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a b s t r a c t

Traditionally, simplification has been used in scientific modeling practices. However, recent advance-
ments in deep learning techniques have provided a means to represent complex models. As a result, deep
neural networks should be able to approximate the complex models, with a high degree of general-
ization. To achieve generalization, it is necessary to have a diverse range of examples in the training of
the neural network, for example in data-driven FWI, training data should cover the expected subsurface
models. To meet this requirement, we porposed a method to create geologically meaningful velocity
models with complex structures and severe topography. However, it is important to note that general-
ization comes with its own set of challenges.

Because of significant variation in topography of the generated velocity models, we need to include
this information as an additional input data in training of the network. Therefore, we have transformed
the seismic data to a fixed datum to incorporate geometric information. Additionally, we have enhanced
the network's performance by introducing a term in the network loss function. Multiple metrics have
been employed to evaluate the performance of the network. The results indicate that by providing the
necessary information to the network and employing computational techniques to refine the model's
accuracy, deep neural networks are capable of accurately estimating velocity models in complex envi-
ronments characterized by extreme topography.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Data-driven methods have gained significant attention in the
past decade for solving various problems. Deep learning has
emerged as a focal point among these methods due to its remark-
able ability to handle complex problems. The field of geophysics has
also witnessed the application of these innovative techniques to
address awide range of challenges. Notably, deep learning has been
employed for tasks such as random noise suppression (Yang et al.,
2021; Zhao et al., 2019; Birnie et al., 2021), demultipling (Zhang
et al., 2021), surface wave elimination (Kaur et al., 2020; Jia et al.,
2018), super-resolution (Li et al., 2020), interpolation (de Groot
et al., 2022), seismic data storage and processing workflow
(Harsuko and Alkhalifah, 2022, 2023), facies classification (Zhao,
2018; Chevitarese et al., 2018; Liu et al., 2020), and object detec-
tion for the geological features like faults, channels, collapse
y Elsevier B.V. on behalf of KeAi Co
features, and salt (Saadat et al., 2022; Di et al., 2018). Furthermore,
deep learning techniques have been applied to inversion problems
(Biswas et al., 2018), data assimilation (Moseley et al., 2020), and
velocity model building or full waveform inversion (Aryapolo et al.,
2018; Li et al., 2019; Song and Alkhalifah, 2020; Zhang and Lin,
2020; Sun and Alkhalifah, 2022). These applications highlight the
significance of deep learning methods in addressing key challenges
in geophysics.

Constructing a precise and reliable velocity model has consis-
tently played a crucial role in various seismic data processing and
interpretation tasks. Full waveform inversion (FWI) is a widely
recognized methodology for generating high-resolution velocity
models. To ensure a successful FWI processing flow, several key
elements are required in the input data. These include pre-
conditioned shot gathers with adequate coverage, an appropriate
initial model, an accurate representation of the source signature,
and precise acquisition geometry. Despite its promising and elegant
theoretical foundation, an efficient implementation of FWI in
practical applications faces several obstacles. One of the most
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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significant challenges is the strong dependency on the initial
model. The initial model serves as the starting point for the FWI
process, and for successful convergence, it must closely approxi-
mate the true model, especially capturing its low wavenumber
components. When the initial model fails to meet this requirement,
FWI can converge to a local minimum, resulting in cycle skipping.
Thus, constructing an appropriate initial model is one of the most
formidable aspects of FWI. Constraining the FWI process, by prior
information through the regularization techniques, decreases null
space of the inversion algorithm (Virieux and Operto, 2009),
however, some regularization methods, depending on the associ-
ated parameters may introduce bias into the final results.

On the contrary, data-driven methods often do not require an
initial model. Instead, they directly learn the mapping function or
inverse operator between the input/output pairs provided.
Numerous studies have been conducted in this area, resulting in the
development of notable deep learning-based FWI methods. Ex-
amples of such methods include InversionNet (Wu and Lin, 2019),
SeisInvNet (Li, et al., 2019), VelocityGAN (Zhang and Lin, 2020), and
Physics-guided methods (Dhara and Sen, 2022), which have shown
great promise on synthetic datasets.

