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ABSTRACT

This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during
the exploration and development of complex oil and gas reservoirs. By integrating methods of rock
mechanical testing, logging calculation, and seismic inversion technology, we obtained the current in-
situ stress characteristics of a single well and rock mechanical parameters. Simultaneously, significant
controlling factors of rock mechanical properties were analyzed. Subsequently, by coupling hydraulic
fracturing physical experiments with finite element numerical simulation, three different fracturing
models were configured: single-cluster, double-cluster, and triple-cluster perforations. Combined with
acoustic emission technology, the fracture initiation mode and evolution characteristics during the
loading process were determined. The results indicate the following findings: (1) The extension direction
and length of the fracture are significantly controlled by the direction of the maximum horizontal
principal stress. (2) Areas with poor cementation and compactness exhibit complex fracture morphology,
prone to generating network fractures. (3) The interlayer development of fracturing fractures is
controlled by the strata occurrence. (4) Increasing the displacement of fracturing fluid enlarges the
fracturing fracture length and height. This research provides theoretical support and effective guidance
for hydraulic fracturing design in tight oil and gas reservoirs.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

oil and gas reservoirs (Freeman et al., 2011; Vermylen and Zoback,
2011; Tan et al., 2022). However, due to variations in stress and

Constrained by the low porosity and permeability inherent in
unconventional oil and gas resources, particularly in shale/tight oil
and gas formations, effective hydraulic fracturing played an
increasingly pivotal role in enhancing production and exploitation
by augmenting permeability (Zoback, 2019; Chen et al., 2021; Zhao
et al., 2022a). Influenced by fluid injection, high pressure was
generated around wells, creating new fracture networks or acti-
vating natural fractures to maximize production from shale/tight
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fracture propagation, several shale/tight oil and gas wells exhibit
low productivity post-fracturing (Wei et al., 2021; Luo et al., 2021;
Ren et al., 2022). To achieve effective hydraulic fracturing in shale/
tight oil and gas reservoirs, a detailed analysis of rock mechanical
properties (including anisotropic characteristics), current in-situ
stress distribution, and natural fracture characteristics is impera-
tive (Wu et al., 2014; Lin et al., 2017; Morley et al., 2017, 2018; Zhao
et al,, 2022a). The artificial fracture network can furnish additional
channels for oil and gas migration and storage from pores and
natural fractures, thereby enhancing production capacity (Pope
et al., 2012; Bhattacharya and Nikolaou, 2016; Zhang et al., 2021;
Tan et al., 2022). During the hydraulic fracturing process, physical
and chemical interactions occur, altering rock mechanical
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properties such as Young's modulus, Poisson's ratio, and porosity
(Dehghanpour et al., 2012; Westwood et al., 2017; Lyu et al., 2019;
Fatah et al., 2021). Consequently, influenced by in-situ stress vari-
ations and natural fractures, the initiation and expansion patterns
of hydraulic fractures exhibit distinct features (Chang et al., 2018,
2022; Hou et al., 2019; Diaz et al., 2020).

Two significant numerical simulation methods have been
distinguished for studying the propagation behavior of fracturing
fractures: discrete fracture modeling and finite element modeling
(Miehe et al., 2015; Lu et al., 2015; Zeng et al., 2018; Ren et al., 2019;
Zhu et al., 2021; Huang et al., 2022, 2023). Essentially, the finite
element method can be applied to analyze the strongly heteroge-
neous rock and the propagation of multiple fractures during hy-
draulic fracturing (Li et al., 2016; Rege and Lemu, 2017; Ren et al.,
2020; Zhao et al., 2022b). However, the finite element method
primarily captures short-term mechanical behavior during the
loading process, and the simulation of continuous mechanical
processes remained a challenge (Rabczuk et al., 2010; Wick, 2016;
Ren et al, 2021; Yang and Gao, 2022). Numerous studies have
investigated the effects of interlayers, pre-fractures, and rock het-
erogeneity on fracture initiation and propagation during hydraulic
fracturing, employing laboratory investigations and numerical
simulation (Wang et al., 2015; Aimene et al., 2019; Ju et al., 2019;
Zhou et al,, 2020; Zheng et al., 2022). Understanding the genetic
mechanisms of natural fractures (shear and tensile fractures) can
support the evolution of rock permeability and fracture prediction
in shale/tight formations (Lorenz and Hill, 1994; Laubach and Diaz-
Tushman, 2009; Hooker et al., 2017; Su et al., 2022). Several
scholars have employed multi-scale characterization methods,
including core observation, outcrop investigation, thin section
analysis, scanning electron microscope experiments, computer to-
mography, logging identification, and seismic interpretation, to
study natural fractures (Renshaw and Pollard, 1995; Laubach and
Diaz-Tushman, 2009; Hooker et al., 2017; Zhang et al., 2022a; Yu
et al., 2022). Consequently, the obtained outcomes can be applied
to conduct research on hydraulic fracturing regarding fracture
activation and propagation (Zou et al., 2017; Ranjith et al., 2018; Hu
et al.,, 2022).

Additionally, a series of petrophysical experiments were con-
ducted, encompassing uniaxial and triaxial rock mechanical ex-
periments, acoustic emission testing, and anisotropy testing, aimed
at comprehending the stress-strain curve, fracturing initiation,
propagation, and evolution process during hydraulic fracturing
(Laubach, 2003; Gale et al., 2014; Tan et al., 2022; Nguyen-Le and
Shin, 2022). Stumpf et al. (2009) investigated the dynamic evolu-
tion of fracture development in ductile rocks and analyzed
configurational forces. Zhao et al. (2022c) addressed the unique
characteristics of shale gas, employing X-ray computed tomogra-
phy and acoustic emission to analyze the effects of hydrostatic
pressure on hydraulic fracturing properties. Through experimental
investigation, studies explored proppant settling, brittleness, frac-
ture initiation, and hydraulic fracture propagation in various li-
thologies during the hydraulic fracturing process (Bostrom et al.,
2014; Wen et al,, 2016; Chen et al., 2021; He et al., 2022; Zhao
et al., 2022a). Analyzing the mechanical properties and fracture
evolution characteristics of roadway sandstone constrained by
various angles of weakly filled joints, researchers conducted rock
mechanical testing (Mathews et al., 2017; Niu et al., 2021; Su et al.,
2022; Zhou et al., 2022). Furthermore, non-monotonic fracture
evolution, dynamic phase-field fracture, dynamic mechanical re-
sponses, and damage evolution during various fracturing were
systematically researched through different experimental in-
vestigations (Li et al., 2022; Weinberg and Wieners, 2022; Zhang
et al,, 2022b; Chen et al., 2022). Notably, studies summarized ver-
tical fracture propagation, diverted fracture geometry, flow
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conductivity characteristics, and fracture generation during various
injection methods and different temporary plugging fracturing
using computed tomography and triaxial mechanical experiments
(Williams et al., 2016; Kim et al., 2018; Li et al., 2022; Cao et al.,
2022; Chang et al.,, 2022). However, there is limited research on
the dynamic evolution mechanism of the fracturing fracture system
under different cluster perforations in various lithological combi-
nations. It is imperative to conduct such studies by coupling hy-
draulic fracturing physical experiments with finite element
numerical simulation based on refined rock mechanical
characterization.

