
lable at ScienceDirect

Petroleum Science 21 (2024) 2345e2355
Contents lists avai
Petroleum Science

journal homepage: www.keaipubl ishing.com/en/ journals /petroleum-science
Original Paper
Application of sparse S transform network with knowledge distillation
in seismic attenuation delineation

Nai-Hao Liu a, Yu-Xin Zhang b, Yang Yang a, *, Rong-Chang Liu c, Jing-Huai Gao a,
Nan Zhang d

a School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
b School of Software Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
c PetroChina Research Institute of Petroleum Exploration and Development (RIPED), CNPC, Beijing, 100083, China
d Research Institute of Exploration and Development, Yumen Oilfield Company, CNPC, Jiuquan, 735019, Gansu, China
a r t i c l e i n f o

Article history:
Received 4 May 2023
Received in revised form
6 February 2024
Accepted 5 March 2024
Available online 19 March 2024

Edited by Jie Hao and Meng-Jiao Zhou

Keywords:
S transform
Deep learning
Knowledge distillation
Transfer learning
Seismic attenuation delineation
* Corresponding author.
E-mail address: yang_yang@mail.xjtu.edu.cn (Y. Ya

https://doi.org/10.1016/j.petsci.2024.03.002
1995-8226/© 2024 The Authors. Publishing services b
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.
However, it suffers from several inevitable limitations, such as the restricted time-frequency resolution,
the difficulty in selecting parameters, and the low computational efficiency. Inspired by deep learning,
we suggest a deep learning-based workflow for seismic time-frequency analysis. The sparse S transform
network (SSTNet) is first built to map the relationship between synthetic traces and sparse S transform
spectra, which can be easily pre-trained by using synthetic traces and training labels. Next, we introduce
knowledge distillation (KD) based transfer learning to re-train SSTNet by using a field data set without
training labels, which is named the sparse S transform network with knowledge distillation (KD-SSTNet).
In this way, we can effectively calculate the sparse time-frequency spectra of field data and avoid the use
of field training labels. To test the availability of the suggested KD-SSTNet, we apply it to field data to
estimate seismic attenuation for reservoir characterization and make detailed comparisons with the
traditional time-frequency analysis methods.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Time-frequency analysis (TFA) is widely used for seismic pro-
cessing and interpretation (Zhao and Song, 2012), which can
describe local features of seismic signals. The traditional time-
frequency (TF) transforms can be easily divided into linear and
non-linear categories. Continuous wavelet transform (CWT), S
transform (ST), and short-time Fourier transform (STFT) are
representative of the linear TF transform, which has received a lot
of attention in recent years. Although STFT and CWT are often used
inmany seismic tasks and have achieved good performance (Lu and
Li, 2013), they still have their unavoidable shortcomings. For
instance, STFT usually utilizes a fixed window to analyze non-
stationary seismic signals and obtains TF features with fixed TF
resolution. Besides, STFT, ST, and CWT are all limited by the Hei-
senberg uncertainty principle. The non-linear transforms can be
ng).
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divided into several categories, such as quadratic transforms
(Wigner, 1997; Alsalmi and Wang, 2021), reassigned transforms (Li
et al., 2022a; Wu and Liu, 2009), and sparse transforms (Gholami,
2013; Yuan et al., 2020), which are often limited by the low
computational efficiency and the difficulty in selecting parameters.

ST was first proposed by Stockwell et al. (1996), regarded as the
succession and development of wavelet transform (WT) and STFT.
On the one hand, ST can performmulti-resolution analysis similarly
to WT. On the other hand, ST has the capability of single-frequency
independent analysis as STFT. Moreover, ST is a tool for both signal
analysis and signal synthesis in addition to being a linear reversible
time-frequency analysis method. Lately, ST has been applied in
many fields, including exploration geophysics (Fang et al., 2021),
mechanical engineering (Song et al., 2020), clinical medicine (Chen
and Zhang, 2020), etc. Inspired by ST, generalized S transform (GST)
was proposed and discussed (Adams et al., 2002). GST successfully
breaks the limitations on the form of the window function of ST,
which has better frequency aggregation ability. Several excellent
versions of GST are proposed and used in seismic exploration,
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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containing seismic time-frequency analysis (Wang et al., 2018),
fluvial channel detection (Liu et al., 2019), instantaneous frequency
estimation (Lin and Meng, 2011), seismic deconvolution (Zhou
et al., 2014), etc. Whereas, it is difficult to choose the optimized
parameters for GST. Nowadays, sparse transform has become a new
way for improving the resolution of time-frequency analysis (Wang
et al., 2016) and many sparse time-frequency analysis methods
have been proposed (Orovi�c et al., 2015; Jokanovic and Amin, 2015).
Based on the idea of sparsity and ST, sparse S transform (SST) is also
suggested for describing seismic time-frequency features. However,
since SST often has more parameters than ST, the issue of choosing
optimum parameters is inescapably presented in SST, if anything it
is worse. Therefore, it usually takes a long time to calculate the
corresponding SST spectrum, which is another obvious disadvan-
tage (Yang et al., 2022).

Recently, deep learning (DL) has shown a powerful ability to
learn mapping relationships between training data and training
labels (Zhong et al., 2022a). For seismic exploration, DL has been
successfully used for different scenes, such as fault interpretation
(Wu et al., 2019; Li et al., 2022b), lithology prediction (Liu et al.,
2020, 2022a), seismic data reconstruction (Kaur et al., 2020; Liu
et al., 2022d), noise separation and attenuation (Zhong et al.,
2022b; Liu et al., 2022b, 2022c; Dong et al., 2022), horizon pick-
ing (Tschannen et al., 2020; Wu et al., 2022), etc. As one of the
standard DL methods, supervised deep learning can be applied to
solve many complex tasks that need enough training data and
corresponding labels. However, it should be noted that the labels
for field data are difficult to obtain, meaning that this disadvantage
limits its wide applications. To break this bottleneck, transfer
learning (TL) becomes an efficient way, which has achieved more
and more attention for addressing seismic tasks (Siahkoohi et al.,
2019), including seismic fault detection (Cunha et al., 2020),
seismic phase picking (Chai et al., 2020), and seismic dip estimation
(Ao et al., 2022). The main idea of TL is transferring the pre-trained
model from the source domain to the target domain. There are lots
of training data and training labels for pre-training a DL model in
the source domain. On the contrary, the target domain includes
data with a few labels or even without labels. Compared with
traditional machine learning, TL emphasizes exacting knowledge
learned from the source domain to help the learning process in the
target domain. The mentioned knowledge consists of network pa-
rameters, data characteristics, and other helpful information. One
of the schemes for effectively exacting knowledge is knowledge
distillation (KD), proposed for transferring the knowledge from the
teacher network to the student network (Hinton et al., 2015). The
teacher network is a complex model with superior predictive ac-
curacy, while the student network is often a simple and low-
complexity model. The knowledge extracted from the teacher
network can be regarded as the flow of the solution procedure (Yim
et al., 2017), which is beneficial for training the student network. In
other words, knowledge distillation can be regarded as a constraint
to help the network learn features and improve accuracy. Some-
times, for unsupervised learning, knowledge distillation can
replace labels to help the model achieve good performance and
break the limit of labels.

