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ABSTRACT

Seismic data is commonly acquired sparsely and irregularly, which necessitates the regularization of
seismic data with anti-aliasing and anti-leakage methods during seismic data processing. We propose a
novel method of 4D anti-aliasing and anti-leakage Fourier transform using a cube-removal strategy to
address the combination of irregular sampling and aliasing in high-dimensional seismic data. We
compute a weighting function by stacking the spectrum along the radial lines, apply this function to
suppress the aliasing energy, and then iteratively pick the dominant amplitude cube to construct the
Fourier spectrum. The proposed method is very efficient due to a cube removal strategy for accelerating
the convergence of Fourier reconstruction and a well-designed parallel architecture using CPU/GPU
collaborative computing. To better fill the acquisition holes from 5D seismic data and meanwhile
considering the GPU memory limitation, we developed the anti-aliasing and anti-leakage Fourier
transform method in 4D with the remaining spatial dimension looped. The entire workflow is composed
of three steps: data splitting, 4D regularization, and data merging. Numerical tests on both synthetic and
field data examples demonstrate the high efficiency and effectiveness of our approach.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

In the past, data regularization or interpolation was predomi-
nantly conducted in low-dimensional space. However, a higher-

Regularly and densely sampled seismic data can benefit various dimensional (>3D) methods can provide more data from different

seismic processing methodologies within the realm of geophysical
exploration. This includes data-driven multiple elimination
(Verschuur et al., 1992), plane-wave gathers (Liu et al., 2018),
seismic migration (Etgen et al., 2009; Liu, 2019), surface-noise
removal (Qin et al.,, 2012), and amplitude variation with azimuth
or offset analyses (Almutlag and Margrave, 2010). Obviously,
directly acquiring more data is the best way to obtain 3D regularly
sampled data; however, this is prohibitively expensive and even
impossible in many cases due to complex topography, cable
feathering, and necessity for bad traces editing. Therefore, seismic
data regularization or interpolation becomes pivotal in overcoming
these limitations.
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spatial dimensions and thus lead to an enhanced outcomes (Jin,
2010; Xu et al., 2010). For this reason, the development of high-
dimensional seismic data regularization approaches is deemed
essential.

Aliasing and spectral leakage represent primary artifacts during
seismic data processing and present challenges in data regulari-
zation. Consequently, various methods have been proposed over
recent decades to tackle these artifacts. Examples include, but are
not limited to, transform-based data regularization (Hindriks and
Duijndam, 2000; Zwartjes and Gisolf, 2007), convolution-based
methods (Spitz, 1991; Crawley, 2001), wavefields continuation
operator method (Zwartjes and Gisolf, 2007), minimum weighted
norm inversion (Liu and Sacchi, 2004), deep learning strategies
(Wang et al., 2019, 2023), projection onto convex sets (Abma and
Kabir, 2006), and antileakage Fourier transform (ALFT) (Xu et al.,
2005, 2010; Qin et al., 2018).
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Transform-based seismic data regularization typically coverts
the non-uniform data into another domain using Fourier transform
(Duijndam et al., 1999; Zwartjes and Sacchi, 2007), Radon trans-
form (Trad et al., 2002), or wavelet transform (Pawelec et al., 2019).
It then estimates the corresponding coefficients through least-
square sparse inversion, and finally outputs the uniform data by
the associated inverse transform. For example, Duijndam et al.
(1999) proposed the Fourier-domain reconstruction method to
interpolate non-uniformly sampled data by assuming band-limited
input. Zwartjes and Sacchi (2007) further developed this method to
non-uniformly sampled and aliased data using Fourier-domain
sparse inversion and a weighting function from the non-aliased
part of the spectrum.

Convolution-based methods operate under the assumption that
the regularized seismic data can be expressed as a convolution
between the input data and a given function (like sinc-function
interpolation) or a series of coefficients to be solved. Prediction
error filters (PEFs) represent a commonly employed technique
within this category. Spitz (1991) predicted the linear events for
aliased seismic data by assuming that the data are stationary and
regular. Crawley (2001) further proposed nonstationary PEFs to
solve the interpolation of curved events.