In this manuscript, we aim to elucidate the dynamic evolution
mechanism of the fracturing fracture system during the exploration
and development of complex tight oil and gas reservoirs. Rock
mechanical testing, logging calculation, and seismic inversion
technology were employed to obtain the current in-situ stress
characteristics of a single well and rock mechanical parameters,
such as Young's Modulus and Poisson's Ratio. Additionally, through
rock mechanical testing, including triaxial mechanical testing and
acoustic emission testing, the significant controlling factors of rock
mechanical properties were analyzed. Drawing reference from
typical lithological combinations, we configured three different
fracturing models: single-cluster perforation, double-cluster
perforation, and triple-cluster perforation. Subsequently, by
coupling hydraulic fracturing physical experiments with finite
element numerical simulation and integrating acoustic emission
technology, the fracture initiation mode and evolution character-
istics during the loading process were determined. This study can
offer theoretical support and effective guidance for hydraulic frac-
turing design in tight oil and gas reservoirs.

2. Geological setting

The Songliao Basin, situated in the northeast of China, spans
approximately 820 km in length from north to south and 350 km in
width from east to west, trending in a northeast direction (Feng
et al.,, 2010; Wang et al., 2016). Surrounded by mountains, the ba-
sin covers a total area of 260,000 km? making it the largest
Mesozoic-Cenozoic petroliferous basin in China (Wu et al., 2001;
Feng et al., 2012; Wang et al., 2016). The Songliao Basin comprises
six sub-structures: the southwest uplift, the western slopes, the
northern subsidence, the northeast uplift, the southeast uplift, and
the central depression (Fig. 1a). Further subdivision reveals the
central depression composed of six distinct sub-structures: the
Taikang uplift, the Longhupao-Daan terrace, the Qijia-Gulong sag,
the Daqing placanticline, the Sanzhao sag, and the Mingshui terrace
(Fig. 1b) (Lin et al., 2003; Huang et al., 2019). The Xinzhao oil field
lies to the south of the Daqing placanticline, while the Zhoufu oil
field is situated southeast of the Sanzhao sag (Wang et al., 2016; Xia,
2020). Three significant tectonic evolution stages have been iden-
tified in the area: the faulting depression stage, the depression
stage, and the shrinking stage, each characterized by distinct
boundary conditions, sedimentation mechanisms, and kinetic
backgrounds (Chen et al., 1999). Illustratively, the Xinzhao oil field
exhibits a complex fault system (Fig. 1c¢), whereas the Zhoufu oil
field is characterized by several major faults (Fig. 1d), showcasing
two different structural characteristics in the study area (Huang
et al, 2019; Xia, 2020). The study area predominantly features
Cretaceous continental sedimentary formations with a total thick-
ness exceeding 7000 m, indicating the most complete continental
Cretaceous sedimentary strata globally (Feng et al., 2010). Four key
oil and gas formations have been identified in the study area: the
Nenjiang Formation, the Yaojia Formation, the Qinshankou For-
mation, and the Quantou Formation (W. Chen et al., 2010; Huang
et al, 2019). Furthermore, six significant reservoirs have been
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Fig. 1. The regional location and structural characteristics of study area. (a) is the structural characteristics of Songliao basin; (b) refers to the geographical location of Daqing
placanticline and Sanzhao sag; (c) shows the structure map of Xinzhao area; (d) is the structure map of Zhoufu area; (e) refers to the stratigraphic features in the Mesozoic

formation in the study area.

distinguished: the Saertu, Putaohua, Gaotaizi, Fuyu, Yangdachengzi,
and Nongan reservoirs (Si et al., 2021). The Putaohua reservoir,
located in the middle-lower part of the first section of the Yaojia
Formation, boasts a thickness of 40—60 m (Fig. 1e). Its lithology
comprises gray and gray-green mudstone, with transitional li-
thology interspersed with gray and dark gray siltstone (Wang et al.,
2016; Huang et al., 2019).

Constrained by the lithologic assemblage, cyclicity, and vertical
development degree of sandstone in the Putaohua reservoir, three
sand Formations and eleven sublayers were distinguished (Fu and
Song, 2008; Si et al., 2021). The debris of feldspar sandstone in
the target strata (Putaohua oil reservoir) consisted of fine particles,
generally in the silt grade, with poorly developed pores (Xia, 2020).
Three main cementation types were identified: film, filling film,
and filling-regeneration cementation. The Putaohua oil reservoir
was characterized by primary intergranular pores, with a mass
fraction of argillaceous material at 10.30% (X. Chen et al., 2010).
Moreover, the Putaohua oil layer in the study area represented a
medium-low porosity and low to ultra-low permeability reservoir.
Porosity mainly ranged from 10% to 20%, with an average of 12.40%.
Permeability was primarily distributed between 0.30x10~3 and
99.20x10~3 ym?, with an average of 2.77x10~3 pm? (Sun et al,,
2018; Xia, 2020). Through core observation and outcrop statistics,
two significant types of fractures were distinguished: structural
fractures and nonstructural fractures (Zeng et al., 2022; Fu et al.,
2023; Gong et al., 2023). The greater the extension of the fracture
or the depth of the longitudinal cut, the wider the fracture aperture
and spacing became (Huang et al., 2019). The fracture density
exhibited a low development degree, with an average value of 0.03
fractures/m. Due to the low fracture density, natural fractures
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played only a secondary role in forming fracturing fracture net-
works in tight sandstone reservoirs. Constrained by the underde-
velopment of natural fractures in the tight sandstone, the
relationship between shear stress and fracturing fracture was
examined. Rock mechanical testing was conducted to analyze
mechanical parameters under different stress conditions. When
shear stress exceeded rock shear strength, induced fractures were
more easily generated. The dynamic evolution mechanism of the
fracturing fracture system under various cluster hole methods and
lithologic assemblages remains unclear.