Inspired by KD and SST, we suggest a sparse S transform
network with knowledge distillation (KD-SSTNet). We first propose
a supervised deep learning network for implementing SST, named
the sparse S transform network (SSTNet). To train SSTNet, we build
synthetic training data and training labels as the training data set.
Here, the synthetic model is generated by well logs and horizons at
the study survey, which enhances the similarity between synthetic
data and field data. After pre-training SSTNet, we utilize KD to
generalize the ability of SSTNet and further propose the sparse S
transform network with knowledge distillation (KD-SSTNet). It
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should be noted that the second step is unsupervised transfer
learning. It means that we use a field data set without training la-
bels to train KD-SSTNet, which solves the lack of training labels for
field data. To demonstrate the efficiency of KD-SSTNet, we finally
apply it to seismic attenuation estimation and make detailed
comparisons with the traditional methods. The whole deep
learning workflow is shown in Fig. 1.

The main contributions of our work can be summarized as
follows.

1. A supervised deep learning network is suggested for imple-
menting SST, which is named the sparse S transform network
(SSTNet). It can learn the mapping relationship between syn-
thetic traces and SST spectra.

2. Inspired by KD, we propose the sparse S transform networkwith
knowledge distillation (KD-SSTNet), which enhances the
generalized ability of SSTNet.

3. A field data set without labels is utilized to train KD-SSTNet and
validate its performance. Moreover, KD-SSTNet is utilized to
characterize hydrocarbon reservoirs after estimating seismic
attenuation.

The rest of this paper is organized as follows. We first introduce
ST and its sparse variant. Then, we describe the structure of SSTNet
and the generated training data set. Next, we introduce the details
of KD-SSTNet, including the architecture, workflow and knowledge
distillation. Afterward, we provide the application of KD-SSTNet in
field data, proving its availability based on its accuracy and effi-
ciency in seismic attenuation delineation. Finally, we have some
discussions about the limitations and achievements of our work.
2. S transform and its sparse variant

2.1. S transform

Given a signal s(t), its ST can be defined as

8><
>:

STðh; f Þ ¼
ð∞
�∞

sðtÞwðtÞe�2piftdt;

wðtÞ ¼ jf jffiffiffiffiffiffiffi
2p

p e�
ðt�hÞ2 f2

2 ;

(1)

where h is the localization of the Gaussian window w, t represents
the time variable, and f is the frequency variable. Eq. (1) can be
rewritten as

STðh; f Þ ¼
ð∞
�∞

sðbþ f Þe�
2pb2

f2 e2pibhdb; (2)

where s
̄ ðbÞ denotes the Fourier transform of s(h), b is the frequency

variable.
Eq. (2) describes the ST in the frequency domain. By integrating

the time-frequency spectrum over the time axis, we can obtain the
correlation between the ST spectrum and the Fourier spectrum of
s(t) as

ð∞
�∞

STðh; f Þdh ¼ sðf Þ; (3)

where s
̄ ðf Þ represents the Fourier transform of s(t). In this way, the

given signal s(t) can be reconstructed by using ST coefficients as



Fig. 1. The simplified workflow of the suggested KD-SSTNet.
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sðtÞ ¼
ð∞
�∞

ð∞
�∞

STðh; f Þdhei2pftdf : (4)

2.2. Sparse S transform

Based on Eq. (2), the discrete version of the inverse S transform
can be written as

s½m� ¼
XN�1

l¼0

XN�1

k¼0

STðl; kÞw½mþ l� 1�e�i2pmk
N ; (5)

where l ¼ 0, 1, …, N � 1 is the frequency index and k is the time
index. w is the window function, and s½m� represents the Fourier
transform of s. Then, the reconstructed signal can be obtained by
inverse Fourier transform as

s½k� ¼
XN�1

m¼0

s½m�ei2pmk
N : (6)

Due to the linearity of Eq. (5), we regard the time-frequency

coefficients of ST as the vector x2CN2�1 and set a basis matrix

G2CN�N2
. Then, Eq. (5) can be written as

s
̄ ¼ Gx; (7)

where the matrix G is an over-complete dictionary, generated by
the givenwindow functionw. If the signal and window function are
given, the ST can be obtained by an inverse problem. Afterward, the
objective function is denoted as

min
x

1
2
ks̄ �Gxk22: (8)

Furthermore, a regularization term is added to achieve a unique
solution. In this way, Eq. (8) can be defined as

min
x

1
2
ks̄ �Gxk22 þaqðxÞ; (9)

where a is a parameter for adjusting the proportion of the
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regularization term q(x). Usually, we replace q(x) with l1-norm and
Eq. (9) can be described as

min
x

1
2
ks̄ �Gxk22 þakxk1; (10)

where kxk1 ¼
PN

p¼1jxpj and xp means the pth elements of x. Here,
the regularization parameter a is approximately selected asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logNlength

q
s, where Nlength is the length of the analyzed signal

and s is the standard deviation of noise (Herrera et al., 2014). Then,
we obtain the sparse solution of ST, named sparse S transform (SST).