Wavefields continuation operator techniques involve applying a
forward operator to non-uniform seismic data and obtain the
associated model, based on which an inverse operator is followed
to produce the missing offsets and azimuths. Such operators can be
dip moveout (DMO), azimuth moveout (Chemingui, 1999), or
migration (Verma et al., 2016), etc. This category of approaches can
preserve lateral discontinuities, but may introduce unavoidable
artifacts in a complex geological structure due to depending on the
velocity model. Moreover, the integral of coarsely sampled data
from the wavefields continuation operator also results in artifacts.
Inversion strategy can ameliorate the results but greatly increase
the computational cost (Nemeth et al., 1999).

The minimum weighted norm inversion method is efficient due
to the applied fast Fourier transform (FFT); however, it requires
data binning to regularize the spatial positions, potentially causing
data distortion. Deep learning techniques establish an abstract
relation between the sparse input data and desired regularized data
through extensive training datasets. Once this relation is well
established, the forward prediction can be exceptionally efficient.
However, this procedure usually requires one robust deterministic
method for labeling the training samples (Zhang et al., 2020). Some
self-supervised learning approaches have been proposed in recent
years to overcome the limitation of labeling, but compromise the
prediction accuracy (Fang et al., 2023). Projection onto convex sets
is a popular and computationally efficient method but requires an
appropriate selection of a robust threshold, which can be difficult to
determine.

The ALFT methods iteratively construct the Fourier coefficients
by searching for the element with maximum amplitude and sub-
tracting the associated components from the original data until all
the significant Fourier coefficients are estimated (Xu et al., 2005).
ALFT is theoretically straightforward and robust to implement and
hence attracts considerable studies. For example, Schonewille et al.
(2009) improved the ALFT by estimating a weighting function from
the low-frequency data and applying to high-frequency data to
help event picking; Ebrahim et al. (2018) introduced antileakage
scheme to least-squares spectral analysis to attenuate the spectral
leakage and consequently regularize irregular data series. However,
ALFT tends to incur significant computational cost in high dimen-
sion (Xu et al.,, 2010; Whiteside et al., 2014).

To alleviate computational issues for high-dimensional seismic
data regularization using ALFT, we proposed employing 4D ALFT,
speeding up the conventional ALFT workflow by cube removal, and
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designing a CPU/GPU collaborative computing strategy. To guar-
antee the events linearity and reduce the memory cost, the high-
dimensional ALFT is usually implemented using a windowing
strategy with sufficient overlapping and tapering. However, the
problem of spatial aliasing may occur more likely within the win-
dows. Therefore, anti-aliasing scheme is also required within ALFT
to improve the regularization results (Schonewille et al., 2009; Yang
et al., 2017).

We organized the paper as follows. We demonstrated the
principle of 4D anti-aliasing and anti-leakage seismic data regula-
rization, illustrate the cube-removal-based workflow, discuss the
CPU/GPU collaborative parallel computing, and finally validate our
method on both synthetic and field datasets.

2. Method
2.1. Anti-leakage fourier transform

Suppose that d(x,,t) are seismic data with N traces non-
uniformly sampled at locations [xg, X1... Xy_1] in the ascending
order, and the associated Fourier coefficients in the frequency-
wavenumber domain can be computed via nonuniform discrete
Fourier transform (NDFT),

N-1 _
D(mAk, ) =" d(xn, w)e™ " Axy,
n=0

(1)

where Ak = 21 /(xy_1 — Xg), m is the wavenumber index, and Ax,
represents the distance between two consecutive traces. D(mAk, w)
can be expressed as a convolution between a point-spread function
and a spectrum from the corresponding uniformly sampled signals
(Zwartjes and Sacchi, 2007), and is contaminated by spectrum
leakage.

To mitigate these leakages, Xu et al. (2005) proposed the ALFT
regularization, which contains the following steps.
1) Compute frequency-wavenumber-domain wavefields

D(mAk, w) using Eq. (1).

2) Select and output the strongest Fourier component for each
frequency slice.

3) Subtract the contribution of this strongest component and up-
date the Fourier components via

N-1
Dypdate (MAK, ) = D(mAk, ) — > D(mAk, w)el(MAk—Knstn Ax,,
n=0

(2)

4) Input the updated Fourier components into step 2 until the data
residual is small enough or reaches the user-given picks number.

5) Create the regularized seismic data by applying inverse FFT to
the estimated spectrum.