3. Testing and technology
3.1. Sampling and rock mechanical testing

Thirty specimens of various lithologies (Quantou Formation and
Yaojia Formation) from different wells were selected for rock me-
chanical testing at Qingdao Jiahang Petroleum Technology Corpo-
ration in Shandong University of Science and Technology (Table 1).
A TAW-100 triaxial stress testing machine was utilized for the rock
mechanical testing. The testing force measurement accuracy was
set at 1.00%, with a temperature of 180 °C. Three key mechanical
parameters of different specimens were obtained under normal
pressure and temperature: Young's modulus, Poisson's ratio, and
compressive strength. Additionally, three significant confining
pressures were applied during the triaxial mechanical testing:
15.00 MPa, 25.00 MPa, and 35.00 MPa. The cohesion and internal
friction angle in different lithologies were then determined
(Table 2). Strategically, to analyze the influence of different water-
oil ratios on rock mechanical parameters, the rock samples were
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Table 1
The sampling information and numbers in the rock mechanical testing in the study area.
Location Well Formation Lithology Depth, m Number
Zhoufu area Zhoufu59-51 Kiq* Argillaceous siltstone 1834.35 1
Zhoufu59-51 I(]q4 Argillaceous sandstone 1836.67 2
Zhoufu59-51 Kiq* Fine sandstone 1836.90 3
Zhoufu59-51 Kiq* Fine-medium sandstone 1838.00 4
Zhoufu59-51 K]q4 Fine-medium sandstone 1838.93 5
Zhoufu59-51 Kiq* Gravelly medium sandstone 1839.95 6
Xinzhao area Xin124-75 Koy! Argillaceous siltstone 1420.80 7
Xin124-69 Koy! Siltstone 1396.40 8
Xin124-69 Koy! Medium sandstone 1397.40 9
Xin124-69 Koy'! Medium sandstone 1397.75 10
Xin124-69 Koy! Argillaceous siltstone 1398.20 11
Xin124-69 Koy! Fine sandstone 1425.31 12
Xin124-69 Koy! Fine-medium sandstone 1399.00 13
Table 2
The testing results of triaxial mechanical testing in different lithologies.
Location Testing number Lithology CP, MPa Strength, MPa E, GPa n Co-, MPa IFA, °
Zhoufu area 2-1 Argillaceous sandstone 25.00 153.83 19.957 0.236 30.28 29.79
2-2 35.00 173.58 16.336 0.240
6-1 Gravelly medium sandstone 15.00 122.37 25.687 0.354 23.57 32.74
6-2 25.00 143.86 14.645 0.225
6-3 35.00 169.47 16.925 0.187
Xinzhao area 9-1 Medium sandstone 35.00 85.54 12.842 0.226 22.14 16.38
9-2 25.00 81.04 8.461 0.168
9-3 15.00 69.83 6.735 0.167
11-1 Fine sandstone 25.00 139.58 18.856 0.117 33.71 2435
11-2 35.00 153.61 19.206 0.286

Where the CP is confining pressure, MPa; E is the Young's modulus, GPa; u refers to the Poisson's ratio; Co- is the cohesion, MPa; IFA shows the internal friction angle, °.

soaked in water for 30 min (Table 3). Subsequently, the uniaxial
stress testing machine was employed to assess the variation of
mechanical properties in rocks with various water-oil ratios.

3.2. Well logging data calculation (in-situ stress and mechanical
parameters)

The well logging data and stress calculation model provided an
effective and rapid means of obtaining current in-situ stress, with
accuracy reaching up to 95% (Wang et al., 2014). Ten typical wells
were selected to conduct well logging calculations of reservoir rock
mechanical parameters. Using shear-wave and portrait-wave data,
Young's modulus and Poisson's ratio were calculated based on Eqgs.
(1) and (2). Incorporating rock mechanical theory and research
findings on reservoir characteristics, Young's modulus and Pois-
son's ratio from mechanical testing were used to modify and vali-
date the calculation model. An integrated calculation and
interpretation process were then outlined, where rock mechanical
testing provided discrete point-like mechanical parameters, and
well logging data calculation was used to determine continuous
mechanical parameters in single wells. Based on the obtained rock

Table 3

e A2 (A2 - A3

mechanical parameters, an optimized computational model was
selected to calculate the in-situ stress of each well. Horizontal
maximum principal stress was computed using Poisson's ratio and
rock pore pressure, as per Eq. (3), while the horizontal minimum
principal stress was derived from Eq. (4). Considering rock density
and depth, vertical principal stress was calculated using Eq. (5).
Consequently, distribution characteristics of Young's modulus,
Poisson's ratio, horizontal maximum principal stress, horizontal
minimum principal stress, and vertical principal stress were ob-
tained. Notably, various rock mechanical parameters and in-situ
stress values in different lithologies were also determined. Simul-
taneously, the method of image logs was employed to determine
the current stress field direction through the study of induced
fractures.

p(38¢2 - 4At§) ot

(1)

The testing information of moisture content in oil-water mixture liquor in different rock samples in the study area.

Location Testing number Lithology Soaking time, minutes Moisture content, %
Xinzhao area 7-1A Argillaceous siltstone 30 60

7-1B 100

7-2A 0

7-2B 40
Zhoufu area 4-2A Fine-medium sandstone 30 100

4-2B 0

4-3A 60

4-3B 40
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Where E is Young's modulus, MPa; u refers to the Poisson's ratio,
dimensionless; p shows the rock density, kg/m>; Ats and Atp refer to
the time difference of shear wave and portrait-wave, respectively,
us/ft.

_1[&6HE | 2u &E
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_1[&HE 2 §iE

Sh §|:17ﬂ+m(SV—0(PP)+1+’u:|+O(PP (4)

H
Sy = L) pn&dh (5)

where Sy is the horizontal maximum principal stress, MPa; Sy, is the
horizontal minimum principal stress, MPa; Sy is the vertical prin-
cipal stress, MPa; & and &, show the horizontal tectonic stress
coefficient, dimensionless; « is the Boit coefficient, dimensionless;
E is the rock Young's modulus, MPa; u refers to the rock Poisson's
ratio, dimensionless; P, is the pore pressure, MPa; H refers to the
depth, m; p is the density of the overlying strata (a function
related to the depth h), g/cm?; g refers to the gravitational accel-
eration, m/s%. During the calculation model, the horizontal tectonic
stress coefficient and the Boit coefficient were obtained by the
correction and reverse calculation with the measured results of in-
situ stress.

3.3. Hydraulic fracturing physical simulation experiment

A TAW-100 triaxial stress testing machine was utilized to apply
the triaxial confining stress. The physical simulation experiment
comprised four key processes: model sample preparation, experi-
ment preparation, experiment execution, and photo observation
(Fig. 2). During model sample preparation, three significant vertical
rock lithological combinations were configured from top to bottom:
mudstone with siltstone-argillaceous siltstone-silty mudstone
(Fig. 3a), silty mudstone-siltstone-mudstone (Fig. 3b), and
mudstone-sandstone-mudstone (Fig. 3c). Additionally, a litholog-
ical combination of silty mudstone-siltstone-mudstone was
configured from left to right to simulate the fracturing fracture in
the siltstone, representing the horizontal fracturing period (Fig. 3d).
Three different cluster perforation types were employed to simu-
late hydraulic fracturing in typical wells: single cluster perforation,
double cluster perforation, and triple cluster perforation. In Model I,
comprising the single cluster perforation, double cluster perfora-
tion, and triple cluster perforation, fracturing fracture characteris-
tics were studied under loading stresses of 41.5, 31, and 37.4 MPa
(Fig. 3a). Model Il involved the double cluster perforation and triple
cluster perforation to analyze fracturing fracture under stress
conditions of 39, 28, and 34.3 MPa (Fig. 3b). Model III featured the
single cluster perforation and double cluster perforation under
loading stresses of 39.00, 28.00, and 34.30 MPa (Fig. 3¢). In Type IV,
the double cluster perforation was applied to analyze fracturing
fracture in horizontal wells and observe the distribution charac-
teristics of fracturing fractures (Fig. 3d). Simultaneously, the
ZH7137 acoustic emission (AE) equipment was used to record the
dynamic evolution process of fracturing fractures in real-time. The
hydraulic fracturing physical simulation experiment and AE
experiment were conducted at Qingdao Jiahang Petroleum Tech-
nology Corporation in Shandong University of Science and
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Technology.