3. Sparse S transform network

3.1. SSTNet

The structure of the suggested sparse S transform network
(SSTNet) is shown in Fig. 2. Here, the widely used Unet model is
selected as our baseline. The whole structure can be divided into
three parts, including the transformation layer, encoder layer, and
decoder layer. The first part is a 1� 3 convolution operation to map
the input 1D seismic data into the 2D feature image. The following
encoder layer includes the repeated 3 � 3 convolution, 2 � 2 max
pooling operations, batch normalization, and rectified linear unit
(ReLU). It should be noticed that each convolution uses a different
channel number to extract characteristics in more depth. The
framework of the decoder layer is similar to the encoder layer,
whose modules contain the repeated 3 � 3 convolutions, 2 � 2 up-
convolution, batch normalization, and ReLU. At the end of the
decoder layer, there is a 1 � 1 convolution operation to output the
final result trained by the whole network. Here, skip connections
(copy and crop) are added between the encoder layer and the
decoder layer, which can reduce spatial information loss. To be
more precise, skip connections help the feature maps calculated by
the decoder layer own more low-level semantic information, and
make the final results more accurate.

3.2. Pre-training data set of SSTNet

The training data set is a critical factor for successfully imple-
menting a DL model. To enhance the similarity of synthetic and



Fig. 2. The simplified architecture of the proposed SSTNet.
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field data, we use well logs and horizons at the study area to build a
synthetic model and then generate a synthetic data set. The dashed
purple rectangle in Fig. 3 indicates the location of the study area,
located in the Ordos Basin in northwest China. It is well known that
abundant natural gas and oil are in the Ordos Basin. The reservoirs
in the Triassic Yanchang Formation of the Ordos Basin have many
characteristics, such as high cement content, great heterogeneity,
poor sorting, fine particles of rock, and low maturity (Wang et al.,
2007). Therefore, the Ordos Basin is one of the representative
areas inwhich low permeability reservoirs developed in China (Yao
et al., 2013).
Fig. 3. The location of the study area, indicated by the dashed purple rectangle.
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The Triassic Yanchang Formation consists of inland fluvial-delta-
lacustrine clastic rock series (Fu et al., 2020), whose reservoir
quality in the southern is poorer than the coeval strata of fluvial to
deltaic systems in the north and northeast of the Ordos Basin (Xie,
2016). The Triassic can be divided into top, middle, and low Triassic.
The top and middle Triassic are both composed of silty mudstone,
sandstone interbedded with thin, arenaceous mudstone, and coal
seams. The low Triassic includes sandstone with intact cross-
bedding or conglomerates, some mud-clast conglomerates, and
mudstone (Xie, 2016). The Triassic Yanchang Formation in the
southern Ordos Basin is above the middle Triassic and is limited to
low resolution and poor reservoir quality. Therefore, it is chal-
lenging to define the distribution of reservoirs, which is the prob-
lem that our suggested approach is intended to address.

The field data set used in this study mainly includes a 3D post-
stack seismic volume, an interpreted horizon, and well logs. For the
3D seismic data volume, there are 801 crosslines and 251 inlines,
and the time sampling interval is 1 ms. As mentioned above, the
interpolation of well logs is utilized to generate the 2D geological
model for building the synthetic training data set. The interpreted
horizon T0 with the structural information is used as a constraint,
which can enhance the lateral resolution. Then, the geological
reflectivity model is presented in Fig. 4 with 512 traces. The time
sample interval is 1 ms and the trace interval is 20 m. We adopt the
Ricker wavelet and the statistical wavelet extracted from this study
area for implementing the convolution. The statistical wavelet is
presented by the blue curve in Fig. 5, while the red curve denotes
the simulated Ricker wavelet with the dominant frequency of
35 Hz. This demonstrates that the statistical wavelet in the study
area can be accurately fitted by a simulated Ricker wavelet, proving
the validity of selecting Ricker wavelets to generate the synthetic
data set in this study. The dominant frequencies of Ricker wavelets
used in generating synthetic data are from 20 Hz to 50 Hz, with a
5 Hz interval. In this way, we can utilize 7 Ricker wavelets and a
statistical wavelet to convolve with the reflectivity sequences in
Fig. 4. Afterward, we generate 1401 � 8 synthetic traces as the
synthetic training data set.

As mentioned above, the selection of parameter a in Eq. (10) will



Fig. 4. The synthetic reflectivity model obtained from the geological model, including
512 traces and 512 time samples.

Fig. 5. Statistical wavelet (blue) and Ricker wavelet (red).
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greatly influence the final SST spectrum. Fig. 6 depicts a synthetic
trace and corresponding SST spectra with different a. When a is
small, the calculated SST spectrumwill become obscure and vague,
Fig. 6. (a) A random synthetic trace and the corresponding SS
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as shown in Fig. 6(b). On the contrary, if a is too large in Fig. 6(d),
the SST spectrum is too sparse to accurately describe the time-
frequency feature. Fig. 6(c) describes the optimal SST spectrum
with a ¼ 0.5, which was selected by several experiments. Choosing
appropriate parameters is more complex for field traces than for
synthetic data because of the existence of noise and the impact of
seismic exploration factors. We need to implement plenty of
manual experiments and take lots of time to find the matching
regularization parameters. There is an obvious shortage of sparse-
based TF methods, which is the main motivation for carrying out
this work.

Before model training, we first normalize synthetic traces as

ui
0 ¼ ui

max
1�i�Ntrace;1�j�Nt

ui;j
; (11)

where ui and ui
0 represent synthetic traces before and after stan-

dardization. Ntrace indicates the trace number, and Nt is the time
length of a synthetic trace. max

1�i�Ntrace;1�j�Nt

ui;j is the maximum value

of the whole synthetic data set. Afterward, we randomly select
3000 traces with their SST spectra to pre-train SSTNet. Here, we
divide them into training data and validation data with a ratio of
8:2.

