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The application of carbon dioxide (CO;) in enhanced oil recovery (EOR) has increased significantly, in
which CO; solubility in oil is a key parameter in predicting CO, flooding performance. Hydrocarbons are
the major constituents of oil, thus the focus of this work lies in investigating the solubility of CO, in
hydrocarbons. However, current experimental measurements are time-consuming, and equations of
state can be computationally complex. To address these challenges, we developed an artificial
intelligence-based model to predict the solubility of CO, in hydrocarbons under varying conditions of
temperature, pressure, molecular weight, and density. Using experimental data from previous studies,
we trained and predicted the solubility using four machine learning models: support vector regression
(SVR), extreme gradient boosting (XGBoost), random forest (RF), and multilayer perceptron (MLP).
Among four models, the XGBoost model has the best predictive performance, with an R* of 0.9838.
Additionally, sensitivity analysis and evaluation of the relative impacts of each input parameter indicate
that the prediction of CO, solubility in hydrocarbons is most sensitive to pressure. Furthermore, our
trained model was compared with existing models, demonstrating higher accuracy and applicability of
our model. The developed machine learning-based model provides a more efficient and accurate
approach for predicting CO; solubility in hydrocarbons, which may contribute to the advancement of
CO;-related applications in the petroleum industry.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Global warming is mainly related to the emission of greenhouse
gases, especially carbon dioxide (CO;) (Solomon et al., 2009).
Geological carbon storage has been assessed as a potential tech-
nique to mitigate global warming and climate change problems
(Aftab et al., 2022; Aslannezhad et al., 2023; Hassanpouryouzband
et al, 2021). Oil and gas reservoirs are favorable places for
geological storage due to the known reservoir information and the
existing infrastructure for CO, injection (Kovscek and Cakici, 2005).
Due to the increasing applications of CO, in enhanced oil recovery
and geological sequestration (Ezekiel et al., 2020; Uliasz-Misiak
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et al., 2021; You et al., 2021), the study of CO, solubility in oil has
become an important research area.

Currently, there are various methods available for studying the
solubility of CO, in hydrocarbon systems. However, some methods
are time-consuming, such as the pressure drop method (Li et al.,
2009), while others can disrupt the system equilibrium during
the sampling process, like the equilibrium liquid sampling analysis
method (Leu and Robinson, 1987). Additionally, certain methods
require extensive data recording and complex calculations using
equations of state, such as the gas PVT (pressur-
e—volume—temperature) measurement method (Shah et al., 1991).
The challenges in measuring CO, solubility in hydrocarbon lie in
determining the equilibrium point and analyzing the CO, mass.
Researchers typically rely on the changes in temperature, pressure,
or bubble point (pressure at which the gas phase disappears) before
and after the addition of CO; to determine the equilibrium point
(Wang et al., 2016).
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Welker (1963) conducted experimental measurements to
investigate the solubility of CO, in several types of oil. They
explored the variations in CO, solubility with respect to tempera-
ture, pressure, and crude oil composition. The results indicated that
CO, exhibits high solubility in oil, with the solubility decreasing
with increasing temperature and increasing with increasing pres-
sure. Additionally, due to the expansion of CO, upon dissolution in
oil, the experiments also measured the expansion coefficient of the
solution, observing its variation with solubility. It was also found
that gases are more easily dissolved in light oil. Simon and Graue
(1965) proposed correlations for predicting the physical proper-
ties of CO,—oil mixtures, such as the solubility of CO, in crude oil
systems. The average deviation in solubility estimation was re-
ported to be 2%. Furthermore, the properties of oil also influence
the solubility of CO,, such as in different hydrocarbon systems,
where the solubility of CO, decreases with an increase in the carbon
number of hydrocarbon compounds (Wang et al., 2018). Indeed,
hydrocarbons are the primary components of oil. Therefore, when
studying the solubility of CO, in oil, the focus is primarily on
investigating the solubility of CO, in hydrocarbons.