Some other studies have applied their methodologies to real
datasets, notably those conducted by Kazei et al. (2021) and
Ovcharenko et al. (2022), but they tend to admit smooth velocity
models. The propensity of data-driven models to produce smooth
velocity models in real-world applications, as opposed to their ef-
ficacy in synthetic models, stems from the oversimplification of the
velocity models used during training. To address this limitation,
concerted efforts have been made to construct more realistic Earth
models for the training of deep neural networks. Particularly
noteworthy are the studies undertaken byWu et al. (2020) and Ren
et al. (2021).

Most of the data-driven methods are fed only shot-gather data
as input, while physics-driven methods need multiple inputs. For
an oversimplified model, it might be sufficient to estimate the true
model by considering shot gather data as the only input. However,
in the real world, the areas where we seek hydrocarbon traps are
often characterized by highly complex structures. To successfully
utilize data-driven methods, it is crucial to ensure the provision of
essential input data for reconstructing a generalizable velocity
model. This study aims to make data-driven methods one step
closer to real-world applications by incorporating complex struc-
tures with significant topographic variations during the training
phase. We apply a datum transformation on data to integrate both
shot gather data and topography information effectively. Addi-
tionally, we employ several loss functions in the training process of
our deep convolutional network. These approaches collectively
enhance the performance and applicability of data-driven methods
in addressing complex scenarios.

2. Methodology

A large number of geologically meaningful models have been
generated, which were subsequently used to generate synthetic
data. Here, the process of generating velocity models and synthetic
data is explained. The model and shot-gathers pairs are then used
to train deep neural networks.

2.1. Synthetic models

The synthetic two dimensional models used in this study consist
of 200 � 200 (in height and width) grids with a grid size of 10 m.
Each model contains a variable number of randomly chosen events,
ranging from 10 to 60. Once the number of events is determined,
we establish a sequential timeline to represent the nature of each
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event. These events are selected from a predefined set, which in-
cludes deposition, deformation, and erosion. Notably, the likeli-
hood of selecting a specific event from this set varies depending on
its position in the timeline. For instance, erosion is the most
probable event after a deformation phase, while deposition holds a
higher chance following an erosion phase.

The foundational assumption is based on Steno's principles
during the depositional events, suggesting that the layers are
initially deposited horizontally. To determine the thickness of each
layer, a random number is drawn from a normal distribution, in
which the minimum is 20 m. The average of this distribution is
calculated as the model's height divided by the number of layers
plus one. The standard deviation of the distribution is set to half of
the average thickness for each model. Thus,

Thickness¼max�
rand

�
N
�
m¼ Modelheight

Numberof layersþ1
;s¼m

2

��
;20
�
:

(1)

During deformation events, the first step is to select randomly a
number between 2 and 20, representing the number of control
points for deformation. Subsequently, the positions of these points
are chosen along the x-axis in a random manner, ensuring a min-
imum grid difference of 3 between them. The amount of defor-
mation at these control points is determined by sampling from a
normal distribution. The distribution has an average of 0 and a
standard deviation equal to the average thickness of the layers.
Deformation surface is then calculated by interpolating the defor-
mation values at the control points. This resulting surface in-
fluences the layers starting from a base level up to the youngest
layer in the model. The base level also could be either an erosion
surface or a strata surface. When it comes to erosion events, con-
structing the erosion surface closely resembles the costruction of
the deformation surface. However, there is one fundamental dif-
ference: the resulting surface in erosion events must invariably
move downwards.

The construction of the models can be generally divided into
two main parts: sketching and shading. During the sketching
phase, the structural framework of the model is established. In the
shading phase, however, the velocity of each layer is determined.