Referencing the obtained mechanical parameters, similar li-
thology, thickness, rock mechanical parameters, rock cementation,
permeability, displacement, and confining pressure were config-
ured to replicate the real evolutionary process of fracturing frac-
tures. In Model I, the following parameters were set: Young's
modulus, Poisson's ratio, density, and thickness were 2.20 GPa,
0.33, 2.20 g/cm?, and 30.00 mm, respectively, for mudstone with
siltstone; 2.70 GPa, 0.25, 2.40 g/cm?, and 20 mm, respectively, for
argillaceous siltstone; and 2.20 GPa, 0.35, 2.00 g/cm?, and 30 mm,
respectively, for silty mudstone (Table 4). In Model II, the param-
eters were as follows: Young's modulus, Poisson's ratio, density,
thickness, permeability, and porosity were set to 2.70 GPa, 0.24,
2.04 g/cm?, 40.00 mm, 0.51 mD, and 16.41%, respectively, for silty
mudstone; 3.00 GPa, 0.17, 1.89 g/cm?, 20.00 mm, 10.205 mD, and
26.82%, respectively, for siltstone; and 1.70 GPa, 0.35, 2.17 g/cm?,
40.00 mm, 0.27 mD, and 9.42%, respectively, for mudstone. For
Model 111, the parameters were set as follows: Young's modulus,
Poisson's ratio, density, thickness, permeability, and porosity were
1.70 GPa, 0.22, 2.17 g/cm3, 40.00 mm, 0.27 mD, and 9.42%, respec-
tively, for mudstone; and 3.00 GPa, 0.17, 2.00 g/cm?, 20.00 mm,
10.20 mD, and 20.82%, respectively, for sandstone. Additionally, in
Model 1V, the parameters were set as follows: Young's modulus,
Poisson's ratio, density, and thickness were 2.40 GPa, 0.30, 2.20 g/
cm?, and 30.00 mm, respectively, for silty mudstone; 2.80 GPa, 0.22,
2.60 g/cm>, and 40.00 mm, respectively, for siltstone; and 2.00 GPa,
0.35, 2.00 g/cm?, and 30.00 mm, respectively, for mudstone.

3.4. Finite element numerical simulation

A three-dimensional (3-D) geomechanical model was estab-
lished using finite element numerical simulation (FENS). In FENS,
the continuous geological body was discretized into numerous
finite elements, and then numerical solutions were obtained (Hunt
et al,, 2011; Liu et al., 2017; Ren et al., 2019; Andhumoudine et al.,
2021). Displacement, stress, and strain were the three funda-
mental variables in FENS. Utilizing interpolation functions, the
displacement of each node was determined, leading to the calcu-
lation of internal stress and strain. Consequently, the tectonic stress
field was computed by integrating these discretized units across
the entire geological body. The simulation accuracy was notably
influenced by the fidelity to the actual geological model, including
the number of nodes and elements (Islam et al, 2009;
Mohammadnejad and Andrade, 2016). Four primary operation
steps in FENS were identified: establishing the geological model
(Step I), generating the finite element mesh (Step II), setting up the
mechanical model (Step III), and defining the boundary loading
conditions (Step IV).

During Step I, the model size and lithological combinations were
determined based on the model types utilized in the hydraulic
fracturing physical experiment. In Step II, the continuous geological
model was partitioned into numerous elements interconnected by
nodes. Rock mechanical parameters, such as Young's modulus and
Poisson's ratio, obtained from logging data calculations and rock
mechanical testing, were assigned to the discretized elements
during Step Il In Step 1V, guided by the loading methods employed
in the hydraulic fracturing physical experiment, boundary load
conditions including force and displacement were set at the cor-
responding boundaries. Three different models were established to
investigate stress variation and fracture characteristics during the
fracturing process (Fig. 4). Vertical lithological combinations of
mudstone with siltstone-argillaceous siltstone-silty mudstone
(Fig. 4a), horizontal lithological combinations of silty mudstone-
siltstone-mudstone (Fig. 4b), and argillaceous siltstone (Fig. 4c)
were configured for the FENS. The depth of the single-cluster
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Fig. 2. The experimental configuration and procedure of hydraulic fracturing physical simulation experiment.
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Fig. 3. The lithological combination and cluster perforation type during the hydraulic fracturing physical experiment. (a) is stress loading type and lithological combination of
mudstone with siltstone-argillaceous siltstone-silty mudstone, indicating three different cluster perforation methods; (b) refers to the lithological combination of silty mudstone-
siltstone-mudstone, performing two different cluster perforation methods; (c) shows to the lithological combination of mudstone-sandstone-mudstone, indicating two different
cluster perforation methods; (d) refers to the lithological combination of silty mudstone-siltstone-mudstone horizontally, performing double cluster perforation methods.
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Table 4
The configured mechanical parameters in different models in the hydraulic fracturing physical experiment.

Group Layer Lithology E, GPa I p, glcm? Thickness, mm Permeability, mD Porosity, %
1 1 Mudstone with siltstone 2.20 0.33 2.2 30 / /
2 Argillaceous siltstone 2.70 0.25 24 40 / /
3 Silty mudstone 2.00 0.35 2.0 30 / /
Il 1 Silty mudstone 2.70 0.24 2.06 40 0.51 16.41
2 Siltstone 3.00 0.17 1.89 20 10.205 26.82
3 Mudstone 1.70 0.35 217 40 0.27 9.42
1 1 Mudstone 1.70 0.22 217 40 0.27 9.42
2 Sandstone 3.00 0.17 2.0 20 10.2 26.82
3 Mudstone 1.70 0.22 217 40 0.27 9.42
1\% 1 Silty mudstone 2.40 0.30 2.2 30 / /
2 Siltstone 2.80 0.22 26 40 / /
3 mudstone 2.00 0.35 2.0 30 / /
where E is the Young's modulus, GPa; u refers to the Poisson's ratio.
(a) (b) (c)
30 mm £ 3
£ £
40 mm [}
=
&
E
30 mm E.
[sp]
(d) (e) ()
c S 5
g s g
® S S
©
£ g 3
g & 5
Z E 2
3 S 2
o 8 g
= o
j=2} 3 =
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5 a

Fig. 4. The lithological combination and cluster perforation type during the finite element numerical simulation. (a) is lithological combination of mudstone with siltstone-
argillaceous siltstone-silty mudstone; (b) refers to the lithological combination of silty mudstone-siltstone-mudstone; (c) shows to the lithological combination of argillaceous
siltstone; (d) refers to the simple cluster perforation; E is the double cluster perforation; e refers to the triple cluster perforation.

top (Fig. 4e). The rock mechanical parameters used in the FENS
were referenced from the mechanical parameters obtained in the
hydraulic fracturing physical experiment and are listed in Table 5.

perforation was 80 mm, with an aperture of 10 mm (Fig. 4d). The
double-cluster perforation had a depth of 80 mm and an aperture of
10 mm, with the upper shoot cluster hole positioned 30 mm from
the top and the lower shoot cluster hole positioned 60 mm from the

Table 5
The rock mechanical parameters in different lithologies in the finite element numerical simulation.

