning and training models (Yang
et al., 2020). One of the advantages of data-driven method is the
ability to ignore the inherent physical connections of the target
system. It effectively avoids the problem of constructing complex
models with high accuracy (Kong et al., 2023). Typical data-driven
anomaly recognition methods generally include artificial neural
networks (ANN) (Allahabadi et al., 2022), principal component
analysis (PCA) (Wang and Cui, 2005), and Bayesian network (Chen
et al., 2019). The subsea production control system is composed of
modular multi-redundant control components. They are mostly
made of pressure-proof and anti-corrosion materials. It is difficult
to visually evaluate real-time operating status. In addition, complex
control logic and coupling relationship of mechanical, electrical and
hydraulic control make it difficult to establish models (Liu et al.,
2020). The data-driven method become a better choice for solv-
ing such problems. However, data-driven algorithms are often
affected by the smearing effect in multivariate fault diagnosis (Qian
et al., 2020). The smearing effect means that abnormal data in-
terferes with the recognition of normal data. At the same time, the
lack of data is a big problem of data-driven method (Ding et al.,
2021). It reduces training effect, also makes it difficult to evaluate
the effectiveness of algorithm.

In order to solve the above problems and realize effective
recognition of subsea abnormal sensors, a combinatorial reasoning-
based abnormal sensor recognition method for subsea production
control system is proposed. A combinatorial algorithm is used to
group the sensors. A single inference model of each combination is
established through the LSTM network. The abnormal sensor is
identified by the counting-based judging method. The rest of this
paper is arranged as follow: the combinatorial reasoning-based
abnormal sensor recognition method for subsea production con-
trol system is introduced in the Section 2. A part of data from a
subsea production control system in the South China Sea is used for
studying the performance of this method. The results are shown in
Section 3. Finally, the conclusion is given in Section 4.

2. A combinatorial reasoning-based anomaly recognition
methodology

The abnormal sensor recognition method of subsea production
control system based on the combinatorial algorithm is shown in
Fig.1. In the first place, the combinatorial algorithm is used to group
sensors. Then, the single inference model of each combination is
established based on the continuous time-chain data sets. Finally,
the cumulative recognition of abnormal sensors is carried out by
combining the combinatorial algorithm and the multi-sensor
inference model. It can be seen from the recognition process that
the single inference model, combinatorial algorithm and anomaly
sensor identification algorithm are the key steps.

2.1. Single inference model based on LSTM

The time series predictionmethod is widely used in the financial
forecasting fields. The data collected by sensors and the volatility
data of the stock market are both time series data. There is strong
correlation in time. Therefore, using time series prediction method
to process sensor data is highly applicable. LSTM is a practical
recurrent neural network model. It is highly capable of processing
time series. Compared with other time series prediction methods
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such as the auto-regression integrated moving averages (ARIMV)
and the Holt-Winters seasonal method, the establishment of LSTM
is more convenient. The prediction accuracy of ARIMVmodel is low
for the data with large fluctuations, while the Holt-Winters sea-
sonal method is targeted at time series with seasonality (Lee and
Tong, 2011; Zhou et al., 2022). As an evolutionary entity of RNN,
LSTM is significantly less affected by the problems of gradient
disappearance and gradient explosion compared to RNN. And its
ability to handle long-term memory is enhanced. Therefore, LSTM
processes the long-distance timing information effectively (Karim
et al., 2019).
2.1.1. Structure and parameter of LSTM
A standard RNN model is applied to the given sequence x ¼ (x1,

x2, …, xn). The model contains input layer, hidden layer and output
layer. A hidden layer sequence h ¼ (h1, h2, …, hn) and an output
sequence y ¼ (y1, y2, …, yn) can be calculated by iterating Eqs. (1)
and (2).

ht ¼ faðWxhXt þWhhht�1 þbhÞ (1)

yt ¼Whyht þ by (2)

where, W is the weight coefficient matrix. Wxh, Whh and Whh
respectively represent the weight coefficient matrix from input
layer to hidden layer, between hidden layers and from hidden layer
to output layer. b is the bias vector, bh and by respectively represent
the bias vector of the hidden layer and the output layer. fa is tanh
function, regarded as activation function. t represents time.