To determine the velocity of the layers, an increasing velocity
trend with depth is initially defined for each model. The average
velocity value of each layer is then calculated by adding a random
perturbation within the interval [�2000 m/s, þ2000 m/s] to the
trend. However, the lower and upper bound trends constrain the
final velocity value, ensuring it remains within an acceptable range.
Next, a random number of control points within the layer are
selected, and the velocity value at these points is allowed to vary
within a range of ±500 m/s from the average velocity of the layer.
Subsequently, the velocity distribution within the layer is interpo-
lated based on the velocities at the control points using a 2D
interpolation method. The layer boundaries can exhibit either
abrupt changes or gradual transitions, achieved through smoothing
techniques applied between the adjacent layers.

This approach for generating velocity models demonstrates our
efforts to create geologically significant models that exhibit a high
level of randomness and flexibility. This approach allows us to
generate diversemodels encompassing various complex structures.
Although faults are not explicitly represented in the models, the
deformation phase captures abrupt structural changes corre-
sponding to faulted regions. The topographic surface in the pro-
posed algorithm is formed by the interaction of sedimentation,
deformation and erosion, which is capable of generating flat to
severe topographic surfaces. Fig. 1 shows the flowchart of the



Fig. 1. Flow-chart of generating geologically meaningful velocity models, which con-
sists of two parts: sketching and shading.
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velocity model generation process using the porposed algorithm.

2.2. Synthetic data

In total, we generated over 13,000 models. Each model consists
of 10 source points distributed evenly along the horizontal direc-
tion. A fixed spread of 100 receivers was used for each source, with
a regular spacing of 20 m between receivers along the horizontal
direction. Regardless of the topography of the models, which varies
from flat surfaces to severe topography, the vertical coordinate of
the sources and receivers follows the topography surface.

Ricker wavelets were employed in the simulations, with a cen-
tral frequency ranging from 15 to 25 Hz. A constant phase rotation
within the interval of [�180,þ180] was also applied on thewavelet.
The central frequency and phase rotation values were randomly
selected from uniform distributions. In order to simulate the
seismic experiment on the synthesized models, the acoustic wave
equationwas utilized. For the numerical approximation of thewave
equation, an explicit 8th-order finite difference stencil was used for
spatial derivatives, while a second-order finite difference stencil
was used for temporal derivatives (Eq. (3); Dablain, 1986).

v2P
vt2

¼V2V2Pþwðt; xÞ; (2)

Pnþ1
i;j �

 
2þa2V2

S2i;j

!
Pn
i;j þPn�1

i;j ¼wn
i;j;a

2 ¼ Dt2

Dx2
; (3)

where P is the pressure field, S is the slowness model, w is the
source signature distrusted in time and space, Dt is the time step, D
x is grid size, V2 is a discrete Laplacian operator, and n, i, and j are
indices in time, depth and horizontal axes, respectively.

Each shot was recorded for 3 s, with a sampling rate of 3 ms.
Table 1 summarizes the parameters used in the forward modeling
process. To integrate acquisition geometry data as an input for the
deep learning network, we shifted the shot gathers to a fixed da-
tum. This datumwas chosen so that the height of all models reachs
to 2000 m. Additionally, a replacement velocity of 1500 m/s was
applied to transfer the traces to the fix datum level. Consequently,
the static shift amount for each trace was calculated as follows:

tshift ¼
ðh� zsÞ þ ðh� zrÞ

vrep
; (4)

where h is the elevation of the supposed datum, zs and zr are source
and receiver elevations, and vrep is replacement velocity.

Part (A) of Fig. 2, illustrates the total static time shift, repre-
sented by vertical black lines, which is a combination of shot static
and receiver static for each trace. The depicted velocity model is
generated by the proposed method in previous section. The solid
black lines show the structural framework of the model while ve-
locity values correspond to the colormap. Part (B) displays the ac-
quired shot gathers, showcasing the recordings of the receivers for
each shot. Finally, part (C) exhibits the shot gathers that have been
transferred to the fixed datum, serving as the main input for the
deep networks.