Many publications have showcased the efficacy of ALFT regu-
larization in handling nonuniformly sampled seismic data. How-
ever, its performance may degrade for very sparse data where
aliasing happens, especially for seismic data in crossline direction
that are generally aliased in the cases of complex geologic struc-
tures. On the other hand, the computational cost, determined by
the volume of wavenumbers and input traces across all dimensions,
dramatically increases for the high-dimensional ALFT regulariza-
tion. In the following sections, we will discuss how to resolve the
spectral leakage and aliasing simultaneously and accelerate high-
dimensional ALFT regularization significantly.
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2.2. Anti-aliasing ALFT

The above ALFT workflow functions nicely if the strongest
amplitude element is always the f—k response of a real event.
However, scenarios exist where this element is an artifact caused by
noisy input data, or wraparound of an aliased event, or energy
leakage from another event. Fig. 1 demonstrates one of these cases
with an example of crossing linear events, showing the effect of
spatial sampling on the Fourier spectrum. Fig. 1(a) shows the
densely and uniformly sampled data and the corresponding f—k
spectrum in Fig. 1(b) are free of spectral leakage and aliasing.
Fig. 1(c) shows the aliased data, obtained by uniformly extracting
one-eighth traces from Fig. 1(a). Its f—k spectrum in Fig. 1(d) shows
periodic aliases but without spectral leakage. We then randomly
drop 30% of the traces to generate Fig. 1(e), and the spectrum in
Fig. 1(f) shows aliasing as well as artifacts (dashed red ellipse) from
sampling irregularities. Fig. 1(f) is the case we usually need to
handle in practice, where the ALFT method may select aliased
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components rather than the true components, meaning the events
are not well reconstructed at new locations.

We then augmented the ALFT regularization method by incor-
porating a robust anti-aliasing capability through the computation
of an appropriated weighting function aimed at mitigating the
aliased energy prior to maximum energy selection. In f—k domain,
the dip of a linear event can be expressed by p = k/w, and the true
signals share a common origin at (v = 0,k = 0), whereas the ali-
asing lacks this commonality. This favorable property enables us to
design an anti-aliasing approach.

Assuming that the events are approximately linear within a
high-dimensional window, we can compute the weighting function
W(K', ') by stacking the f—k spectrum along the radiating lines,
and the equation is written as

WK, o) = IDKo /o' ), 3)

(b) -50

Frequency, Hz

50
-0.02 -0.01 0 0.01 0.02

(d)

Frequency, Hz

-0.02 -0.01 0 0.01 0.02

Frequency, Hz

-0.02 -0.01 0 0.01 0.02

Fig. 1. An example of aliasing and spectral leakage, including (a) the dense and uniformly acquired data and (b) the associated f—k spectrum, (c) the sparse and uniformly acquired
data and (d) the associated f—k spectrum, (e) the sparse data with 30% traces missing and (f) associated f—k spectrum. The red ellipse marks the spectral leakage.
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where k' and «' are the wavenumber and frequency indices for the
weighting matrix or the center of the integral window, and w in-
dicates the frequency in the original spectrum used for integral
(Schonewille et al., 2009; Qin et al., 2012). A typical integral range of
w is 5—10 Hz. Leveraging the fact that the f—k responses of linear
events are radial lines emanating from the origin (v = 0,k = 0), Eq.
(3) can enhance the true signals while dampening the aliasing that
does not point to the origin. Fig. 2(a) shows the weights for the
spectrum in Fig. 1(f) using Eq. (3) and integral range of 10 Hz,
revealing that the true Fourier components corresponds to high
weights whereas the aliasing exhibits considerably low weights.
The weighting function is then applied to the f—k spectrum before
selecting the maximum energy. The result in Fig. 2(b) clearly
highlights the true Fourier components and effectively suppresses
the aliasing. The evident disparity in energy between the true
components and the aliasing is sufficient to avoid picking the ali-
asing as the maximum component. The workflow for anti-aliasing
ALFT regularization is discussed in the subsequent section.