The LSTMmodel replaces the RNN cells in the hidden layer with
LSTM cells. It solves the long-term dependence problem of
continuous features to a certain extent. The cell structure of the
most widely used LSTM model is shown in Fig. 2.

Two gates are used to control the cell state of the LSTM. One is
the forgetting gate. It determines how cell state from a previous
moment ct�1 is preserved to the currentmoment ct. The other is the
input gate. It determines how the input it is saved to the ct at the
current time. In addition, the output gate is used to control how the
ct outputs to the current hidden layer output value ht. z represents
the input module. The final output of the LSTM is determined by
both the output gate and the cell state.
2.1.2. Calculational methods of LSTM
Forward calculation and back propagation are two key steps in

LSTMs. They are used to calculate and update the output and pa-
rameters of the model. In the process of forward calculation, the
input data is first linearly transformed by the weights and biases of
each layer, then nonlinear transformed by activation functions, and
finally output to the next layer. The purpose of forward calculation
is to calculate the predicted value of the model.

The forward calculation method can be expressed as follows.

it ¼ sðWxixt þWhiht�1 þWcict�1 þbiÞ (3)

ft ¼ s
�
Wxfxt þWhfht�1 þWcfct�1 þbf

�
(4)

ct ¼ ftct�1 þ it tanhðWxcxt þWhcht�1 þbcÞ (5)

ot ¼ sðWxoxt þWhoht�1 þWcoct þboÞ (6)

ht ¼ ot tanhðctÞ (7)

where, subscripts i, f, c, and o are respectively input gate, forgetting



Fig. 1. The abnormal sensor recognition method based on the combinatorial algorithm.

Fig. 2. LSTM cell structure in hidden layer.
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gate, cell state and output gate. W is the corresponding weight
coefficient matrix. b is bias term. s is sigmoid function and tanh is
hyperbolic tangent activation function.

The back-propagation through time (BPTT) algorithm is used for
training LSTM model. It similar to the classical back-propagation
(BP) algorithm (Yu et al., 2021). The BPTT algorithm can be
roughly divided into 4 steps. Above all, the output of LSTM cells is
calculated according to the forward calculation method. In the
second step, the error term of each LSTM cell is calculated in
reverse, including two reverse propagation directions according to
time and network level. Next, calculate the gradient of each weight
according to the corresponding error term. Last but not least, a
gradient-based optimization algorithm is applied to update the
2760
weights. There are many kinds of gradient-based optimization al-
gorithms. Among them, adaptive moment estimation (Adam)
method incorporates the advantages of AdaGrad and RMSProp
(Yeung et al., 2018) algorithms. Adam can calculate adaptive
learning rates for different parameters and occupy fewer storage
resources. Compared with other random optimization methods,
Adam algorithm performs better in practical applications (Uddin
et al., 2022).
2.1.3. Single inference model based on LSTM
Problems such as gradient explosion and vanishing are common

challenges for deep learning networks. To solve these problems,
some data processing layers need to be added. Common data
processing layers include dropout layer, fully-connected layer, and
regression layer. The single inference model is shown in Fig. 3.

The dropout layer is used to prevent overfitting. It retains or
drops each neuron with a certain probability during training to
make the parameters of each update different. In the process of
forward propagation, the output value of the discarded neuron is
set to 0. In the process of back propagation, the discarded neurons
do not participate in the backpropagation of errors. The number of
parameters is reduced. In the fully-connected layer, each neuron is
connected to all the neurons in the previous layer. Each input
feature has a certain connection weight with each neuron. The
fully-connected layer maps the input features to the output results,
which can be regarded as a nonlinear transformation of the input
features. Therefore, it enhances the nonlinear fitting ability of the
model. Regression layer is used to solve problems of regression. The
connection structure of the regression layer plays an important role
in the performance of neural networks. For sequence-to-sequence
regression networks, the loss function of the regression layer is
the half-mean square error of the predicted response for each time
step.