Lithology Young's modulus, GPa Poisson's ratio Density, kg/m>
Mudstone with siltstone 27 0.20 2400
Argillaceous siltstone 25 0.25 2000
Silty mudstone 21 0.33 1600
Mudstone 20 0.35 1400
Siltstone 28 0.20 2400
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4. Results
4.1. Mechanical parameters of rock mechanical testing

Based on the results of uniaxial and triaxial mechanical testing
(Table 2, Fig. 5a, b, ¢, and d), significant differences were observed in
the rock mechanical properties, indicating strong heterogeneity
and rapid lithology phase transition. As the stress loading pro-
gressed, the rock ruptured suddenly at point A, followed by
continuous rupture and displacement enlargement at point B. Ac-
cording to the rock mechanical testing results (Table 2, Fig. 5e, f, g,
and h), the Young's modulus and Poisson's ratio of argillaceous
sandstone in the Zhoufu area ranged from 16.34 to 19.96 GPa and
0.23 to 0.24, respectively. The cohesion and internal friction angle
of argillaceous sandstone were determined to be 30.28 MPa and
29.79°, respectively. The Young's modulus and Poisson's ratio of
gravelly medium sandstone ranged from 14.65 to 25.69 GPa and
0.19 to 0.35, with a cohesion of 23.57 MPa and an internal friction
angle of 32.74°. Additionally, the Young's modulus and Poisson's
ratio of medium sandstone in the Xinzhao area were found to be
6.74—12.84 GPa and 0.17 to 0.23, respectively, with a cohesion of
22.14 MPa and an internal friction angle of 16.38°. The Young's
modulus and Poisson's ratio of fine sandstone ranged from 18.86 to
19.21 GPa and 0.12 to 0.29, with a cohesion of 33.71 MPa and an
internal friction angle of 24.35°. An increase in argillaceous content

O

Testing No. 9-2

G

IS
~

Testing No. 9-3

Petroleum Science 21 (2024) 3839—3866

led to decreased rock strength and Young's modulus. Coarser grain
size resulted in larger rock cohesion, and smaller internal friction
angle and coefficient compared to fine-grained rock (Fig. 5e, f, g,
and h).

As the moisture content in the oil-water mixture increased, the
Young's modulus initially decreased (water content: 0%—60%, oil
content: 100%—40%), followed by a gradual increase (water con-
tent: 60%—100%, oil content: 40%—0%) (Fig. 6a). Poisson's ratio
exhibited a positive correlation with moisture content in the oil-
water mixture (Fig. 6b), mainly ranging between 0.15 and 0.35,
and rarely exceeding 0.40. For example, in specimens No.7 (argil-
laceous sandstone) and No.4 (fine-medium sandstone), the uniaxial
compressive strength initially decreased, then increased with rising
water-oil ratios (Fig. 6¢c and d). In argillaceous sandstone, the
Young's modulus values were 15.60, 11.30, 9.60, and 10.10 GPa for
rock with 0%, 40%, 60%, and 100% moisture content in the oil-water
mixture, respectively (Fig. 6a). The Poisson's ratio values were 0.30,
0.23, 0.25, and 0.24 for the same moisture contents, respectively
(Fig. 6b). The uniaxial compressive strength values were 95, 68, 61,
and 66 MPa for rock with 0%, 40%, 60%, and 100% moisture content
in the oil-water mixture, respectively (Fig. 6¢). Similarly, in fine-
medium sandstone, the Young's modulus values were 11.50, 8.10,
7.80, and 6.80 GPa for rock with 0%, 40%, 60%, and 100% moisture
content in the oil-water mixture, respectively (Fig. 6a). The Pois-
son's ratio values were 0.17, 0.27, 0.28, and 0.34 for the same

s
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Fig. 5. The uniaxial tensile strength curve and stress-strain curves of rock mechanical testing results. (a), (b), (c), and (d) show the uniaxial tensile strength curve of No. 9-2, 9-3, 6-1,
and 2-1 specimen, respectively; (e), (f), (g), and (h) are Mohr circle of stress-strain curve of No. 2, 6, 9, and 11 core sample, respectively.
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Fig. 6. The rock mechanical testing results of specimen with different moisture contents in oil-water mixture liquor. (a) and (b) show the Young's modulus variation and Poisson's
ratio variation of rock with different moisture contents, respectively; (c) shows the stress-strain curve of No. 7 sample with different moisture contents; (d) refers to the stress-strain

curve of No. 4 sample with different moisture contents.

moisture contents, respectively (Fig. 6b). The uniaxial compressive
strength values were 77, 53, 48, and 46 MPa for rock with 0%, 40%,
60%, and 100% moisture content in the oil-water mixture, respec-
tively (Fig. 6d). The mixing of oil and water led to increased radial
and axial strain in the rock. Notably, at an oil-to-water ratio of 2:3
(60% moisture content), the uniaxial compressive strength reached
its lowest value, suggesting minimal stress required for fracturing.

4.2. Calculation of rock mechanics parameters

In Well G68, with 2307 data points analyzed, Young's modulus
ranged from 11.53 to 42.71 GPa, with a mean value of 19.88 GPa
(Fig. 7). Poisson's ratio varied between 0.16 and 0.20, averaging at
0.18. Maximum horizontal principal stress ranged from 17.45 to
67.07 MPa, with a mean of 30.19 MPa. Minimum horizontal prin-
cipal stress varied from 11.06 to 35.42 MPa, averaging 25.48 MPa.
Vertical stress concentrated between 22.95 and 40.92 MPa, with a
mean of 31.67 MPa. Rock density spanned 1480—2580 kg/m’,
averaging 2030 kg/m>. Similarly, in Well G605, analyzing 15071
data points revealed Young's modulus ranging from 12.18 to
4313 GPa, with a mean of 19.84 GPa. Poisson's ratio fluctuated
between 0.16 and 0.21, averaging 0.19. Maximum horizontal prin-
cipal stress ranged from 17.26 to 67.60 MPa, averaging 28.43 MPa.
Minimum horizontal principal stress varied from 1591 to
39.60 MPa, averaging 22.75 MPa. Vertical stress concentrated be-
tween 27.41 and 49.26 MPa, averaging 40.82 MPa. Rock density
spanned 1720—2570 kg/m?>, averaging 2290 kg/m>. Additionally, in
Well G69, examining 35282 data points revealed Young's modulus
ranging from 10.57 to 42.84 GPa, with a mean of 21.81 GPa. Pois-
son's ratio fluctuated between 0.16 and 0.23, averaging 0.19.
Maximum horizontal principal stress ranged from 12.59 to
66.71 MPa, averaging 32.59 MPa. Minimum horizontal principal
stress varied from 9.80 to 38.44 MPa, averaging 24.12 MPa. Vertical
stress concentrated between 20.37 and 47.82 MPa, averaging