The solubility model of CO, in hydrocarbons is essentially based
on the fundamental principles of thermodynamics (Michelsen,
1990; Wei and Sadus, 2010). It establishes the relationship be-
tween observable macroscopic quantities such as pressure, tem-
perature, concentration, and CO> solubility when the homogeneous
substance system is in thermodynamic equilibrium. By utilizing
equations of state, the fugacity of the gas and liquid phases is
calculated, and a predictive model for CO; solubility is established.
Mehrotra and Svrcek (1985) introduced correlations to predict the
solubility and various physical properties of pure CO, and other
gases in bitumen, considering pressure and temperature as vari-
ables. Chung et al. (1988) provided predictive tools for determining
diverse physical properties, including CO, solubility in heavy oils.
These correlations utilize only temperature, pressure, and oil spe-
cific gravity values for predicting CO, solubility and estimating
other physical properties. Xue et al. (2005) comprehensively
considered various factors affecting gas solubility and derived
theoretical equations for the molar solubility of gas in crude oil and
the gas—oil ratio. Emera and Sarma (2007) developed correlations
using the genetic algorithm (GA) technique to predict CO; solubility
and other physical properties of CO,—oil mixtures for both dead
and live oils. Table S1 in Supplementary Information summarizes
several widely used empirical correlations for calculation of CO,
solubility in oil.

Machine learning (ML) technology is a data modeling tool that is
increasingly used in the oil and gas industry for its ability to
discover complex relationships between inputs and outputs in the
absence of theoretical models. The solubility of carbon dioxide in
hydrocarbons has been regarded as a complex process and cannot
be predicted precisely. In this case, it is better to use computer
methods to represent this complex relationship (Rostami et al.,
2017, 2018).

Machine learning techniques have been applied to reservoir oil
and gas properties estimation (Fazavi et al., 2014), retention and
solubility predictions (Ali Ahmadi and Ahmadi, 2016; Kamari et al.,
2014; Safari et al., 2014). Mehraein and Riahi (2017) combined the
least squares support vector machines (LSSVM) technique with
genetic algorithm (GA) multi-layer regression to predict the solu-
bility of CO; in ionic liquids (ILs). Yamaguchi et al. (2023) conducted
multiscale numerical simulations of CO; hydrate storage using two
types of neural networks. However, to the best of the authors'
knowledge, there are currently relatively few published articles
utilizing multiple artificial intelligence methods to simulate the
solubility of CO; in hydrocarbons. Moreover, the applicable range is
also relatively narrow. It is urged to establish a broader model of the
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solubility of CO; in hydrocarbons, in order to provide more refer-
ences for the study of CO, solubility. Temperature (T), pressure (P),
molecular weight (M), and density (p) are fundamental physical
parameters that influence solubility, thus CO, solubility in hydro-
carbons is affected by these parameters. Furthermore, extensive
experimental data from previous studies indicate a correlation
between these four parameters and the solubility of CO; in hy-
drocarbons. These parameters are relatively easy to obtain through
experimental measurements, and there is already a large amount of
data available for modeling purposes. Therefore, we have chosen
these four parameters as inputs for the model in this study. The four
machine learning models used in this study were support vector
regression (SVR), extreme gradient boosting (XGBoost), random
forest (RF), and multiple-layers perceptron (MLP). To ensure the
accuracy of the results, the hyperparameters for each model were
precisely defined, and the results were interpreted and discussed to
identify the best predictive model for the dataset.

2. Methodology
2.1. Data set

In this study, a large amount of data on the solubility of CO; in
hydrocarbons was collected, comprising 2212 datasets (Table S2 in
Supplementary Information) from 37 literature sources. After col-
lecting the data, the data is first checked for missing values, cor-
rected for missing values, outliers, and duplicate values. Then,
standardization is carried out to transform the data into a range
with similar scales, ensuring that different features have equal
weighting in the model. The pressures ranged from 0.093 to
40.85 MPa, temperatures ranged from 252.67 to 594.2 K, hydro-
carbon molecular weights ranged from 44 to 619.19 g/mol, and
hydrocarbon densities ranged from 500 to 919.2 kg/m>. The data
and experimental conditions for each literature source are pre-
sented in Table S3 in Supplementary Information. As shown in
Fig. 1, the relationship coefficient evaluation between the input
parameters and the output parameter (Sol).