2.3. Conventional FWI

In a conventional FWI process we need following items as input
data: pre-conditioned shot gathers, initial model, source wavelets,
and the acquisition geometry. The synthetic shot gathers will be
calculated based on the initial model, which subsequently will be
compared to the real shot gathers in a loss function. The gradient of
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the loss function is utilized to update the model iteratively. Addi-
tionally, the wavelet and acquisition geometry are employed in the
simulation phase.

It is important to note that if the initial model deviates signifi-
cantly from the true model, the convergence of the process is
compromised. Hence, we encounter the challenge of constructing
reliable initial models to avoid the cycle-skipping issue. Apart from
the strong dependence of the resulting model on the initial model
and the complexity associated with building an accurate initial
model, the computational time required for the FWI process poses
another obstacle to its efficient implementation. Numerous prom-
ising approaches have been proposed to address these challenges in
FWI, however, most of these methods make certain assumptions
about the model and rely on approximations that significantly
impact the resulting model, introducing a certain level of bias to the
problem.



Table 1
Parameters used in forward modeling process.

Parameter Number of shot-points Shot interval, m Number of channels, Traces Reciever interval, m Sample rate, s Number of samples

Value 10 220 100 20 0.003 1000

Fig. 2. (a) A model from the training set, solid black lines show the Sketch or framework of the model which is subsequently Shaded by determination of their velocity values. The
location of the shots are shown by the white circles in model while the location of the receivers are shown by the yellow triangles on top of the model surface. (b) Synthesized shot-
gathers which are computed by solving the acoustic wave equation for the model in part (A). (c) Synthesized shot-gathers after transferring data to fix datum on top of the model
using a static shift for each trace which consists of shot static and receiver static (vertical black line in part (A)).

Table 2
Pseudo-code of conventional FWI.

Line number Variable definition:
S; S0 are slowness model and initial model of slowness.
a; a0 are step length and initial value for step length.

P;dðpreÞ and dðobsÞ are pressure wavefield, predicted data and observed data.
w;G are source wavelet(s) and geometry of acquisition.
PInv is back propagated pressure wavefield.
grad;dir are gradient and update direction.
k is index.
M is absorbing boundary condition operator.

Sub-routines:
Forward: Acoustic wave propagation operator.
StepLength: Calculates the numerical step length.
abc: Absorbing boundary condition.
MSE: Mean square error.
CG: Conjugate gradient direction.

1
2
3

4
5
6
7
8

9

10
11
12
13
14

FWI:
S ¼ S0
k ¼ 0
a ¼ a0

while Error> ε

½P;dðpreÞ� ¼ ForwardðS;w;G;2;nt� 1; 1Þ
res ¼ dðpreÞ � dðobsÞ

Error ¼ MSEðresÞ
½PInv;�� ¼ ForwardðS; res;G;nt� 1; 2;�1Þ
grad ¼ sumðxcorrlag¼0ðP;PInvÞÞ

sumðP2
invÞ

dir ¼ CGðgrad;dir;kÞ
a ¼ StepLengthðS;w;G;dðobsÞ;dir;Error;aÞ
S ¼ Sþ a� dir
k ¼ kþ 1