2.3. Cube-removal scheme

The high computational cost for high-dimensional ALFT regu-
larization hinders its widespread application (Whiteside et al.,
2014). We introduced a spectral cube-removal technique to speed
up the method. The cube removal scheme assumes that the points
adjacent to the point with maximum energy also has strong energy,
and thus we can subtract the contribution of a cube for one itera-
tion, rather than a single point. This can dramatically decrease the
implementation of maximum energy searching and weighting
function computing.

The whole workflow of the anti-aliasing ALFT regularization
using cube removal is:

1) Compute the f—k spectrum of the seismic data using Eq. (1).

2) Estimate the weighting function using Eq. (3) and apply to the
f—k spectrum.

3) Find the element with maximum energy for each frequency
slice.

4) Output the 3 x 3 x 3 cube centered on this selected point. Loop
over each position within this cube, output the corresponding
element from the input spectrum to the estimated aliasing- and
leakage-free spectrum, and then update the input spectrum
using Eq. (2). Continue the loop until all the element within the
cube is processed.

Frequency, Hz

-0.025 -0.020 -0.015 -0.010 -0.005 0

Ky

0005 0010 0015 0020 0025
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5) Repeat step 2 to 4 until the data residual is small enough or
reaching the user-given picks number.
6) Output the regularized seismic data using inversion FFT.

We then used a simple example to validate our proposed cube-
removal anti-aliasing ALFT. We prepared a 4D matrix d(t,x,y,z) as
the true data whose spatial grid numbers are 25 x 37 x 25 (corre-
sponding x, ¥, and z spatial dimension, respectively). The spatial
intervals for the three dimensions are all 15 m and the recording
length is 2 s. We use two 3D displays to depict this 4D data. Fig. 3(a)
and (b) both show a 3D matrix, corresponding to data
d(t,y,z;x=225m) and d(t, x, z;y = 225 m), respectively. We
randomly selected 1500 traces (about 6.5 % of the original dense
traces) as the input for data regularization, shown in Fig. 3(c) and
(d). The input traces are clearly sparse and nonuniform, resulting in
severe aliasing and leakage. To validate that, we compute the
Fourier spectra for the sparse data (Fig. 3(c)) and true data
(Fig. 3(a)), shown in Fig. 4. Compared to the Fourier spectrum of the
true data (Fig. 4(a)), the spectrum of input data (Fig. 4(b)) is strongly
distorted by aliasing and spectral leakage. We then apply the cube-
removal anti-aliasing ALFT method to reconstruct the data with 80
iterations, and the results in Fig. 3(e) and (f) successfully recover the
missing data. Therefore, the weighting function well suppresses the
aliasing, further leading to correct selections of the maximum el-
ements in the presence of aliasing. We next discussed how the
cube-removal scheme can improve efficiency.

To demonstrate the efficiency of the cube-removal method, we
re-implemented the regularization using the point-removal 4D
anti-aliasing ALFT method, which means we only output one point
in step 4 of the above workflow as the way a classic ALFT method
(Xu et al., 2005) implements. The input data and the parameters are
the same as the test in Fig. 3, and the results after 80 iterations are
in Fig. 5. It shows that the events are also well recovered, while
some areas, for example the one indicated by the black arrow, have
unfocused leaked energy that deviates from the true data in
Fig. 3(b). Note that the point-removal result can be ameliorated by
increasing the iterations, as our trial results suggest. In other words,
the associated cube-removal result in Fig. 3(e) and (f) outperforms
the single-removal one for relatively few iterations.

We further compared the error value over iterations between
the cube-removal and point-removal scheme, shown in Fig. 6. The
error is defined as the L2 norm of the difference between the 4D
regularized and true data. Conclusions can be drawn that the cube-
removal method converges fast. Despite the fact that one iteration
of the cube-removal method costs slightly more than point

Frequency, Hz

20

30

40

50
-0.025 -0.020 -0.015 -0.010 -0.005 0

ks

0005 0010 0015 0020 0025

Fig. 2. (a) Weighting function for the data in Fig. 1(f) and (b) the associated weighted f — k spectrum.
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(a) (b)

-1.0 -0.5 0 0.5 1.0
Fig. 3. Result of 4D ALFT including (a) true data d(t,y, z;x= 225 m) and (b) d(t,x,z;y = 225 m), sparse input data corresponding to (c) d(t,y, z;x = 225 m) and (d) d(t,x,z;y = 225 m),

the regularized result using cube-remove 4D anti-aliasing ALFT method corresponding to (e) d(t,y, z;x = 225 m) and (f) d(t.x,z;y = 225 m). All the subfigures are drawn using the
same color bar.
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2 ¥
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Fig. 4. The f—k spectrum for (a) true data d(t,y,z;x= 225 m) and (b) the corresponding sparse input data.