The data is first divided into two groups: input group X and
output group Y. Then, the time series of each individual is further
divided into a past group and a future group based on the time axis.
The principle of the model is to use the data of group X with a



Fig. 3. Single inference model based on LSTM.
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complete time chain and the past data of the group Y to reason the
future data of the group Y. Set the YPred as the predicted value
sequence of the future group, the YFuture as the actual time series of
future group in group Y. The sign of successful establishment of the
single inference model is that YPred is consistent with YFuture. In
order to verify the correctness and validity of the model, the re-
sidual sequence is obtained by comparing the YPred with the YFuture.
If the residual error exceeds the threshold, the model is returned to
be debugged again. When time series YPred and YFuture are consid-
ered to be consistent within the allowable error range, it proves
that the data inference model is successful and effective.
2.2. A combinatorial algorithm

In the combinatorial algorithm, the non-repetitive combina-
tions are independently inputted into single inference model. The
rules of abnormal individual recognition are simultaneously con-
structed. The combinatorial algorithm is a method of statistically
analyzing the inference results of each individual and organizing
the inference conclusions. Combination is themost basic concept in
combinatorics. It refers to extracting a specified number of ele-
ments from a given number of element groups, without consid-
ering the sorting of each element. The central issue it addresses is
the total number of possible situations that may occur during the
research event. Set the total number of elements is n, extract m
elements from it. The formation of combinations is shown in Fig. 4.

In the application scenario of anomaly recognition,
combinatorial-number is used to study the total number of com-
binations of a single inference model. In the model, each individual
is equal, with the same calculation times. Flexible grouping helps to
form a variety of combinations. When the number of individuals in
the input model is n, there are n combination modes for outputting
the predicted values of a certain individual, and n(n�1)/2 combi-
nation modes for outputting the predicted values of two in-
dividuals. It greatly enriches the database of single inference
models. At the same time, the prediction and inference results vary
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under different combination methods for an individual in the
model. As shown in Fig. 5, the use of combinatorial algorithm in-
creases the calculation times of each individual, reduce algorithmic
errors, and improve accuracy of inference.

The identity of each individual in the combination affects the
inference results. When the individual is located in group X, it helps
constructing model inference rules. When the individual is located
in group Y, it plays a role in identifying anomalies by comparing
with predicted values. In order to ensure the stability and accuracy
of the algorithm, it is generally required that the data amount in
group X is greater than that in group Y. Although the traditional
time series inference model based on LSTM network also distin-
guishes the roles of individuals, the inference intensity is low. The
results are easily disturbed by abnormal individuals. It is prone to
the smearing effect. Compared to the proposed algorithm, the
advantage of incorporating the combinatorial algorithm lies in
integrating the results of single inference models. It expands the
inference surface. At the same time, it stabilizes the outputs, and
significantly improves the ability to resist interference from
abnormal data.

2.3. A counting-based judging method

The proposed model is used for identifying abnormal in-
dividuals. If the YPred time series do notmatch the YFuture time series
in certain combinations, it can be considered that there is a prob-
ability of abnormal individuals. However, it is necessary to establish
a clearer rule for determining abnormal individuals. A counting-
based judging method is proposed. The residual sequences be-
tween the YPred time series and the YFuture time series represent the
prediction error. The counting-based judging method is shown in
Fig. 6. The state of each individual is determined by Eq. (8).

RSðiÞ ¼ YPredðiÞ � YFutureðiÞ
DmðiÞ (8)



Fig. 4. The formation of combinations.

Fig. 5. The combinatorial algorithm.

Fig. 6. The counting-based judging method.
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where, Dm(i) is the mean of each individual, and i is the number of
each individual.

Due to the differences in the data of individuals, the threshold of
RS(i) of each individual needs to be customized. Define it as Mi.
When the value of RS(i) exceeds Mi, an anomaly is recorded as
Nab(i). During the process of predicting and inferring all combina-
tions in sequence, the abnormal records Nab(i) of each individual
will be stacked. Set the upper limit of the allowed number of
abnormal recording times for each individual as Rmax(i). When the
Nab(i) exceeds the Rmax(i), it is considered that there is an abnor-
mality in the individual.