3.3. Pre-training details of SSTNet

In the process of model pre-training, to evaluate the perfor-
mance of SSTNet, we utilize the mean squared error (MSE) to
calculate the discrepancies between the predicted results and la-
bels as

lossMSE ¼ 1
sum

Xsum
z¼1

ðLabelz � ResultzÞ2; (12)

where sum is the total sample number of the training data. Labelz
denotes the labels of input data and Resultz represents the corre-
sponding results by the network. Besides, the Adam optimization
T spectra with (b) a ¼ 0.005, (c) a ¼ 0.5, and (d) a ¼ 50.
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algorithm is selected as the optimizer and the learning rate is set to
0.0005. It should be noted that all models run in a runtime envi-
ronment with the PyTorch deep learning library on Python 3.7. The
server provided for all computations has a 36-core processor,
128 GB RAM, and an NVIDIA GTX 3090 (24 GB GPU memory). The
whole training time is 2936 s, i.e., approximately 49 min. Fig. 7
describes the training (blue) and validation (red) loss curves. It is
obvious that the loss curves keep going down and finally converge.
It is easy to conclude that SSTNet is well-trained and has high ac-
curacy. To verify this, we select the extra 100 synthetic traces as the
testing data set and show their results obtained using the proposed
model in Fig. 8. Fig. 8(a) is a synthetic trace randomly chosen from
the testing data set. Fig. 8(b)e(d) are its corresponding ST spectrum,
SST label, and predicted SST spectrum using SSTNet. It can be found
that the SST spectrum is more sparse than the ST spectrum, which
can characterize time-frequency features of seismic data more
clearly. Comparing the SST label with the predicted result using
SSTNet, there are almost no discrepancies, meaning that the pro-
posed model has accurately learned the mapping relationship be-
tween synthetic traces and SST spectra.
4. Sparse S transform network with knowledge distillation

4.1. KD-SSTNet

Based on the pre-trained SSTNet, we add a measure as the
knowledge to distill, named the sparse S transform network with
knowledge distillation (KD-SSTNet), whose structure is presented
in Fig. 9.

We do notmodify the modules of the whole structure, including
the number of layers, the number of convolution kernels, and skip
connections. The grey parts symbolize the freezing parameters in
Fig. 9, which means using the fine-tuned parameters of SSTNet. On
the contrary, the colorful parts in Fig. 9 need to be retrained in the
target domain. The added measure can be written as

KDtarget ¼
P jFtj2���

���P jFtj2
���
���
2

(13)

where Ft represents the feature map in the target domain. j$ j and
jj $jj mean the corresponding absolute value and l2 norm. Similarly,
KDsource in Fig. 9 is the same calculation, whose feature map comes
from the source domain. In other words, KDsource is the knowledge
we distilled from the pre-trained SSTNet to help train KD-SSTNet in
the target domain. More detailed information about knowledge
Fig. 7. Training (blue) and validation (red) loss curves.
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distillation is described in the next subsection. It should be noted
that we add this measure to the first and last convolution layers of
the decoder layer. We have done comparative experiments to judge
the quantity and location of this measure. The result shows that we
added this measure in all four layers of the decoder layer, which is
no different from the result we added only in the first and last
layers. It means that putting this measure in all four layers is
redundant.
4.2. Knowledge distillation

To obtain valuable knowledge, we adopt SSTNet with fine-tuned
parameters to predict 50 synthetic traces. In this process, we record
the measures in the first and last layers of the decoder layer of pre-
trained SSTNet, which are indicated as KDsource in Fig. 9. The aim is
to optimize the performance of KD-SSTNet in the target domain by
replacing labels with prior knowledge in the source domain.

After acquiring the knowledge we distilled, we modify the loss
function utilized in KD-SSTNet as

lossKD ¼
X2
m¼1

����KDtarget � KDsource
����
2

¼
X2
m¼1

�����
�����

P jFtj2���
���P jFtj2

���
���
2

�
P jFsj2���

���P jFsj2
���
���
2

�����
�����
2

(14)

where Fs represents the feature map in the corresponding convo-
lution layer of SSTNet in the source domain. Here, we set the
maximum of m as 2 because we only emphasize two convolution
layers, as we described above.
4.3. Fine-tuning details of KD-SSTNet

We select field traces at Inline 2400e2403 and Inline
2647e2650 (total 6400 traces) as the fine-tuned data set. Next, we
randomly select 5000 field traces without SST labels as fine-tuned
training data. The other field traces, except for these 6400 traces,
are built as the blind testing data set. The learning rate is 0.0001,
and the number of iterations is 100. The whole training time is
approximately 6 h. Fig. 10 presents the fine-tuned loss curve,
defined in Eq. (14), which has a convergence tendency after 100
epochs.

To verify the efficiency of KD-SSTNet, we apply it to the blind
testing data set. Fig. 11(a) depicts a field trace randomly selected
from the blind testing data set. Fig. 11(b)e(e) represent their ST
spectrum, SST label, and SST spectrum predicted using SSTNet and
KD-SSTNet. The predicted SST spectrum is similar to the SST label
and sparser than the ST spectrum, which can describe time-
frequency features more accurately. Meanwhile, comparing the
Fig. 11(d) and (e), we can find that the result predicted by the KD-
SSTNet is sparser and more accurate than the spectrum calculated
by the SSTNet. In other words, knowledge distillation has a positive
impact on the result prediction. This also demonstrates the ne-
cessity and validity of introducing knowledge distillation in this
study. Although KD-SSTNet takes a lot of computing time, it is the
best performance we can achieve under the circumstance of no
field labels.

To further demonstrate the efficiency of KD-SSTNet, we compare
the calculation times of different methods for predicting 100 traces,
as shown in Table 1. Note that we implement ST and SST by using an
Inter(R) i9-10980XE CPU. Besides, we also utilize the Renyi entropy
(RE) to evaluate the sparsity of TF spectra, written as



Fig. 8. (a) A synthetic trace randomly selected from the blind testing data set, (b) ST spectrum, (c) SST label, (d) SST spectrum predicted using SSTNet.

Fig. 9. The simplified architecture of the suggested KD-SSTNet.
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RE¼ � 1
2
log2

0
BBB@

XA
a¼1

XB
b¼1

2
6664

TF½a; b�
PA
a¼1

PB
b¼1

jTF½a; b�j

3
7775

d1
CCCA; d>2; (15)

where TF[,] denotes the time-frequency spectrum, such as the ST
spectrum and SST spectrum. |TF[,]| indicates its absolute norm. d is
selected as 3 in this example. The calculation time of KD-SSTNet is
2351
shorter than that of SSTNet and the RE of KD-SSTNet is smaller than
that of SSTNet. Besides, the RE value of KD-SSTNet is a little smaller
than that of SST, indicating that KD-SSTNet has excellent calculation
efficiency and prediction ability.