(a)

w 1

400
z,m y,m z,m X, m

Fig. 5. The regularized result using the point-removal 4D anti-aliasing ALFT method corresponding to (a) d(t,y,z;x= 225 m) and (b) d(t,x,z;y = 225 m). The number of picks is 80,
same as the test in Fig. 3. The arrow marks the area which is inconsistent with the true data.
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700

—@— Cube removal
—1@— Point removal

600 -

Error

20 40 60 80 100

Iteration number

Fig. 6. The comparison of errors over iterations between point-removal and cube-
removal 4D anti-aliasing ALFT method.

removal, the whole cost still dramatically lower. In this example,
cube removal uses 4.2 s for 40 iterations to achieve an almost
equivalent error with point removal, which takes 6.1 s for 100 it-
erations. Therefore, this example demonstrate that compared to the
cube-removal scheme, the point-removal scheme requires an
additional 50% computational time to achieve a comparable
outcome.

2.4. CPU/GPU collaborative computing

To further boost the efficiency, we designed a multi-level par-
allel architecture via CPU/GPU collaborative parallel computing (Liu
et al,, 2015). This architecture is composed of message passing
interface (MPI), multiple GPU devices, and GPU fine-grained par-
allel computing. Fig. 7 shows the master-slave parallel architecture
of 4D ALFT regularization. The master processor coordinates tasks

Input 5D data headers

Select one master processor

Petroleum Science 21 (2024) 3079—3089

by reading the spatial locations from the headers and assigning
tasks to slave processors. Each slave processor is connected with
one GPU device, splitting the whole 5D seismic data into numerous
4D segments. These segments are read from the disk based on the
range that master processor defines and then sent to GPUs for
regularization. The only interaction between the master and slave
computations is that the master starts the slave computations by
sending the window index, and the slaves request unprocessed
windows after writing the regularized data. After that, we apply a
parallel merging to combine the data from numerous 4D windows
to the complete 5D dataset. Note that the data compression tech-
nique can be used to compress the regularized result from each 4D
window, and then the compressed data that is much smaller than
the original one is read and decompressed for merging. The
compression ratio is dependent on the accuracy of the decom-
pressed data (NVIDIA Corporation, 2022). To summarize, the pro-
posed parallel architecture has the features of parallel data splitting
and merging, on-the-fly splitting, and high-efficiency multi-GPUs
regularization.

To evaluate the efficiency of the GPU kernels, we prepared one
4D seismic data with maximum recording time of 8 s for a small
spatial window (65 x 81 x 81). We then use one GPU device of
Quadro RTX 6000 to process this data, meanwhile use the CPU
version and same parameters to reprocess this data on an Intel
Xeon CPU running at 2.20 GHz with 48 processors. Note that the
CPU version has OpenMP parallel computing applied over the time
window loop, meaning that we are comparing the GPU kernels
with OpenMP parallel CPU version. The efficiency comparison be-
tween CPU and GPU version is shown in Fig. 8(a). It demonstrates
that the GPU kernels achieve high acceleration ratios of 163, 85, 32,
and 15, compared with the CPU version for different time windows,
respectively. It is worth mentioning that the time window cannot

v

and slave processors

Master processor

Slave 1

Defined 4D
windows

Defined 4D
windows

Compute trace
index for each
window

Compute trace
index for each
window

Read traces Read traces

GPU ALFT4D GPU ALFT4D

Data output Data output

Slave n

Defined 4D
windows

Compute trace
index for each
window

Read traces

GPU ALFT4D

Data output

Y Read trace headers

Data distribution

More data?

Compression?

Fig. 7. The parallel architecture of 4D ALFT regularization. Blue, green, grey, and red rectangles represent slave, computation, data 1/0, and master, respectively.
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G

Speed-up ratio

—O—— Ideal performance
——%—— Code performance

4 6

GPU devices number

Fig. 8. Code performance of 4D ALFT regularization including (a) the efficiency comparison between the GPU and CPU version and (b) the scalability performance.