3291 MPa. Rock density spanned 1730—2610 kg/m>, averaging
2340 kg/m?>.

Consequently, well logging data was utilized to complement
rock mechanical testing data for the calculation of in-situ stress and
mechanical parameters. This allowed for the acquisition of
continuous mechanical parameters along the longitudinal section
within individual wells, and facilitated the determination of me-
chanical parameters related to faults. Near the fault area, a distinct
pattern emerged revealing low Young's modulus values
(12—15 GPa) and high Poisson's ratios (0.21—0.24). The study area
exhibited significant heterogeneity, with Young's modulus ranging
from 12 to 50 GPa and Poisson's ratio distributed between 0.15 and
0.24. Subsequently, an established calculation model for in-situ
stress in the study area is represented by Eq. (6). Notably, where
the horizontal stress difference was less than 5 MPa, effective
fracturing occurred, resulting in the generation of mesh fractures
(Zhou et al., 2017; Tan et al., 2023).

oy = 0.0167h + 5.4469
oy, = 0.0150h + 0.9789 (6)
oy = 0.0221h — 2.4647

where gy is the horizontal maximum principal stress, MPa; o, is the
horizontal minimum principal stress, MPa; oy is the vertical prin-
cipal stress, MPa; h refers to the depth, m.

4.3. Results of hydraulic fracturing physical simulation experiment

In model I-1 (comprising mudstone with siltstone, argillaceous
siltstone, and silty mudstone), a single cluster perforation was
executed in the middle layer at a phase angle of 60°. The presence
of darker fracturing fluid in the lower layer of the profile (Fig. 8a)
indicated a larger rupture. Two prominent high-angle shear frac-
tures were observed in the captured images. Over time, pore
pressure increased to its peak and then gradually decreased
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Fig. 7. The calculation results of in-situ stress and rock mechanical parameters (Young's modulus and Poisson's ratio) in typical wells (G86, G605, and G69) by well logging data.

(Fig. 9a). Fracturing fractures were initiated at the maximum
initiation pressure (MIP) of 35 MPa at 0.10 h, followed by pressure
decrease and re-initiation of fractures, illustrating the complex
volatility between pressure and time. Moreover, displacement
exhibited a positive correlation with loading time. Similarly, in
model I-2, double cluster perforations were performed in the top
and base layers at a phase angle of 60°. The ruptured area of frac-
turing fractures increased, and the extension length became longer
(Fig. 8b). Pressure leakage occurred on one side due to constraint,
preventing further fracturing. With increasing pressure, a stable
variation period ensued, signifying fracture propagation in close
natural fractures or bedding fractures (Fig. 9b). Subsequently, the
maximum initiation pressure point (0.28 h) and re-initiation
pressure point (0.33 h) were determined, leading to the genera-
tion of fracturing fractures. Furthermore, in model I-3, triple cluster
perforations were implemented across the entire layer at a phase
angle of 60°. Relatively higher rupture was observed in the top and
base layers, while the middle layer exhibited lower fracturing
rupture (Fig. 8c). Due to high permeability, the expansion space in
argillaceous siltstone was substantial. Despite having a higher
Young's modulus, the strata displayed characteristics of not easily
ruptured. Numerous opened natural fractures or bedding fractures
constrained the pressure-time curve, resulting in significant vola-
tility and considerable filtration loss of fracturing fluid during
fracture propagation (Fig. 9c).

In mode II-1 (comprising silty mudstone, siltstone, and
mudstone), triple cluster perforations were executed across the
entire layer with a phase angle of 60°. As the loading stress
increased to its peak, fracturing fractures occurred, followed by a
rapid decrease in fracturing pressure. Ruptures extended along the
direction of maximum horizontal stress from surface U to surfaces F
and B (Fig. 8d). The sandstone, with its higher Young's modulus,
facilitated stress release, leading to the formation of new fracturing
fractures. In model II-2, double cluster perforations were employed
in the top and base layers, with four perforations in each layer.
Influenced by the maximum horizontal stress, ruptures occurred on
surfaces B and F. However, the propagation of fracturing fractures
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was hindered by the mudstone with a low Young's modulus
(Fig. 8e). The double cluster perforations enhanced the rock's
bearing capacity, with the maximum pore pressure it could with-
stand reaching 33 MPa, and the stress release time nearly doubling
(Fig. 9d). In model II-3, triple cluster perforations were conducted
across the entire layer, with three perforations in the top and base
layers and two perforations in the middle layer, at a phase angle of
45°, Due to the perforation phase and number restrictions, the
maximum perforation pressure decreased, and the rupture time
increased. The extension of fracturing fractures was relatively
subdued on surfaces B and F (Fig. 8f).

In model III-1 (consisting of mudstone, sandstone, and
mudstone), triple cluster perforations were executed across the
entire layer, with two perforations in each layer. Fracturing frac-
tures occurred in three directions, indicating a middle to high dip
angle (Fig. 8g). The pore pressure increased slowly to its peak
(48 MPa), followed by a rapid decrease after fracturing fractures
formed (Fig. 9e). In model IlI-2, triple cluster perforations were
conducted across the entire layer, with four perforations in each
layer. Fracturing fractures generated by the maximum horizontal
stress were impeded by fractures formed by the minimum hori-
zontal stress (Fig. 8h). The increased perforations influenced the
internal mechanical properties, elongating the time to reach the
pressure peak (Fig. 9f). In model IV (comprising silty mudstone,
siltstone, and mudstone), double cluster perforations were
executed in the top and base layers at a phase angle of 60°. Frac-
turing fractures initiated in the center and then extended to the
bottom (Fig. 8i), demonstrating diastrophism across different
lithologies.

4.4. Distribution characteristics of in-situ stress

4.4.1. Distribution characteristics of in-situ stress without
perforations

The rock mechanical parameters and loading conditions aligned
with the physical simulation of hydraulic fracturing (Fig. 3 and
Table 5). Notably, positive values in the ANSYS software indicated
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(e) Model 1I-2 Double cluster perforation top and base layers
four perforations each

Profile | ~ Profile] |
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four perforations each

(f) Model 11-3 Double cluster perforation top and base layers
three perforations each
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Fig. 8. The results of hydraulic fracturing physical simulation experiment. (a) is the single cluster perforation in middle layer in model I in Fig. 4; (b) refers to the double cluster
perforations in top and base layers in model I; (c) shows the triple cluster perforation in whole layer in model I; (d) is the triple cluster perforation in whole layer in model II; (e)
refers to the double cluster perforations in top and base layers in model II; (f) indicates the double cluster perforations in model II; (g) is the triple cluster perforation with three
perforations each in model III; (h) is the triple cluster perforation with four perforations each in model III; (i) shows the double cluster perforations in top and base layers in model
IV. Where surface 1 and 2 are the normal directions of horizontal minimum principal stress; surface 3 and 4 are the normal directions of horizontal maximum principal stress;
surface R and L are the normal directions of horizontal minimum principal stress; surface B and F are the normal directions of horizontal maximum principal stress.