5. Field data applications

Before validating the efficiency of KD-SSTNet, we first extract
the amplitude attribute and several commonly used seismic attri-
butes. Fig. 12 shows the horizontal amplitude surface and three



Fig. 10. The loss curve of fine-tuning KD-SSTNet.

Table 1
The calculation time and Rayleigh entropy (RE) of different methods for predicting
100 field traces.

Methods CPU/GPU time, s RE (d ¼ 3)

ST 33.789/e 13.732
SST 50.212/e 12.554
SSTNet 33.579/6.622 13.226
KD-SSTNet 33.124/6.454 12.495
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attribute surfaces, i.e., (b) main frequency, (c) instantaneous fre-
quency, and (d) weighted frequency. Here, the white dots represent
the dry well boreholes at T0 and the black dots denote the pro-
ductive well boreholes with hydrocarbon reservoirs. It should be
noted that we only show the attribute surface between Inline 2404
and Inline 2646 due to the selection of the fine-tuning data set
(Inline 2400e2403 and Inline 2647e2650). By comparing these
four images in Fig. 12, we cannot accurately distinguish the dry and
productive wells, meaning that these attributes cannot be effec-
tively utilized for reservoir characterization. Moreover, these at-
tributes suffer from heavy noise contained in this 3D field volume.

After applying KD-SSTNet to the 3D field data, we extract the
low- and high-frequency components. Then, we estimate seismic
attenuation by comparing the difference between the low- and
high-frequency components, denoted in Fig. 13(b). More details
about the qualitative attenuation estimation can be easily found in
Yang et al. (2021). Furthermore, we calculate the corresponding
result using ST in Fig. 13(a) for a comparison. Note that we do not
show the result calculated using SST due to its low computational
Fig. 11. (a) A field trace randomly selected from the blind testing data set, (b) ST spe
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efficiency and difficulty in parameter selection. As described above,
the black dots (W4, W5, W6) in Fig. 13 represent the productive
well boreholes with hydrocarbon reservoirs and the white dots
(W1, W2, W3) denote the dry well boreholes at T0. Comparing
Fig. 13(a) and (b), we have several main observations. First, KD-
SSTNet provides a smoother attenuation surface than ST,
benefiting from its better anti-noise performance. This benefits
seismic attenuation delineation and further reservoir character-
ization. Second, the interpretation results based on well logs seem
to be unmatched by the attenuation surface computed using ST. For
example, W3 shows the sandy-brown color (strong attenuation) in
Fig. 13(a), indicating that there is an apparent hydrocarbon reser-
voir. This is inconsistent with the interpretation results based on
well logs. Whereas, KD-SSTNet provides an attenuation surface,
matched with all well boreholes at T0, proving the effectiveness of
the suggested model for delineating seismic attenuated reservoirs.
Based on these images in Fig. 13 and the above discussions, it can
easily conclude that KD-SSTNet can availably delineate seismic
attenuation and then accurately describe hydrocarbon reservoirs,
which demonstrates its availability and practicability in seismic
exploration.
6. Discussions

We suggest a KD-SSTNet for implementing sparse time-
frequency analysis of 3D field data at the Ordos Basin, which has
been applied for seismic attenuation estimation and then reservoir
characterization. There are two critical factors when implementing
ctrum, (c) SST label, TF spectra calculated using (d) SSTNet and (e) KD-SSTNet.



Fig. 12. (a) The horizontal amplitude surface and several commonly used attribute surfaces, (b) main frequency, (c) instantaneous frequency, and (d)weighted frequency. The white
dots represent dry well boreholes and the black dots denote the productive well boreholes with hydrocarbon reservoirs.

Fig. 13. Seismic attenuation surfaces computed using (a) ST and (b) KD-SSTNet. The white dots represent dry well boreholes and the black dots denote the productive well
boreholes with hydrocarbon reservoirs.
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KD-SSTNet, discussed as follows.
Basic time-frequency transform and baseline of SSTNet: SST

is a well-liked and simple-to-implement time-frequency analysis
tool for seismic interpretation. Therefore, we adopt it as the basic
transformation in this study. Note that SSTNet is suggested tomap a
seismic trace to a time-frequency spectrum. Hence, other excellent
time-frequency transforms can also be easily selected as the basic
transform in this study, such as continuous wavelet transform and
generalized S transform. For mapping synthetic traces to SST
spectra, we select the commonly used UNet as the baseline in this
study. Note that we did not pay much attention to the selection of
the baseline. As we all know, there are several excellent DL models
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proposed for addressing different geological issues, such as residual
networks, transformer networks, wavelet-based networks, etc.
Exploring different performances when selecting different DL
models must be interesting work in the future.

Pre-training and fine-tuned data sets: Except for the baseline
of the suggested model, the pre-training data set is also a key factor
for the success of the proposed workflow. Note that it needs the
corresponding training labels when implementing model pre-
training. Therefore, we propose to utilize a synthetic data set for
model pre-training. Moreover, to reduce the variance between
synthetic data and field data, we generate synthetic traces by using
well logs and horizons at the study survey. When applying KD-
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SSTNet to another seismic survey, we suggest generating the
related synthetic pre-training data set, which is the main limitation
of this study. After model pre-training, we utilize a few field traces
without training labels for model fine-tuning. Here, knowledge
distillation based transfer learning is proposed to implement model
fine-tuning at the target domain. The advantage of KD is to relax the
need for fine-tuned labels at the target domain. Certainly, its
computational efficiency should be further enhanced.

7. Conclusions

We suggest a KD-SSTNet for seismic time-frequency analysis.
First, we build SSTNet and utilize the synthetic data set, generated
from well logs and interpreted horizons, to pre-train the proposed
SSTNet. Next, we combine it with knowledge distillation to design
KD-SSTNet. Afterward, we extract field traces from a 3D post-stack
seismic volume without SST spectra labels to train KD-SSTNet. In
this way, we can break the dependency of field data labels when
training a DL model to solve geological issues. Finally, we apply KD-
SSTNet to estimate seismic attenuation and compare it with
traditional ST and commonly used seismic attributes. The attenu-
ation slice calculated using KD-SSTNet can describe hydrocarbon
reservoirs more accurately than the contrastive slices, which
demonstrates the availability and practicability of the proposed KD-
SSTNet in seismic exploration.