Sufficient and effective historical data are given to the model,
ensuring that the algorithm processes data correctly. The normal
and abnormal states of individuals can be determined through the
outputs. Under normal conditions, the Nab(i) for each individual is
lower than Rmax(i), indicating a high degree of agreement between
the predicted value YPred and the true value YFuture; under abnormal
conditions, Nab(i) is higher than Rmax(i).

3. Case study: anomaly identification for sensors of subsea
production control system

3.1. A subsea production control system of the South China Sea

The subsea production control system in the South China Sea is
shown in Fig. 7. The system can be divided into offshore facilities
and subsea facilities. The offshore facilities include the master
control station (MCS), hydraulic power unit (HPU), chemical in-
jection unit, electronic power unit (EPU), and emergency shut-off
device.

HPU is the main hydraulic power supply module to ensure the
pressure of the subsea energy storage device and the normal
function of hydraulic system. Two functions are implemented by
EPU. One is to provide sufficient power supply. The other is to
convert signals fromMCS into signals that can be transmitted to the
seabed through umbilical cables. In addition, the emergency shut-



Fig. 7. Subsea production control system and installation location of sensors.

Table 1
Sample data of target sensors.

Label Dm(i), psi Normal data volume Mi, % Abnormal data volume

PT01 228.61 501 ±5% 18
PT02 226.06 501 ±5% 18
PT03 234.20 501 ±5% 18
PT04 226.57 501 ±5% 18
PT05 28.73 501 ±3% 18
PT06 28.48 501 ±3% 18
PT07 231.23 501 ±5% 18
PT08 337.57 501 ±6% 18
Total e 4008 e 144
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off device is used to shut down the entire system in an emergency
situation. When the offshore signals are transmitted to the seabed,
the subsea distribution unit distributes the electro-hydraulic con-
trol signals and power to eight subsea Christmas trees (XT), that is
Tree 1, Tree 2, …, Tree 8 (Yang et al., 2023a,b). For each XT, the
subsea control module is its core. There are numerous valves
installed in the XTs, such as CV3, CV4, etc. Among them, the choice
operation valve (COV) is used to select the hydraulic supply circuit.
The quick descent valve (QDV) is used to close the seabed control
module in emergency situations. In addition, XT is equipped with
five important valves, that is the production master valve (PMV),
production wave valve (PWV), annulus master valve (AMV),
annulus access valve (AAV), and crossover valve (XOV). The pres-
sure sensors are installed between the pipelines of XT for moni-
toring real-time data. The current working status of the subsea
production control system is obtained by collecting sensor data.
Eight different pressure sensors on Tree1 are selected as the
research objects, that is PT01, PT02, …, PT08. Due to the lack of
direct correlation between AAV and the sensors selected, and the
lower ends of sensors PT03 and PT04 are not connected to impor-
tant components, they are ignored in Fig. 7.

Sensors generally do not experience significant numerical fluc-
tuations during normal operation. Because of the different instal-
lation positions and functions of different sensors, the range of
measured values is also different. Data from 8 target sensors were
collected for 22 consecutive days. A total of 4152 pieces of datawere
collected. 24 pieces of datawere collected from each sensor per day,
with a sampling interval of 1 h. The sampling time for each sensor is
the same. The collected sample data of each sensor is showed in
Table .1.

It is worth noting that the values of PT05, PT06, and PT08 differ
significantly from other sensors. It is necessary to separately set the
Mi of their YPred and YFuture time series. Mi is the allowable range of
measurement value fluctuations. The abnormal data and normal
data in Table .1 are distinguished by the difference between the
2763
data and the Dm(i) of the corresponding sensor. It is considered that
the data with a difference of more than 10% from Dm(i) is abnormal.
3.2. Sensor abnormal diagnosis model