2.2. Machine learning algorithms

In this study, four well-established modeling approaches were
employed: support vector regression (SVR), extreme gradient
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Fig. 1. Heat map implying the correlation between input and output variables.
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boosting (XGBoost), random forest (RF), and multiple-layers per-
ceptron (MLP). These approaches are well-known and widely used
in machine learning. Four inputs were considered in the model
including pressure, temperature, molecular weight, and density,
and the CO, solubility was considered as the sole predicted output.

2.2.1. Support vector regression (SVR)

Support vector machine (SVM) is a type of supervised learning
algorithm that has demonstrated strong predictive performance
and stability in both classification and regression tasks. SVM is used
for binary classification, and their basic model is a linear classifier
that maximizes the distance between the decision boundary and
the closest data points in the feature space. The objective of SVM is
to find the hyperplane that can best separate the two classes. In the
SVM algorithm the margin between the data points and the hyper
plane is tried to be maximized (Drucker et al., 1996). A commonly
used function to maximize the margin is the radial basis function
(RBF) expressed as a gaussian function:

(1)

where x; and ¥; are the feature vectors of two samples; and v is a
parameter controlling the similarity between samples in a higher-
dimensional space.

The penalty factor C is a regularization parameter, controlling
the trade-off between maximizing the margin and minimizing the
classification error:

K (%, %) = exp( — vl % — % )

(2)

where w is the normal vector to the hyperplane; &; are slack vari-
ables; and Cis a tuning parameter balancing the trade-off between
margin width and misclassification penalty. Adjusting C allows for
flexibility in handling the complexity of the model and the severity
of misclassification penalties (Iskandarov et al., 2021).

L . 1 2 n
Objective function = w |* + Cy . &

2.2.2. Extreme gradient boost (XGBoost)

XGBoost is an algorithm based on gradient boosting trees,
where the core idea is to “use multiple weak learners to construct a
strong learner by gradually optimizing the loss function” (Liang
et al, 2021; McCallum et al., 2021; Zhang et al., 2020). Specif-
ically, each weak learner is a decision tree model, and XGBoost
employs a customized loss function that simultaneously considers
the magnitude of errors and the complexity during the construc-
tion of each tree. Additionally, XGBoost utilizes regularization
techniques, namely L1 and L2 regularization, to prevent overfitting.

During each iteration, XGBoost calculates the gradient and
Hessian matrix for each sample, which are used to build the deci-
sion tree. Then, based on the gradient and Hessian matrix of the loss
function, the algorithm computes the split gain for each node to
determine which feature and threshold will minimize the loss
function (Sutton, 2005). Finally, a new decision tree is generated
using a greedy algorithm to select the split points. After multiple
iterations, XGBoost combines multiple decision trees to form a
strong learner.

2.2.3. Random forest (RF)

Random forest is an algorithm that combines a number of de-
cision trees (DT). It can provide fast and accurate results despite
being simple and having only a few parameters to be tuned. It
operates a number of DT to do the same tasks, while their outputs
are aggregated into the final prediction.

The most important tuning parameters of the algorithm are the
number of trees and the minimum samples leaf (Tin Kam, 1998). In
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this study, five tuning hyperparameter was used, including “n_es-
timators”, “max_depth”, “max_features”, “min_samples_split”, and

“min_samples_leaf".

2.2.4. Multilayer perceptron (MLP)

The MLP neural network is a type of feedforward network
composed of an input layer, hidden layers, and an output layer
(Agirre-Basurko et al., 2006). Each neuron is connected to all neu-
rons in the previous layer, and each connection has a weight. The
training of the MLP network utilizes the backpropagation algorithm
to adjust the weights and biases in order to minimize prediction
errors. The MLP neural network makes predictions by passing input
data through the hidden layers and then forwarding the output of
the hidden layers to the output layer. There can be multiple hidden
layers, and each hidden layer may have a different number of
neurons. Neurons apply an activation function to transform input
signals into output signals (Ture et al., 2005; Yin et al., 2022).