1st output

ith output nth output

Processor n
Merging

Processor 1 Processor i

Merging

Regularized
4D data

Regularized
4D data

Regularized
4D data

Regularized
4D data

Fig. 9. (a) The parallel architecture of seismic data

be too small, otherwise the windowed data is unable to capture the
linearity of the seismic events. A typical time window length ranges
from 500 to 2000 ms. Additionally, we also assessed the perfor-
mance scalability of the parallel architecture (Fig. 7) with respect to
the number of GPU devices. The result in Fig. 8(b) clearly shows that
the ALFT method can achieve nearly linear performance scalability.

The merging procedure involves going through each output
index and computing the associated window that contribute to this
location. This computation is realized by scanning the window
boundary from all the windows, followed by merging all the related
windowed regularized data using a weighted stacking and writing
a group of traces along the fast spatial dimension onto the disk. If
the windowed data are compressed in the regularization proced-
ure, the data require decompression before merging. The merging
procedure is accelerated by MPI parallel computing, which is
applied over the two slowest spatial dimensions. The number of the
output files corresponds to the number of processors employed for
merging. The above procedure is further illustrated in Fig. 9(a).
Furthermore, the scalability test depicted in Fig. 9(b) affirms that
this parallel merging exhibits a linear acceleration ratio concerning
the processors number.

3. Results

In this section, we applied the 4D cube-removal anti-aliasing
ALFT regularization to both synthetic and field data sets and vali-
date the regularization results by depth migration or NMO stacking.

3.1. Application to synthetic data set

Here we applyed our method to a 3D synthetic dataset gener-
ated from a partial 3D SEAM Arid model (2.25 km x 6 km x 3 km)
presented in Fig. 10. We used a Ricker wavelet with a peak fre-
quency of 20 Hz to generate 1280 common-shot gathers via 3D
acoustic finite-difference modeling. The 3D survey encompasses 40
source lines with randomly spaced line intervals ranging from 120
to 180 m. The source interval along crossline direction is randomly
selected from 60 to 120 m, leading irregular and sparse source lo-
cations shown in Fig. 11(a). The 67 receiver lines are uniformly
distributed on the surface with 15 m interval for the inline direction

hammg Decompression?

Ci

Speed-up ratio

~——}—— Ideal performance
4@7 Merging performance

1 2 3

Processor number

merging and (b) the associated scalability performance.

3085

and 60 m interval in the crossline direction. We then randomly
dropped 75% of the input traces. The missing traces and randomly
placed sources create sparse and irregular acquisition geometry
that requires the high-dimensional ALFT to reconstruct the seismic
data. The maximum offset is 6 km and the maximum recording
time is 2.5 s with 1 ms time-sampling interval.

The source locations are regularized using a grid size of
75 m x 90 m, and the receiver interval for inline and crossline di-
rection after regularization is 15 and 60 m, respectively. Fig. 11(b)
shows the regularized source locations, which achieves a dense and
regular sampling acquisition geometry. Besides, the seismic data
are reasonably reconstructed. For instance, the shot gathers pre-
sented in Fig. 12(a) and (c) exhibit severe irregularity and sparsity,
with traces in some areas being entirely absent (marked by the red
arrow), making seismic events identification challenging. However,
the regularized results depicted in Fig. 12(b) and (d) recover all the
traces and present a substantial improvement in the continuity of
seismic reflections compared to the input data.

To validate the regularized results, we randomly selected one
trace from the original input data of Fig. 12(c) and compared it with
the corresponding reconstructed trace from Fig. 12(d). The com-
parison in Fig. 13 indicates that the regularized trace preserves the

Vi, km/s

y, km

Fig. 10. The true velocity model for the synthetic data test.
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Fig. 12. Shot gathers comparison including (a) the time slice of the input shot gather at 2.5 s and (b) the associated regularized result, as well as (c) partial shot gathers before and

(d) after regularization. The red arrows mark the acquisition gaps.

amplitude and phase of the original trace. The minor amplitude

discrepancy can be reduced by increasing the number of iterations,

Regularized

- -~ Input

as the method selects the elements based on energy. Additionally,

we compare the f—k spectra for the shot gathers in Fig. 14, showing
the aliasing and leakage in the original input data marked by the
red arrow in Fig. 14(a) are effectively suppressed by our method,

compared to the spectrum of the regularized data in Fig. 14(b).
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apnyidwy