½P;d� ¼ ForwardðS;w;G; start;end; incÞ:
M ¼ abcðSÞ
for u ¼ 1 : nshots

for i ¼ start : inc : end

Pði;uÞ ¼
�
2þa2V2

S2

�
Pði� inc;uÞ*M�

Pði� 2� inc;uÞ*Mþwði;uÞ

dði;uÞ ¼ Pði;uÞ*G

a ¼ StepLengthðS;w;G;dðobsÞ;dir;Error;aÞ
eð1Þ ¼ Error
for n ¼ 1 : 2

½�;dðpreÞ� ¼ ForwardðS þ a � n � dir;w;G;2;nt� 1;1Þ
res ¼ dðpreÞ � dðobsÞ

eðn þ 1Þ ¼ MSEðresÞ
a ¼ eð1Þ þ eð3Þ

2a2

b ¼ ðeð2Þ � eð3Þ þ 3aa2Þ
�a

a ¼ � b
2a
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Fig. 3. Flowchart of conventional FWI.
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In this study, we employed the conventional FWI methodology
to reconstruct velocity model corresponding to three models in our
test dataset, aiming to compare the results with those obtained
from our data-driven method. A flowchart and the pesodu-code of
the used methodology are shared in Table 2 and Fig. 3, respectively.
Rest of the parameters are available in Table 3. The initial models for
the inversion process were generated by applying a 2D Gaussian
filter to smooth the original models. As illustrated in Fig. 4, all the
resulting models encountered the issue of being trapped in local
minima thus experiencing cycle skipping. To provide a quantitative
comparison, Table 5 presents various metrics evaluating the out-
comes of FWI and the data-driven methods.

2.4. Data-driven FWI

Data-driven inversion directly learns the mapping function for
model reconstruction from the training data:

S ¼ FqðdGÞ; (5)

where S;d and G are the slowness model, observed data, and
acquisition geometry, respectively. F is the inverse operator, which
directly will be learned in the training phase by optimizing the
network weights (q).

In the training phase of data-driven FWI, observed data (dðobsÞ
G )

that is transformed to a fix datum using acquisition geometry in-
formation (G) is fed into the network. The predicted slowness

model (SðdðobsÞ
G ; qÞ) then will be compared with the true model

(SðtrueÞ) in a loss function (L). The network parameters (q) is
updated iteratively in backpropagation to minimize the loss
function:

min
q

L
�
SðtrueÞ; S

�
dðobsÞ
G ;q

��
; (6)

In this study, we employed three U-net models for velocity model
reconstruction from shot gathers. The first network was trained
using raw shot gathers as input. On the other hand, the main input
of second and third networks is pre-conditioned shot gathers (shot
gathers that were transferred to a fixed datum to incorporate
topography information). The distinction between second and third
networks lies in their loss functions. The second network employed
a mean square error (MSE) loss, which measured the discrepancy
between the true and predicted models. In contrast, the third
network employed a combined loss function that incorporated
bothMSE and SSIM (Structural similarity indexmeasure), which are
given as follows,

MSE¼1
n

Xn
i¼1

1
x� z

�
Spre � Strue

�2
; (7)

SSIM¼1
n

Xn
i¼1

0
@1�

0
@

�
2mxmy þ c1

��
2sxy þ c2

�
�
m2x þ m2y þ c1

��
s2x þ s2y þ c2

�
1
A
1
A; (8)

Loss¼MSE þ l� ð1� SSIMÞ; (9)

Eq. (7) represents the mean square error (MSE), where z, x, and i
denote the height, width, and number of models, respectively. Eq.
(9) shows the loss function of third network in which MSE is mean
square error (Eq. (7)), SSIM is structural similarity index, l is weight
for the second term, and SSIM is expanded in Eq. (8) inwhich mx, my,
sx, sy, sxy, c1, and c2 represent the local mean of the true image, the
local mean of the predicted image, the local variance of the true
4029
image, the local variance of the predicted image, the covariance of
the local matrices of the true and predicted images, and two con-
stants, respectively.

Fig. 5 illustrates the architecture of the U-Net used for Networks
2 and 3. The only difference in Network 1 is the length of the time
axis of the image input layer, which will be set to 1000. This dif-
ference arises from the fact that the gathers were not moved to a
fixed datum in this network.