Declaration of competing interest

There is no other professional or personal interest of any nature
or kind in any product, service and/or company that could be
construed as influencing the position presented in, or the review of,
the manuscript entitled.

Data availability statements

The data underlying this article will be shared on reasonable
request to the corresponding author.

CRediT authorship contribution statement

Nai-Hao Liu: Writing e original draft, Methodology. Yu-Xin
Zhang: Software, Methodology. Yang Yang: Writing e review &
editing, Writing e original draft. Rong-Chang Liu: Data curation,
Conceptualization. Jing-Huai Gao: Supervision. Nan Zhang: Vali-
dation, Conceptualization.

Acknowledgments

This research was supported by the National Natural Science
Foundation of China (42274144, 42304122, and 41974155), the Key
Research and Development Program of Shaanxi (2023-YBGY-076),
the National Key R&D Program of China (2020YFA0713404), and
the China Uranium Industry and East China University of Technol-
ogy Joint Innovation Fund (NRE202107). The authors deeply
appreciate the valuable comments from editors and five anony-
mous reviewers.

References

Adams, M., Kossentini, F., Ward, R., 2002. Generalized s transform. IEEE Trans. Signal
Process. 50, 2831e2842. https://doi.org/10.1109/TSP.2002.804085.

Alsalmi, H., Wang, Y., 2021. Mask filtering to the wigner-ville distribution.
Geophysics 86, V489eV496. https://doi.org/10.1190/GEO2021-0193.1.

Ao, Y., Lu, W., Xu, P., Jiang, B., 2022. Seismic dip estimation with a domain knowl-
edge constrained transfer learning approach. IEEE Trans. Geosci. Rem. Sens. 60,
1e16. https://doi.org/10.1109/TGRS.2021.3061438.
2354
Chai, C., Maceira, M., Santos-Villalobos, H.J., Venkatakrishnan, S.V., Schoenball, M.,
Zhu, W., Beroza, G.C., Thurber, C., Team, E.C., 2020. Using a deep neural network
and transfer learning to bridge scales for seismic phase picking. Geophys. Res.
Lett. 47. https://doi.org/10.1029/2020GL088651 e2020GL088651.

Chen, P., Zhang, Q., 2020. Classification of heart sounds using discrete time-
frequency energy feature based on s transform and the wavelet threshold
denoising. Biomed. Signal Process Control 57, 101684. https://doi.org/10.1016/
j.bspc.2019.101684.

Cunha, A., Pochet, A., Lopes, H., Gattass, M., 2020. Seismic fault detection in real data
using transfer learning from a convolutional neural network pre-trained with
synthetic seismic data. Comput. Geosci. 135, 104344. https://doi.org/10.1016/
j.cageo.2019.104344.

Dong, X., Lin, J., Lu, S., Huang, X., Wang, H., Li, Y., 2022. Seismic shot gather
denoising by using a supervised-deep-learning method with weak dependence
on real noise data: a solution to the lack of real noise data. Surv. Geophys. 43,
1363e1394. https://doi.org/10.1007/s10712-022-09702-7.

Fang, Y., Chen, H., Hu, Y., Li, R., Li, J., 2021. Application of adaptive parameterized s-
transform to delta sandstone reservoir identification. Geophys. Prospect. 69,
1689e1699. https://doi.org/10.1111/1365-2478.13129.

Fu, J., Li, S., Niu, X., Deng, X., Zhou, X., 2020. Geological characteristics and explo-
ration of shale oil in chang 7 member of triassic yanchang formation, ordos
basin, nw China. Petrol. Explor. Dev. 47, 931e945. https://doi.org/10.1016/
S1876-3804(20)60107-0.

Gholami, A., 2013. Sparse timeefrequency decomposition and some applications.
IEEE Trans. Geosci. Rem. Sens. 51, 3598e3604. https://doi.org/10.1109/
TGRS.2012.2220144.

Herrera, R.H., Han, J., van der Baan, M., 2014. Applications of the synchrosqueezing
transform in seismic time-frequency analysis. Geophysics 79, V55eV64. https://
doi.org/10.1190/GEO2013-0204.1.

Hinton, G., Vinyals, O., Dean, J., et al., 2015. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531 2.

Jokanovic, B., Amin, M., 2015. Reduced interference sparse time-frequency distri-
butions for compressed observations. IEEE Trans. Signal Process. 63,
6698e6709. https://doi.org/10.1109/TSP.2015.2477056.

Kaur, H., Fomel, S., Pham, N., 2020. Seismic ground-roll noise attenuation using
deep learning. Geophys. Prospect. 68, 2064e2077. https://doi.org/10.1111/1365-
2478.12985.

Li, R., Chen, H., Fang, Y., Hu, Y., Chen, X., Li, J., 2022a. Synchrosqueezing polynomial
chirplet transform and its application in tight sandstone gas reservoir identi-
fication. Geosci. Rem. Sens. Lett. IEEE 19, 1e5. https://doi.org/10.1109/
LGRS.2021.3071318.

Li, S., Liu, N., Li, F., Gao, J., Ding, J., 2022b. Automatic fault delineation in 3-d seismic
images with deep learning: data augmentation or ensemble learning? IEEE
Trans. Geosci. Rem. Sens. 60, 1e14. https://doi.org/10.1109/TGRS.2022.3150353.

Lin, W., Meng, X., 2011. An adaptive generalized s-transform for instantaneous
frequency estimation. Signal Process 91, 1876e1886. https://doi.org/10.1016/
j.sigpro.2011.02.010.

Liu, N., Gao, J., Zhang, B., Wang, Q., Jiang, X., 2019. Self-adaptive generalized s-
transform and its application in seismic timeefrequency analysis. IEEE Trans.
Geosci. Rem. Sens. 57, 7849e7859. https://doi.org/10.1109/TGRS.2019.2916792.