2.3. Workflow of developing ML models

Assessing the performance of machine learning (ML) models is a
crucial stage in the development of robust models. Firstly, pre-
process the data, including correcting missing values, handling
outliers, and removing duplicates, then normalize the data to make
it comparable. In supervised learning, a portion of the available
data is utilized for training the ML algorithm, while the remaining
data serves as a testing set to evaluate the accuracy of the predictive
model. To mitigate potential bias stemming from a specific random
split, it is common practice to explore multiple training or testing
splits. The flowchart of the ML models employed in this study en-
compasses several steps, as illustrated in Fig. 2.

Machine learning (ML) methods usually have numerous
hyperparameters (their importances are shown in Table S4 in
Supplementary Information) for training models, but only a few
need to be carefully selected to optimize model performance.
Improper selection of hyperparameters can lead to the issues of
underfitting or overfitting. In this study, the grid search technique
(GridSearchCV) was employed to identify the best hyperparameters
for each machine learning method.

Grid search involves systematically adjusting parameters within
a specified range to find the optimal hyperparameters. These
hyperparameters are then used to train the model, which is sub-
sequently evaluated on a validation set to determine the parameter
set that yields the highest accuracy. This process involves
comparing different combinations of arguments through cross-
validation.

Finally, the accuracy of each model was assessed using several
statistical metrics: r-squared (R%), mean absolute error (MAE),
mean squared error (MSE), and root mean squared error (RMSE).
We also compare the selected model with some previous models,
and take the average absolute relative deviation (AARD) value as
the metrics. These metrics provide quantitative measures of model
performance and are expressed as follows:

. 2
Z?:] (out{eal _ Out]predlcted)

PR (0” )2
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Fig. 2. The flow chart of machine learning (ML) models for this study.

1 ; 3
RMSE = \/EZT <Outireal o Out?redncted)

18 real di
_ predicted
MAE = > "|outf*™! — out!

i

dicted
1 W|outreal — oytPre
AARD:H P — — x 100% (7)
7 out!
where out!®, outP™¥*®d oytreadl and n are the actual value, pre-

dicted value, average actual value and the number of samples in the
model, respectively.

3. Result and discussion
3.1. Hyperparameter selection for ML models

In this study, the grid search technique was employed to identify
the optimal hyperparameters for each of the four machine learning

models. The tuning parameters used to develop these models are
listed in Table 1.

3.2. Model analysis

In this section, we assessed the performance of the predictive
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Table 1

The control parameter for tuning the ML models.

Model Parameter Specific search range Optimal value

SVR ¥ 0.1-50 1
C 0.1-500 0.5
epsilon 0.0001—-0.1 0.01

XGBoost n_estimator 200—-1000 800
max_depth 2—-10 4
reg_lambda 0.1-10 3
reg_alpha 0.1-10 0.1
learning_rate 0.01-1 0.1

RF n_estimator 20-500 300
max_depth 2-14 10
max_features 2—-10 2
min_samples_split 2—-10 2
min_samples_leaf 2-8 2

MLP hidden_layer_sizes 50—500 (150, 150)
alpha 0.00001—-0.01 0.0001
max_iter 500—2000 200
learning_rate_init 0.001-0.1 0.001

machine learning (ML) models described in the previous section on
our data. The comparison between the predicted and experimental
values for both the training and testing datasets using all four
models is shown in Figs. 3—6. Upon comparing the training set and
the testing set under the same model, higher prediction accuracy
with a good balance is observed, indicating the absence of over-
fitting and a better generalization ability of the model. Among the
four models, the XGBoost and MLP models exhibit superior pre-
diction performance and display closer proximity to the expected
results compared to the other two models.

The performance of the predictive ML models was assessed
using various statistical metrics, including the R? score, MSE, RMSE,
and MAE, as shown in Table 2. Notably, the XGBoost and MLP
models demonstrated exceptional performance, with highest R?
values, indicating a high correlation between predicted and
experimental values. The evaluation of prediction errors revealed
low MSE, RMSE, and MAE, suggesting accurate predictions with
minimal deviations. Akaike information criterion (AIC) and
Bayesian information criterion (BIC) can be used to explore the
likelihood of models that minimize information loss. Therefore, AIC
and BIC calculations were also performed for the four models, as
shown in Fig. 7. The XGBoost model shows the lowest AIC/BIC
values among all models, indicating its best performance on the
test data.