The network is a fully convolutional encoder-decoder structure
with a depth of 5. In the contraction path, the time axis is initially
compressed in the first block, while the remaining convolutional
blocks follow the CRCRP (C: Convolution layer, R: ReLU layer, P:
Pooling layer), pattern. Each block doubles the number of feature
maps, while the max pooling layer reduces the dimension of the
feature maps by half through the stride property of this layer. In the
expansion path, the blocks follow the TCRCR (T: Transposed
convolution layer) pattern. The number of feature maps in each
block is obtained by concatenating half of the feature maps from
the previous layer plus the corresponding maps from the contrac-
tion path. The transposed convolution layers with a stride size of [2
2] then doubles the dimensions of the feature maps.

The hyper-parameter sets used to train the three networks are
summarized in Table 4. Comparison of the loss curves of the net-
works for the training dataset in Fig. 6, reveals that all of the net-
works have a monotonously decreasing loss curve for this part of
data, while, the validation curves show the superiority of Networks



Table 3
Associated parameters used for conventional FWI.

Parameter Wavelet Number of iterations Frequency band of seismic data

Value Ricker (15 Hz) 50 7e25 Hz

M. Saadat, H. Hashemi and M. Nabi-Bidhendi Petroleum Science 21 (2024) 4025e4033
2 and 3 over Network 1. In other words, Network 1 overfits the
training data due to a lack of essential information in the input data.
The second column of Fig. 7, also shows that the first network fails
to accurately reconstruct the velocity model or capture the topo-
graphical surface of the models from our test data set. In the third
column, which illustrates the results of Network 2, the topo-
graphical surfaces and velocity models are well resolved, although
there are still some deficiencies, particularly in sharp boundaries.
However, these deficiencies aremostly addressed in the predictions
of Network 3, as shown in the fourth column. Table 5 compares the
results of different methods using well-known numerical metrics,
including L1 norm, L2 norm, peak signal-to-noise ratio (PSNR), and
structural similarity index. According to these metrics, it is evident
that both the conventional FWI and Network 1 could not properly
reconstruct the models from the test dataset for all three models.
However, by incorporating geometrical information into Network
2, there was a significant decrease in the error metrics, and both
PSNR and SSIM values increased. Furthermore, Network 3, which
aims to recover the true velocity value of each pixel and capture the
structural details, achieved even more accurate model
Fig. 4. The first column from left to right shows three true models from the test dataset;
process. The third column shows the results of the FWI for each model, in which all are
randomly selected profile (black vertical well-log).
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reconstruction.
3. Discussion

Simplifying the velocity modelsfor training of a data-driven FWI
method improves the robustness and performance of the deep
network when using the shot gathers as the only input. In contrast,
a physics-driven FWI requires multiple inputs to run the process,
including shot gathers, initial model, source wavelet, and acquisi-
tion geometry. In the data-driven method, it is assumed that other
inputs can be learned from the shot gathers or they are common
across all models, and the algorithmwill memorize them. The good
news is that some of those inputs which are essential for a physics-
driven method, could be learned from shot gathers and some
others might be recognized as common features. For example, the
initial model can be learned from the shot gathers through the
kinematic of the seismic data, e.g. first breaks, and the source
wavelet is generally consistent within a survey. However, the bad
news is that topography and subsequently the acquisition geome-
try generally exhibit significant changes, especially in onshore
The second column shows the corresponding initial models for the conventional FWI
cycle skipped, and the last column compares True, initial, and resulting models on a



Fig. 5. The architecture of the U-Net and details on the layers used for the prediction of the velocity model from seismic data. The number on top of each layer is the horizontal
dimension, while the number on the side is the vertical dimension, and the one in the bottom is the number of channels.

Table 4
Training hyper-parameters of the 3 networks.

Number of epochs Mini batch size L2 regularization Initial learning-rate Learning-rate drop Learning-rate period (epochs) Optimizer Loss function

Network 1 200 6 1e�3 1e�4 0.5 10 Adam MSE
Network 2 200 6 1e�3 1e�4 0.5 10 Adam MSE
Network 3 200 6 1e�3 1e�4 0.5 10 Adam Eq. (2)

Table 5
Comparison of velocitymodel prediction performance of differentmethods for three
models of test dataset in Figs. 2 and 4 based on different metrics.