tensile stress, while negative values represented compressive along the x-direction (perpendicular to the direction of maximum
stress. Though contrary to geological representation, this did not principal stress) and the largest value along the y-direction (parallel

hinder research on the distribution characteristics of in-situ stress. to the direction of maximum principal stress) (Fig. 10b). The
According to the simulated results (Fig. 10a, b, ¢, and d), the maximum principal stress magnitude was primarily distributed
magnitude of the minimum principal stress was primarily distrib- between 30.20 and 32.40 MPa, also exhibiting compressive stress
uted between 14.60 and 19.80 MPa, indicating compressive stress. (Fig. 10c). The highest maximum principal stress values were
The highest minimum principal stress was concentrated in the observed in argillaceous siltstone (30.90—32.40 MPa), followed by

mudstone with silty mudstone and siltstone (18.70—19.80 MPa), mudstone with siltstone (30.40—31.40 MPa), with silty mudstone
especially along lithologic interfaces, signifying easily fracturing showing the least values (30.20—31.10 MPa). Stress intensity was
areas. Notably, the middle principal stress showed a smaller value primarily concentrated between 11.20 and 17.00 MPa (Fig. 10d),
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Fig. 9. The pore pressure and displacement of perforation in different models in the study area. (a) is the pore pressure and displacement curve in model I-1; (b) shows pore
pressure and displacement curve in model I-2; (c) refers to the pore pressure and displacement curve in model I-3; (d) shows the pore pressure and displacement curve in model II-
2; (e) refers to the pore pressure and displacement curve in model IlI-1; (f) shows the pore pressure and displacement curve in model IlI-2; where MIP refers to the maximum

initiation pressure; RP shows the re-initiation pressure.

showing an inverse distribution trend compared to the minimum
principal stress. Higher stress intensity was observed in argilla-
ceous siltstone (13.80—17.00 MPa), with lower values in mudstone
with siltstone and silty mudstone (11.20—14.40 MPa). Notably,
stress intensity near lithologic interfaces exhibited significant dif-
ferences (abrupt change values), indicating a strong potential for
fracture production in argillaceous siltstone.

Similarly, according to the simulated results (Fig. 10e, f, g, and h),
in the transverse lithologic segment, the magnitude of the mini-
mum principal stress was primarily distributed between 7.01 and
0.00 MPa, indicating compressive stress. Additionally, the mini-
mum principal stress exhibited a tensile value of 0.00—5.87 MPa
(Fig. 10e). Particularly, the minimum principal stress displayed two
abrupt stress environments near the lithologic interface, making
fracture generation prone in the argillaceous siltstone near the
interface. The smallest value of the middle principal stress was
distributed in the mudstone (21.70—-23.60 MPa) (Fig. 10f). The
magnitude of the maximum principal stress was primarily
distributed between 28.90 and 39.30 MPa with compressive stress
(Fig. 10g). The largest maximum principal stress was near the
interface in argillaceous siltstone (37.00—39.30 MPa), while the
value in the mudstone was the least (28.90—30.10 MPa). The
magnitude along the lithologic interface was significant, indicating
a tendency to rupture easily. Stress intensity was primarily
concentrated between 23.90 and 43.90 MPa (Fig. 10h), showing an
opposite distribution trend compared to the minimum principal
stress. Higher stress intensity was distributed in the argillaceous
siltstone (32.80—43.90 MPa), with lower values in the mudstone
and silty mudstone (23.90—32.80 MPa). Especially, the largest value
of stress intensity (39.50—43.90 MPa) was concentrated near the
lithologic interface in the argillaceous siltstone, indicating a high
tendency for rupture.
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4.4.2. Distribution characteristics of in-situ stress by single cluster
perforation

According to the simulated results of in-situ stress in vertical
lithologic stratification due to single cluster perforation (Fig. 11a), the
magnitude of the minimum principal stress ranged between 4.51
and 24.66 MPa. The middle principal stress values were primarily
between 0.00 and 29.10 MPa. The magnitude of the maximum
principal stress was mainly distributed between 7.25 and 46.60 MPa,
with lower values (7.25—26.90 MPa) concentrated near the cluster
perforation area. Stress intensity was concentrated between 2.11 and
38.50 MPa, showing good consistency with the calculated results
(Fig. 7). Total deformation was mainly distributed between 0.00 and
60.85 um, indicating significant deformation (30.49—60.99 um) near
the cluster perforation. The magnitude of equivalent elastic strain
indicated higher values (15.61—31.82x10™) near the cluster perfo-
ration. The noticeable differences and abrupt variations revealed the
capacity to rupture and generate more fracturing fractures near the
cluster perforation. Overall, with increasing distance from the cluster
hole, the magnitude of the maximum, middle, and minimum prin-
cipal stress increased. A similar variation tendency was identified
among stress intensity, equivalent elastic strain, and equivalent
(von-Mises) stress, with a sharp decrease along the y direction
(parallel to the direction of maximum principal stress) and a slower
decrease along other directions.

Similarly, in the transverse lithologic segment (Fig. 11b), the
magnitude of the minimum principal stress was distributed be-
tween 0.00 and 30.10 MPa. The value of the middle principal stress
ranged primarily between 0.93 and 30.92 MPa. The magnitude of
the maximum principal stress performed lower values
(16.30—34.20 MPa) in the area near the cluster perforation. Stress
intensity was concentrated between 1.50 and 45.08 MPa, indicating
three directions prone to rupture. Total deformation showed sig-
nificant deformation (4.59—8.25 pm) near the cluster perforation.
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Fig. 10. The 3-D distribution characteristics of in-situ stress in two different lithological combinations without perforations. (a), (b), (c), (d) refer to the minimum principal stress,
middle principal stress, maximum principal stress, and stress intensity in vertical lithologic stratification, respectively; (e), (f), (g), (h) show the minimum principal stress, middle
principal stress, maximum principal stress, and stress intensity in transverse lithologic segment, respectively.

The deformation degree was lower than that in the vertical litho-
logic stratification model. The value of the equivalent (von-Mises)
stress was mainly distributed between 146 and 45.83 MPa,
showing a similar characteristic to the equivalent elastic strain.
Consequently, stress intensity, equivalent elastic strain, and
equivalent (von-Mises) stress showed the largest values in the
cluster perforation area, with similar distribution characteristics
along the interface. Total deformation increased slowly along the
positive Y-axis and decreased slowly along the negative Y-axis.
Additionally, in argillaceous siltstone (Fig. 11c), the magnitude of
the minimum principal stress was distributed between 0.00 and
23.82 MPa. The magnitude of the maximum principal stress was
mainly distributed between 13.85 and 48.77 MPa, with lower
values (13.85—31.31 MPa) concentrated in the area near the cluster
perforation. Stress intensity was concentrated between 2.19 and
4514 MPa, indicating three directions prone to rupture. Total
deformation was mainly distributed between 0.00 and 66.81 pm,
with significant deformation (29.69—44.54 pm) near the cluster
perforation. The magnitude of equivalent elastic strain ranged
primarily between 0.00011543 and 0.004894, with higher values
(11.34—23.87x10~%) near the cluster perforation. The value of the
equivalent (von-Mises) stress was mainly distributed between 2.07
and 44.38 MPa. Similarly, stress intensity, equivalent elastic strain,
and equivalent (von-Mises) stress showed the largest values in the
cluster perforation area. Total deformation increased slowly along
the positive Y-axis and decreased slowly along the negative Y-axis.
In conclusion, the area near the cluster perforation indicated a large

stress difference, strong deformation, and high elastic strain
compared to other areas, showing a better capacity to be fractured
and generate fracturing fractures.