The superior performance of the XGBoost and MLP models may
be attributed to their robust nonlinear modeling capabilities and
excellent generalization performance. XGBoost, as a gradient
boosting decision tree model, effectively captures complex re-
lationships in the data and performs well on large-scale datasets.
Similarly, the MLP model, as a multilayer perceptron neural
network, possesses powerful nonlinear modeling and adaptive
learning capabilities, enabling effective learning and adaptation to
complex data patterns.

In contrast, the SVR and RF exhibit slightly inferior performance.
SVR, a support vector machine regression model, while capable of
handling nonlinear problems in some cases, highly depends on the
choice of kernel function and hyperparameter tuning, which may
limit its flexibility. On the other hand, RF, an ensemble learning
model, demonstrates good generalization performance and over-
fitting resistance but may be less effective in handling high-
dimensional sparse data and highly correlated features.

These findings highlight the effectiveness of ML models in
predicting CO, solubility in hydrocarbons, providing reliable in-
sights and capturing the underlying patterns in the data. The high
accuracy and low error metrics emphasize their capability to
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Fig. 6. Comparing prediction with true value (MLP model).

Table 2
Final results of four models.
Model Test R? MSE RMSE MAE
SVR 0.9771 0.0013 0.0365 0.0205
XGBoost 0.9838 0.0009 0.0307 0.0205
RF 0.9623 0.0022 0.0468 0.0333
MLP 0.9799 0.0012 0.0351 0.0201
-8000 -
-9000 4
-10000 4
-11000 o
-12000 4
-13000 4
-14000 o
. AC
mm BIC

-15000 T T T T
SVR XGBoost RF MLP

Fig. 7. AIC/BIC comparative performance of SVR, XGBoost, RF and MLP on testing data.

accurately model and predict CO, solubility behavior, enhancing
our understanding and potential applications in related fields.

3.3. Predictability of models

This study uses a dataset with a wide range of pressure levels,
and it would be valuable to investigate whether there are differ-
ences in the predicted outcomes at low and high-pressure levels.
Therefore, we further divided the dataset into three pressure
ranges: 0—15, 15—25, and 25—41 MPa. Under the XGBoost model,
using RMSE as a comparison metric, the results obtained are shown
in Fig. 8. It can be observed that the accuracy of the model shows a
slight increase with increasing pressure. The average RMSE of the
model is lowest in the pressure range of 25—41 MPa, at only 0.0333.
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3.4. Sensitivity analysis

The Shapley plot is one of the most valuable tools for defining or
explaining the influence of each attribute parameter on the output
of a machine learning model. The y-axis of the plot shows the
relevance of each feature; features at the top have the greatest
impact on the output, while those at the bottom have less influence.
Each feature is represented by a horizontal line in the plot. The
length of the bar indicates the extent of the feature's impact on the
model output. Positive Shapley values (in red) indicate that the
feature enhances the output, while negative Shapley values (in
blue) indicate that the feature diminishes the output. Important
feature columns are listed on the y-axis of the plot. This can reveal
which attributes have the greatest impact on the model's pre-
dictions. In this section, the XGBoost model is selected to analyze
the influence of parameters on the model predictions. Based on
this, from Fig. 9, it can be observed that the most important
parameter directly affecting the model output for all datasets is
pressure.

Fig. 10 provides detailed information on the absolute average
Shapley (Shapley explanation plot) values of each input parameter
of the XGBoost model. It clearly demonstrates the average absolute
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significant impacts of each variable, with pressure being the most
critical factor, exerting the greatest influence on CO; solubility in
hydrocarbons. Following that, temperature also plays significant
roles in influencing the solubility. Meanwhile, density and molec-
ular weight have relatively minor effects. Therefore, when studying
the solubility of CO; in hydrocarbons, particular attention should be
paid to changes in pressure.