—-0.02

We applied the reverse-time migration (RTM) to both the input

and the regularized data and displayed the associated images in
Fig. 15. The image events from the regularized data exhibit
enhanced coherence, focus, and fewer artifacts compared to those
from the input data, such as the regions indicated by the dashed

black rectangles.
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Fig. 13. Trace comparison between the regularized data (solid red line) and the input

data (dashed black line).
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Fig. 14. The f—k spectrum for (a) the input shot gather in Fig. 12(c) and (b) the corresponding reconstructed data.
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Fig. 15. The RTM images including the (a) x-y, (c) x-z, and (e) y-z slices using the input sparse and irregular data and the associated (b) x-y, (d) x-z, and (f) y-z slices using the
regularized data.

3.2. Application to field data set coordinate (2D vector), and recording time. The original geometry
is designed to have a receiver spacing of 140 m in crossline direc-

To demonstrate the method's capability in handling complex tion, and 20 m in inline direction, a source spacing of 120 m in
seismic events, we then applied it to a land dataset. The data set is inline direction, and 20 m in crossline direction. However, the raw
indexed by the source coordinate (2D vector), the receiver data are sparsely acquired due to obstacles such as rivers and
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Fig. 16. One example of the stacked images (a) using the input seismic data and (b) the anti-aliasing ALFT regularized data.
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Fig. 17. Another example of the stacked images (a) using the input seismic data and (b) the anti-aliasing ALFT regularized data.
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Fig. 18. The f—k spectrum of (a) the stacked image in Fig. 16(a) and (b) the image in Fig. 16(b).

villages. The recording time is 6.0 s with 2 ms time-sampling in-
terval. The proposed method is applied on vector source and
receiver inline direction with one loop over receiver crossline di-
rection, and the regularization grid is same with the original
designed one.

We then applied NMO stacking to both the input data and the
regularized data. Two stacked profiles are presented in Figs. 16 and
17 for comparison. It is evident that the quality of the stacked image
after regularization is significantly improved regarding signal-to-
noise ratio and event coherency, particularly the areas marked by
dashed black rectangles. Besides, the acquisition holes pointed by
the black arrows in Figs. 16(a) and 17(a) are reasonably filled after
regularization. To further demonstrate the image quality
improvement, we compute the f—k spectra of the two images in
Fig. 16(a) and (b), as depicted in Fig. 18(a) and (b), respectively. The
comparison in Fig. 18 demonstrates that the spectrum after regu-
larization has more focused energy and reduced high-wavenumber
noise.

4. Discussion

The presence of low-velocity near-surface layers can lead to
strong and low-traveling arrivals that obscure the primary re-
flections. Such arrivals are typically severely aliased even for the
modern 3D seismic survey, and thus difficult to suppress due to
inadequate spatial sampling. The proposed method can also be
applied to effectively suppress this near-surface noise by
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reconstructing the spectrum free of aliasing and leakage and using
a noise-removal window in f—k domain.

Considering the seismic events are usually smoothly varying
and piecewise linear, we operate the data reconstruction in many
narrow temporal and spatial windows. For complex seismic data
with rough topography, we need more iterations to reconstruct the
spectrum because the complex seismic events on a frequency slice
in the f—k domain are not points-like; in this case, more traces are
also required to well recover the missing traces.

Extending this method into 5D regularization might have a
better performance than 4D version when dealing with input data
that exhibits severe aliasing across all spatial dimensions, but much
more memory and computational cost are required. Given the
limitations of available GPU memory, we have designed this
method to operate in 4D, which strikes a balance between memory
consumption and result quality.

5. Conclusion

We proposed an anti-aliasing ALFT method using cube removal.
This method can effectively regularize the combination of irregular
sampling and aliasing of high-dimensional seismic data. We used
cube-removal strategy to accelerate the convergence of the ALFT,
and further designed one CPU/GPU parallel computing architecture
to dramatically improve the regularization efficiency. The numeri-
cal test on both synthetic and field datasets validates that our
method can well regularize the complex seismic data and can
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further improve the prestack seismic data processing.
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