Liu, N., Huang, T., Gao, J., Xu, Z., Wang, D., Li, F., 2022a. Quantum-enhanced deep
learning-based lithology interpretation from well logs. IEEE Trans. Geosci. Rem.
Sens. 60, 1e13. https://doi.org/10.1109/TGRS.2021.3085340.

Liu, N., Wang, J., Gao, J., Chang, S., Lou, Y., 2022b. Similarity-informed self-learning
and its application on seismic image denoising. IEEE Trans. Geosci. Rem. Sens.
60, 1e13. https://doi.org/10.1109/TGRS.2022.3210217.

Liu, N., Wang, J., Gao, J., Yu, K., Lou, Y., Pu, Y., Chang, S., 2022c. NS2NS: self-learning
for seismic image denoising. IEEE Trans. Geosci. Rem. Sens. 60, 1e11. https://
doi.org/10.1109/TGRS.2022.3217289.

Liu, N., Wu, L., Wang, J., Wu, H., Gao, J., Wang, D., 2022d. Seismic data reconstruction
via wavelet-based residual deep learning. IEEE Trans. Geosci. Rem. Sens. 60,
1e13. https://doi.org/10.1109/TGRS.2022.3152984.

Liu, X.-Y., Zhou, L., Chen, X.-H., Li, J.-Y., 2020. Lithofacies identification using support
vector machine based on local deep multi-kernel learning. Petrol. Sci. 17,
954e966. https://doi.org/10.1007/s12182-020-00474-6.

Lu, W., Li, F., 2013. Seismic spectral decomposition using deconvolutive short-time
fourier transform spectrogram. Geophysics 78, V43eV51. https://doi.org/
10.1190/GEO2012-0125.1.

Orovi�c, I., Dragani�c, A., Stankovi�c, S., 2015. Sparse timeefrequency representation
for signals with fast varying instantaneous frequency. IET Radar. Sonar &
Navigation 9, 1260e1267. https://doi.org/10.1049/iet-rsn.2015.0116.

Siahkoohi, A., Louboutin, M., Herrmann, F.J., 2019. The importance of transfer
learning in seismic modeling and imaging. Geophysics 84, A47eA52. https://
doi.org/10.1190/GEO2019-0056.1.

Song, X., Zhao, J., Song, J., Dong, F., Xu, L., Zhao, J., 2020. Local demagnetization fault
recognition of permanent magnet synchronous linear motor based on s-
transform and psoelssvm. IEEE Trans. Power Electron. 35, 7816e7825. https://
doi.org/10.1109/TPEL.2020.2967053.

Stockwell, R., Mansinha, L., Lowe, R., 1996. Localization of the complex spectrum:
the s transform. IEEE Trans. Signal Process. 44, 998e1001. https://doi.org/
10.1109/78.492555.

Tschannen, V., Delescluse, M., Ettrich, N., Keuper, J., 2020. Extracting horizon sur-
faces from 3d seismic data using deep learning. Geophysics 85, N17eN26.
https://doi.org/10.1190/GEO2019-0569.1.

Wang, D., Fu, J., Lei, Q., Luo, A., 2007. Exploration technology and prospect of low

https://doi.org/10.1109/TSP.2002.804085
https://doi.org/10.1190/GEO2021-0193.1
https://doi.org/10.1109/TGRS.2021.3061438
https://doi.org/10.1029/2020GL088651
https://doi.org/10.1016/j.bspc.2019.101684
https://doi.org/10.1016/j.bspc.2019.101684
https://doi.org/10.1016/j.cageo.2019.104344
https://doi.org/10.1016/j.cageo.2019.104344
https://doi.org/10.1007/s10712-022-09702-7
https://doi.org/10.1111/1365-2478.13129
https://doi.org/10.1016/S1876-3804(20)60107-0
https://doi.org/10.1016/S1876-3804(20)60107-0
https://doi.org/10.1109/TGRS.2012.2220144
https://doi.org/10.1109/TGRS.2012.2220144
https://doi.org/10.1190/GEO2013-0204.1
https://doi.org/10.1190/GEO2013-0204.1
http://refhub.elsevier.com/S1995-8226(24)00057-8/sref12
http://refhub.elsevier.com/S1995-8226(24)00057-8/sref12
https://doi.org/10.1109/TSP.2015.2477056
https://doi.org/10.1111/1365-2478.12985
https://doi.org/10.1111/1365-2478.12985
https://doi.org/10.1109/LGRS.2021.3071318
https://doi.org/10.1109/LGRS.2021.3071318
https://doi.org/10.1109/TGRS.2022.3150353
https://doi.org/10.1016/j.sigpro.2011.02.010
https://doi.org/10.1016/j.sigpro.2011.02.010
https://doi.org/10.1109/TGRS.2019.2916792
https://doi.org/10.1109/TGRS.2021.3085340
https://doi.org/10.1109/TGRS.2022.3210217
https://doi.org/10.1109/TGRS.2022.3217289
https://doi.org/10.1109/TGRS.2022.3217289
https://doi.org/10.1109/TGRS.2022.3152984
https://doi.org/10.1007/s12182-020-00474-6
https://doi.org/10.1190/GEO2012-0125.1
https://doi.org/10.1190/GEO2012-0125.1
https://doi.org/10.1049/iet-rsn.2015.0116
https://doi.org/10.1190/GEO2019-0056.1
https://doi.org/10.1190/GEO2019-0056.1
https://doi.org/10.1109/TPEL.2020.2967053
https://doi.org/10.1109/TPEL.2020.2967053
https://doi.org/10.1109/78.492555
https://doi.org/10.1109/78.492555
https://doi.org/10.1190/GEO2019-0569.1
http://refhub.elsevier.com/S1995-8226(24)00057-8/sref30


N.-H. Liu, Y.-X. Zhang, Y. Yang et al. Petroleum Science 21 (2024) 2345e2355
permeability oil-gas field in ordos basin. Lithologic Reservoirs 19, 126e130.
Wang, Q., Gao, J., Liu, N., Jiang, X., 2018. High-resolution seismic timeefrequency

analysis using the synchrosqueezing generalized s-transform. Geosci. Rem.
Sens. Lett. IEEE 15, 374e378. https://doi.org/10.1109/LGRS.2017.2789190.