In identifying abnormal sensors in subsea production control
systems, the single inference model is the most crucial step. The
structure of single inference model for the output of sensors is
shown in Fig. 8. It includes 5 layers. That is input layer, LSTM layer,
dropout layer, fully-connected layer, regression layer, and output
layer. These layers help the model output the desired predictions.
Before the input layer, the data of the target sensors are divided and
combined by the combinatorial algorithm. Combinatorial algorithm
can achieve two kinds of inference structures: multi-input with
single output and multi-input with multi-output.
3.3. Study on error of single inference model

The single inference model is the foundation of combinatorial
algorithm. Its accuracy directly determines the success rate of
recognizing abnormal individuals. The proposed combinatorial



Fig. 8. The single inference model for the output of sensors.
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algorithm distinguishes the structure of single inferencemodel into
two major categories, that is single output and multi output. The
sensor data of group X is used to construct rules of the inference
model, while the sensor data of group Y is used to compare with
predicted values for anomaly recognition. Due to the differences in
the correlation degree of each sensor, the allocation of sensors in
group X and group Y will affect the model results, further affecting
the probability of abnormal sensors being detected. Reasonably
allocating sensors between group X and group Y can improve the
accuracy of model inference. In this case, the single inference al-
gorithm for 8 sensors is divided into three scenarios: single output,
dual output, andmulti output. In the single output model, 7 sensors
are used as group X and one sensor is used as group Y. In the dual
output model, 6 sensors are used as group X and 2 sensors are used
as group Y. In the multi output model, considering the stability of
the algorithm, 5 sensors are used as group X and 3 sensors as group
Y as example.

3.3.1. Study on predicted deviation of single output model
Due to the difference in the values of the 8 selected sensors, the

prediction deviations of different sensors are different. If the pre-
diction deviations of all sensors are represented in a graph, the
sensors with smaller prediction deviations are not clearly repre-
sented. Therefore, the prediction deviations of 8 sensors are rep-
resented by two graphs. In the case of single output, the deviation
of the predicted values of each sensor is shown in Fig. 9. The hor-
izontal axis represents time. The vertical axis represents the pres-
sure deviation. It is the absolute error between the predicted values
and the true values. From Fig. 9, it can be seen that as the timeline
advances, the pressure deviation of each sensor gradually de-
creases. The pressure deviations of sensors are less than 6 psi. In the
subsea production control system, the measured values of each
sensor under normal conditions are shown in Table 1. Compared
with this data, the maximum pressure deviation rate of each sensor
is shown in the Fig. 10. The deviation rate of sensors PT01, PT02,
PT03, PT04, PT07, and PT08 all less than 3%; the deviation rate of
sensors PT05 and PT06 is less than 8.5%. Comparedwith the sensors
of high voltage circuit, the deviation rate of PT05 and PT06 is larger.
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The reason is that themeasuring ranges of PT05 and PT06 are small.
With the same measurement accuracy, their deviation rate of
prediction is larger. It is worth noting that the pressure prediction
bias curve of sensor PT07 is slightly different from other sensors,
whereas the overall trend is consistent. The daily measuring re-
cords of PT07 show that it is more sensitive to pressure fluctuations
and is prone to disturbances in complex subsea environments.

3.3.2. Study on predicted deviation of dual output model
Compared with the single output model, the significant

improvement of the dual output model is the increase in the
number of combinations from 8 to 28. It greatly increases the
reasoning power. The pressure deviation of each sensor between
the predicted and true values obtained by using the dual output
model is shown in Fig.11. According to the combinatorial algorithm,
the prediction effect of each sensor is determined by the inference
results of the dual output model under 7 different combinatorial
forms. The pressure deviation of each sensor is the mean absolute
error (MAE) of the inference results of multiple combinations. From
Fig. 11, it can be seen that the predicted values of PT01, PT02, PT03,
PT04, PT05, and PT06 have deviations of less than 1 psi. The de-
viations of PT07 and PT08 are less than 3 psi. Compared with the
results of the single output model, the deviation is significantly
reduced.

The results show that the combinatorial algorithm improves the
accuracy of the single inference model to a certain extent. An in-
crease in the number of combinations is beneficial for the time
series prediction of sensors.