Based on SHAP and XGBoost models, we drawn a series of SHAP
dependence plots to show the relationship between each individ-
ual compound and the CO; solubility. Since all data points are based
on the average of the predicted CO, solubility (i.e., under the same
criteria), the dependence of the Shapley value on the influencing
factors is consistent with the dependence of the CO, solubility on
the influencing factors. As shown in Fig. 11, with increasing pres-
sure, the Shapley values (i.e., the contribution of a certain feature to
predicting CO, solubility) exhibit a clear upward trend, while
higher temperatures correspond to lower Shapley values. More-
over, it can be observed that the trend of Shapley values with
temperature and pressure changes is more pronounced than that of
molecular weight and density. This discrepancy arises from varia-
tions in the volume and range of analyzed data, the distribution of
data within this range, and the specific impact of variables on the
minimum miscibility pressure. For molecular weight and density,
their influence on solubility is relatively small, making it difficult to
accurately quantify their impact on solubility, leading to potential
instability. These findings are consistent with experimental results
documented in the literature.

3.5. Comparison of CO, solubility in hydrocarbon with previous
models

To assess the accuracy of our model, we compared the selected
XGBoost model with other established models (Emera and Sarma,
2007; Xue et al., 2005), using experimental data from two items
of literature (Gasem et al., 1989; Mutelet et al., 2005) as references.
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Fig. 12 shows a comparison of the predicted values of each model
under different pressures when the temperature is 323.2 K, the
molecular weight is 100.2 g/mol and the density is 683 kg/m®. The
XGBoost model predicts CO, solubility closest to the experimental
value, with the smallest AARD value, while the other two models
perform poorly. Fig. 13 displays the predicted values of different
models under different pressures when the temperature is 344.3 K,
the molecular weight is 198.39 g/mol and the density is 765.3 kg/
m?>. XGBoost model continues to show the best prediction accuracy,
followed by the Emera and Sarma model (Emera and Sarma, 2007),
while Xue model (Xue et al., 2005) deviates significantly. Compared
to the other two models, XGBoost model offers a broader range of
applications, simpler computations, and more accurate results. In
summary, our model is a robust and accurate predictive model for
estimating the solubility of CO, in hydrocarbons.

Emera and Sarma model and Xue model are widely used models
for predicting the solubility of CO; in hydrocarbons. However, both
models have limitations in terms of their applicability and complex
calculations, leading to significant solubility errors. The limitations
of empirical models primarily lie in their assumptions about the
data and the requirements for feature engineering. Empirical
models are often based on simplistic mathematical formulas or
empirical rules, making simplified assumptions about the data
distribution and feature relationships, which may hinder their
ability to capture complex patterns and nonlinear relationships in
the data.

In contrast, our XGBoost model offers a broader range of ap-
plications and simpler computations. It is a robust and accurate
predictive model for estimating the solubility of CO, in
hydrocarbons.

4. Conclusions

This study performed comprehensive artificial intelligence-
based models to predict CO, solubility in hydrocarbons using pre-
vious literature data. Besides, the hyperparameters are adjusted to
improve the expected results. Furthermore, the model was
compared with other established models, revealing higher accu-
racy and applicability. Conclusions drawn from the results are as
follows.

(1) The R? values of the four models are all more than 0.9, with
XGBoost and MLP performing exceptionally well, which
prove good predictive abilities.

(2) The importance of each parameter is evaluated. The result
shows that pressure has the most important influence, while
molecular weight shows the least important effect.

(3) Compared with other established models, the model ob-
tained in this study has higher accuracy and applicability.

Our model provides an accurate method to predict the solubility
of CO: in hydrocarbons, which is crucial for optimizing and plan-
ning the CO-EOR and storage processes. By accurately predicting
the solubility of CO2, we can effectively optimize CO- geological
storage schemes in CO2-EOR operations. Future research efforts can
focus on further improving the accuracy and applicability of the
model. For example, exploring the integration of different types of
models to obtain more accurate and reliable predictions, and
optimizing the structure and parameters of the model to enhance
its performance. Additionally, emphasis can be placed on validating
and applying the model in real-world CO.-EOR and geological
storage projects to further assess its reliability and practicality, and
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to propose improvements and optimization suggestions for prac-
tical applications.
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