Metric Conventional FWI Network 1 Network 2 Network 3

Model 1 L2 1196.53 950.52 441.16 248.76
L1 579.38 458.36 199.18 104.28
PSNR 17.01 19.01 25.68 30.65
SSIM 0.7416 0.8281 0.9302 0.9693

Model 2 L2 1051.41 895.88 275.47 152.64
L1 555.15 455.31 131.36 69.77
PSNR 18.13 19.52 29.77 34.89
SSIM 0.8100 0.8626 0.9665 0.9867

Model 3 L2 991.48 1030.44 396.97 202.22
L1 532.18 584.24 203.69 97.26
PSNR 18.64 18.31 26.59 32.45
SSIM 0.8043 0.8425 0.9395 0.9756
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surveys. Therefore, the topography should not be considered as a
common feature, so we need to incorporate topography
4031
information into the input data to ensure the network's general-
izability. In case of a specific type of topography, such as a flat
surface, the network could memorize it as a common feature and
there would be no need to include topography information in the
network's input data. Nevertheless, the resulting model would only
be applicable to the same type of topography. Generally, the
learned mapping function retains its generalizability as long as the
common features remain valid across the validation and test
datasets, otherwise overfitiing to the training dataset is
unavoidable.

MSE term in the loss function aims to contribute to recovering
the true velocity value at each pixel independently from other
pixels. On the other hand, the structural similarity index (SSIM) is a
measure that assesses the combined effect of three characteristics:
luminance, contrast, and structure, providing an overall evaluation
of image similarity (Zhou et al., 2004). The third network that uses
the combination of theMSE and SSIM as loss function demonstrated
superior performance over other networks due to the combined



Fig. 6. Comparison of loss function of training and validation datasets for different
networks versus training-epochs. Note that logarithm of loss functions are shown to be
more distinctive. Loss function of Network 3 contains an additional term but here only
logarithm of MSE part is shown to be comparable with other curves.
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effects of MSE and SSIM. This combination improved performance,
particularly in the deeper parts of the velocity models.
Fig. 7. The first column from left to right shows three true models from the test dataset,
prediction of Network2, the fourth column shows the prediction of Network 3, and the las
selected profile, given by the black vertical line.
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4. Conclusion

We conducted an extensive model generation process encom-
passing a wide range of topography, from flat to severe. The
generated dataset also includes a range of models from simple to
complex structures. Subsequently, we synthesized the shot gathers,
which serve as the primary input for our data-driven method. To
incorporate surface topography information into the input data, we
performed a pre-conditioning step by transferring the shot gathers
to a fixed datum using a constant replacement velocity, which acts
as a common feature. In the next step, we trained three networks
using the generated dataset. The first network utilized the shot
gathers without any pre-conditioning as main input. On the other
hand, for input of second and third networks, we used the shot
gathers that are transferred to the fixed datum.

The second and third networks differ in terms of their loss
functions. Loss function of the second network is mean square error
(MSE), while for third network a combination ofMSE and structural
similarity index (SSIM) is assumed to be loss function. Additionally,
we conducted experiments using the conventional physics-based
FWI method on the selected models from our test dataset to
compare the results with the outputs of our data-drivenmethod. To
assess the performance of different algorithms in reconstructing
velocity models, we employed various metrics such as the first and
second norm of model residuals, peak signal-to-noise ratio (PSNR),
and SSIM. The first network failed to recover the velocity model on
the test dataset, however, the results obtained from the second and
third networks closely resembled true models, with the difference
The second column shows the prediction of Network 1, The third column shows the
t column compares True, and predicted models by different Networks on a randomly
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that the outputs of the third network performed better in retrieving
local structures and greater depths. The physics-driven FWI failed
to converge to the true models due to its dependency to the initial
model and the occurrence of cycle-skipping problem.
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