3.3.3. Study on predicted deviation of multi-output model
Themulti output model takes 5 sensors as group X and 3 sensors

as group Y as an example. The number of combinations reaches 56.
It can be seen from Table 1 that the measured values of different
sensors are different. The difference among some sensors is even
more than 10 times. The comparison of predicted deviation is
measured by mean absolute percentage error (MAPE). The average
prediction error of sensors in group Y is obtained by taking the
mean of the error between the predicted value and the true value of
all time nodes. According to the combinatorial algorithm, the pre-
diction effect of each sensor is determined by the inference results
of the three-output model under 21 different combinatorial forms.
The predicted deviation of each sensor is obtained by using three
output model, as shown in Fig. 12. The horizontal axis represents
labels of sensor. The vertical axis represents the MAE and MAPE
between the predicted value and the true value of each sensor.
From Fig. 12, it can be seen that the average pressure prediction
deviation of each sensor in three-output model is less than 1.2 psi.
The highest MAPE of pressure is 0.79%, appeared in the data of
PT06.

The result shows that three output model is better than single
output model. Although the prediction bias has been reduced, the
computational time of three output model has greatly increased. It
is not conducive to on-site data processing. Therefore, the dual
output model is more recommended in practical applications.

3.3.4. Analysis of average error of model
The MAE and MAPE of the single output, dual output, and three

output model are obtained through experiments and compared, as
shown in Fig. 13. It can be seen that under normal circumstances,
the accuracy of each algorithm is relatively average. The average
pressure prediction deviation of each sensor is less than 1.25 psi.
The MAPE of the predicted value is less than 1.25%. In the results of
single output model, the predicted error of PT07 is significantly
greater than that of other sensors. The reason is that the installation
position of PT07 is at the outlet of the normally closed valve. Its



Fig. 9. Deviation of single output model.

Fig. 10. Maximum deviation rate of sensors.

Fig. 11. Deviation of dual output model.

Fig. 12. MAE and MAPE of three-output model.
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measuring value depends on the size of the load. The correlation
between it and other sensors is low. Therefore, the predicted results
of PT07 are poor compared to those of other sensors. Overall, the
accuracy of the dual output algorithm is the best among the single
output, dual output, and three output models.
2765
3.4. Study on anomaly recognition performance using
combinatorial algorithm

Due to the inherent characteristics of the algorithm, the results
of each sensor in group Y do not affect each other. However, if



Fig. 13. Comparison of MAE and MAPE
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abnormal data appears in group X, it will affect the diagnostic ac-
curacy of the sensors in group Y. The smearing effect commonly
presents in multivariate fault diagnosis is the reason of it. To verify
the correctness and anti-smearing ability of the proposed algo-
rithm, the dual output model will be used as an example to test. The
test content is to verify whether the algorithm can accurately
identify abnormal sensors and minimize misdiagnosis by setting
abnormal data.

In fact, the sensors used in subsea production systems are more
reliable than normal sensors. Due to the difference in the installa-
tion position, the operating temperature and pressure of different
sensors are different. Therefore, their working life is different. In
addition, as an important equipment for offshore oil and gas
exploitation, the subsea production system will be repaired
immediately. It is very rare to have two abnormal sensors simul-
taneously. Therefore, only one abnormal sensor is considered in
this study.

3.4.1. Results of sensor anomaly recognition algorithm
There is very little abnormal data collected from the actual on-

site data. The actual amount of abnormal data is insufficient for
anomaly identification and analysis. To verify the performance of
recognition, multiple different abnormal data of each sensor are set
to input model for diagnosis. The diagnostic results are analyzed.
The rule for setting abnormal data is to increase or decrease by an
equal gradient above or below the normal mean, with an upper
limit of 1±40%. The performance of abnormal recognition of the
Fig. 14. Abnormal sensor
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dual output algorithm is analyzed, as shown in Fig. 14.
In Fig. 14, the horizontal axis represents the position of the

abnormal sensor setting. The vertical axis represents the normality
of each sensor judged by the algorithm. It can be seen that the
proposed method can clearly distinguish between abnormal sen-
sors and normal sensors. The diagnostic normality of abnormal
sensors is lower than 10%. The diagnostic normality of normal
sensors is close to 100%.