Wang, Y., Peng, Z., He, Y., 2016. Time-frequency representation for seismic data
using sparse s transform. In: 2016 2nd IEEE International Conference on
Computer and Communications (ICCC), pp. 1923e1926. https://doi.org/10.1109/
CompComm.2016.7925036.

Wigner, E.P., 1997. On the quantum correction for thermodynamic equilibrium: Part
I: Physical Chemistry. Part II. Solid State Phys 110e120. https://doi.org/10.1103/
PhysRev.40.749.

Wu, H., Li, Z., Liu, N., 2022. Variable seismic waveforms representation: weak-
supervised learning based seismic horizon picking. J. Petrol. Sci. Eng. 214,
110412. https://doi.org/10.1016/j.petrol.2022.110412.

Wu, X., Liang, L., Shi, Y., Fomel, S., 2019. Faultseg3d: using synthetic data sets to train
an end-to-end convolutional neural network for 3d seismic fault segmentation.
Geophysics 84, IM35eIM45. https://doi.org/10.1190/GEO2018-0646.1.

Wu, X., Liu, T., 2009. Spectral decomposition of seismic data with reassigned
smoothed pseudo wignereville distribution. J. Appl. Geophys. 68, 386e393.
https://doi.org/10.1016/j.jappgeo.2009.03.004.

Xie, X., 2016. Provenance and sediment dispersal of the triassic yanchang formation,
southwest ordos basin, China, and its implications. Sediment. Geol. 335, 1e16.
https://doi.org/10.1016/j.sedgeo.2015.12.016.

Yang, Y., Gao, J., Wang, Z., Li, Z., 2021. Seismic absorption qualitative indicator via
sparse group-lasso-based timeefrequency representation. Geosci. Rem. Sens.
Lett. IEEE 18, 1680e1684. https://doi.org/10.1109/LGRS.2020.3006340.

Yang, Y., Gao, J., Wang, Z., Liu, N., 2022. Data-driven time-frequency method and its
2355
application in detection of free gas beneath a gas hydrate deposit. IEEE Trans.
Geosci. Rem. Sens. 60, 1e13. https://doi.org/10.1109/TGRS.2021.3138540.

Yao, J., Deng, X., Zhao, Y., Han, T., Chu, M., Pang, J., 2013. Characteristics of tight oil in
triassic yanchang formation, ordos basin. Petrol. Explor. Dev. 40, 161e169.
https://doi.org/10.1016/S1876-3804(13)60019-1.

Yim, J., Joo, D., Bae, J., Kim, J., 2017. A gift from knowledge distillation: fast opti-
mization, network minimization and transfer learning. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 4133e4141.
https://doi.org/10.1109/CVPR.2017.754.

Yuan, S.-Y., Yang, S., Wang, T.-Y., Qi, J., Wang, S.-X., 2020. Inverse spectral decom-
position using an lp-norm constraint for the detection of close geological
anomalies. Petrol. Sci. 17, 1463e1477. https://doi.org/10.1007/s12182-020-
00490-6.

Zhao, T., Song, W., 2012. An application of matching pursuit time-frequency
decomposition method using multi-wavelet dictionaries. Petrol. Sci. 9,
310e316. https://doi.org/10.1007/s12182-012-0214-9.

Zhong, T., Cheng, M., Dong, X., Li, Y., Wu, N., 2022a. Seismic random noise sup-
pression by using deep residual u-net. J. Petrol. Sci. Eng. 209, 109901. https://
doi.org/10.1016/j.petrol.2021.109901.

Zhong, T., Wang, W., Lu, S., Dong, X., Yang, B., 2022b. Rmchn: a residual modular
cascaded heterogeneous network for noise suppression in das-vsp records.
Geosci. Rem. Sens. Lett. IEEE 20, 1e5. https://doi.org/10.1109/
LGRS.2022.3229556.

Zhou, H., Tian, Y., Ye, Y., 2014. Dynamic deconvolution of seismic data based on
generalized s-transform. J. Appl. Geophys. 108, 1e11. https://doi.org/10.1016/
j.jappgeo.2014.06.004.

http://refhub.elsevier.com/S1995-8226(24)00057-8/sref30
http://refhub.elsevier.com/S1995-8226(24)00057-8/sref30
https://doi.org/10.1109/LGRS.2017.2789190
https://doi.org/10.1109/CompComm.2016.7925036
https://doi.org/10.1109/CompComm.2016.7925036
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1016/j.petrol.2022.110412
https://doi.org/10.1190/GEO2018-0646.1
https://doi.org/10.1016/j.jappgeo.2009.03.004
https://doi.org/10.1016/j.sedgeo.2015.12.016
https://doi.org/10.1109/LGRS.2020.3006340
https://doi.org/10.1109/TGRS.2021.3138540
https://doi.org/10.1016/S1876-3804(13)60019-1
https://doi.org/10.1109/CVPR.2017.754
https://doi.org/10.1007/s12182-020-00490-6
https://doi.org/10.1007/s12182-020-00490-6
https://doi.org/10.1007/s12182-012-0214-9
https://doi.org/10.1016/j.petrol.2021.109901
https://doi.org/10.1016/j.petrol.2021.109901
https://doi.org/10.1109/LGRS.2022.3229556
https://doi.org/10.1109/LGRS.2022.3229556
https://doi.org/10.1016/j.jappgeo.2014.06.004
https://doi.org/10.1016/j.jappgeo.2014.06.004

	Application of sparse S transform network with knowledge distillation in seismic attenuation delineation
	1. Introduction
	2. S transform and its sparse variant
	2.1. S transform
	2.2. Sparse S transform

	3. Sparse S transform network
	3.1. SSTNet
	3.2. Pre-training data set of SSTNet
	3.3. Pre-training details of SSTNet

	4. Sparse S transform network with knowledge distillation
	4.1. KD-SSTNet
	4.2. Knowledge distillation
	4.3. Fine-tuning details of KD-SSTNet

	5. Field data applications
	6. Discussions
	7. Conclusions
	Declaration of competing interest
	Data availability statements
	CRediT authorship contribution statement
	Acknowledgments
	References