There are many kinds of faults in the subsea production control
system, such as manifold leakage, electrical faults, hydraulic faults,
etc. One fault often causes multiple sensor data changes. When the
proposed method determines that multiple sensors are abnormal,
the sensor fault is considered to eliminate. The possibility of system
failure is increased. The diagnosis of specific fault types should be
combined with the fault diagnosis system of the subsea production
control system. The proposed method provides a reference for
elimination and determination in system fault and sensor fault.

3.4.2. Analysis of the accuracy of sensor anomaly recognition
The accuracy of abnormal recognition is analyzed by setting 50

different abnormal situations for each sensor input the proposed
model for diagnosis. It follows the above rules of abnormal setting.
The difference between proposed method and traditional algo-
rithms lies in the addition of the combinatorial algorithm and the
counting-based judging method. To demonstrate the superiority of
the proposed method, traditional algorithms are also used for
recognition of abnormal sensors. The traditional algorithm is a
single output anomaly recognition model based on LSTM, which
does not have the combinatorial algorithm and the counting-based
judging method. In the traditional algorithm, the anomaly recog-
nition result of each sensor is determined by the other seven sen-
sors. It uses an upper limit of expected deviation to determine the
data status. In an abnormal state, each sensor is recognized once.
Once the difference between the predicted value and the true value
exceeds the upper limit of expected deviation, it is considered as an
abnormal sensor. Figs. 15 and 16 respectively show the recognizing
results of the traditional algorithm and the dual output model
proposed in this study. In Figs. 15 and 16, the first column in the
vertical direction represents the abnormal sensor. The last row in
the horizontal direction represents the anomaly sensor number
located by the algorithm. For example, 01 represents PT01.

It can be seen that the traditional algorithm has a high misdi-
agnosis rate. When identifying and judging an abnormal sensor,
multiple sensors will be misjudged at the same time. The results
show that when the sensor PT07 is abnormal, and the frequency of
misdiagnosis is the highest, at 17 times. When PT01, PT02, PT04,
and PT08 are abnormal, there are the least cases of misdiagnosis of
other sensors, which is 7 times. The cumulative number of
identification results.



Fig. 15. Results of anomaly recognition by traditional model.

Fig. 16. Results of anomaly recognition by using combinatorial algorithm.
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misdiagnosis is 87. The reason is that the correlation between PT07
and other sensors is low, and the data fluctuates greatly, resulting in
poor diagnostic stability. The normal values of PT05 and PT06 are
inherently small. Their deviations can easily be classified as
anomalies.

Compared with traditional algorithms, the method proposed in
this study significantly reduces the occurrence of misdiagnosis,
with a maximum misdiagnosis frequency of 1 and a cumulative
misdiagnosis frequency of 7. The method proposed can identify the
2767
vast majority of abnormal situations. In addition, the recognition of
PT03 achieves complete accuracy. The combinatorial algorithm and
the counting-based judging method significantly improve the anti-
interference ability and accuracy of the model. Although the use of
combinatorial algorithm increases inference time, the ability of
recognizing abnormal sensors has been greatly improved. In the
meanwhile, it greatly reduces the misdiagnosis rate.

4. Conclusion

A combinatorial algorithm is proposed to identify abnormal
sensors in subsea production control system. A combinatorial al-
gorithm, an inference model based on LSTM time series prediction
and a counting-based judging method are included in it. Data from
a platform in the South Sea of China is used for verification. The
results show that the MAPE of single output, dual output, and three
output models is less than 1.5%. The results also show that the
method is effective in solving interference from abnormal data and
the misdiagnosis is reduced by more than 90%. It can easily be seen
that the method provides a reference for distinguishing the failure
of sensors from the failure of system by tracking the state of each
sensor in real time.

However, combinatorial algorithm has the problem of long
processing time. The combinatorial algorithm will be improved to
shorten the data processing time in the subsequent research.
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