4.4.3. Distribution characteristics of in-situ stress by double cluster
perforations

According to the simulated results of in-situ stress in vertical
lithologic stratification by double cluster perforations (Fig. 12a),
lower compressive values (0.00—17.09 MPa) of the minimum
principal stress were concentrated near the cluster hole. Little
tensile stress (0.00—2.06 MPa) was identified along the cluster
perforation, indicating the ability to generate opening fractures.
The magnitude of maximum principal stress was mainly distrib-
uted between 0.00 and 57.6 MPa. Tensile stress (0.00—5.03 MPa)
was distributed near the cluster perforation area, indicating the
capacity to form tensile fractures. Stress intensity was concentrated
between 2.28 and 49.77 MPa, showing good agreement with the
calculated results from well logging data (Fig. 7). Total deformation
was mainly distributed between 0.00 and 88.04 um, indicating
strong deformation (58.69—78.26 um) near the cluster perforation.
The magnitude of equivalent elastic strain ranged primarily be-
tween 1.27x10% and 3.03x10™% The significant difference and
abrupt variation indicated the capacity to be ruptured and generate
more fracturing fractures near the cluster perforation, revealing
three significant directions prone to rupture. Overall, as the dis-
tance from the cluster hole increased, the magnitude of the mini-
mum principal stress initially increased and then decreased. A
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Fig. 11. The 3-D distribution characteristics of in-situ stress in different lithological combinations during the hydraulic fracturing physical experiment by single cluster perforation.

(a) is the in-situ stress characteristic in vertical lithologic stratification;

characteristic in argillaceous siltstone.

(b) shows the in-situ stress characteristic in transverse lithologic segment; (c) refers to the in-situ stress
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Fig. 12. The 3-D distribution characteristics of in-situ stress in different lithological combinations during the hydraulic fracturing physical experiment by two cluster perforations.
(a) is the in-situ stress characteristic in vertical lithologic stratification; (b) shows the in-situ stress characteristic in transverse lithologic segment; (c) refers to the in-situ stress
characteristic in argillaceous siltstone.
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similar variation tendency was observed among stress intensity,
equivalent elastic strain, and equivalent (von-Mises) stress, indi-
cating three predominant directions for generating fracturing
fractures.

In the transverse lithologic segment (Fig. 12b), lower compres-
sive values (0.00—6.67 MPa) of the minimum principal stress were
concentrated in the area near the cluster hole. Tensile stress
(0.00—12.67 MPa) was identified along the cluster perforation,
showing a good capacity to form fracturing fractures. The magni-
tude of maximum principal stress was mainly distributed between
0.42 and 55.45 MPa, indicating an optimized direction for rupture.
Stress intensity was concentrated between 1.35 and 47.69 MPa,
showing good consistency with the calculated results from well
logging data (Fig. 7). Total deformation showed strong deformation
(31.58—47.37 um) near the cluster perforation. The significant dif-
ference and abrupt variation indicated the capacity to be ruptured
and generate more fracturing fractures near the cluster perforation,
revealing three significant directions for rupture. The value of the
equivalent (von-Mises) stress was mainly distributed between
1.1841 and 47.47 MPa, showing good agreement with the equivalent
elastic strain. A similar variation tendency was observed among
stress intensity, equivalent elastic strain, and equivalent (von-
Mises) stress, indicating a larger magnitude in the siltstone and
lower values in the silty mudstone and mudstone.

In the argillaceous siltstone model (Fig. 12c), lower compressive
values (0.00—7.49 MPa) of the minimum principal stress were
concentrated in the area near the cluster hole, indicating three
directions prone to generate fracturing fractures. Tensile stress
(0.00—10.95 MPa) was identified along the cluster perforation,
indicating an ability to form opening fractures. The magnitude of
maximum principal stress was mainly distributed between 0.00
and 50.31 MPa. Tensile stress (0.00—4.96 MPa) was also distributed
near the cluster perforation area, revealing the ability to form
tensile fractures. Three optimized directions prone to rupture were
distinguished by higher stress intensity (16.15—34.02 MPa). Total
deformation was mainly distributed between 0.00 and 11.12 pm,
with strong deformation (8.65—11.12 um) near the cluster perfo-
ration. The equivalent elastic strain in the argillaceous siltstone was
smaller than that in the vertical lithologic stratification and trans-
verse lithologic segment. Comprehensively, increasing the distance
from the cluster hole, the magnitude of the minimum principal
stress initially increased and then decreased. A similar variation
tendency was identified among stress intensity, equivalent elastic
strain, and equivalent (von-Mises) stress, indicating three pre-
dominant directions to generate fracturing fractures. The largest
values were identified along the cluster perforations, indicating the
capacity to generate fracturing fractures. The total indicated larger
values on the top surface and decreased along the negative direc-
tion of the y-axis (parallel to the direction of maximum principal
stress).

5. Discussions

5.1. Distribution characteristics of hydraulic fractures during the
FENS

To analyze the developmental characteristics of hydraulic frac-
tures, the fracture density and aperture were quantitatively calcu-
lated based on simulated in-situ stress. Constrained by the principal
strain and corresponding principal stress, the strain energy per unit
volume was determined. Subsequently, the magnitude of elastic
strain energy in the entire rock was obtained (Ren et al., 2019; Feng
et al.,, 2019; Ren et al., 2021). Two rupture criteria situations were
distinguished as follows.
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(1) When ¢3 > 0, according to the Coulomb-Mohr criterion, the
fracture volume density and linear density were determined
through Eqgs. (7) and (8).

1
Dy = m {G% + 0% + 0'% —2u(0105 + 0203 + 0103)
2
—0.85%07, + 2u(0; + [;3)01,}
(7)
2D¢L{L3 sin f cos § — L sin § — L3 cos @
le — vit1L3 1 3 (8)

12 sin® 0 + L3 cos? 6

where Dy is the fracture volume density, mz/m3; Jo refers to the
required surface energy without pressure, J/m?; E is the rock's
Young's modulus, MPa; u shows the rock Poisson's ratio, dimen-
sionless; o1, 02, g3 refer to the minimum, middle, and maximum
principal stress, respectively, MPa; b is the fracture aperture, m; o,
refers to the rock rupture stress, MPa; Dy is the fracture linear
density, m~!; L and L3 are the characterized unit lengths along the
g1 and ¢3 orientations, m; and 6 refers to the rock rupture angle, °.

(2) When 03 <0, based on the Griffith criterion, two sub situa-
tions were divided:

When ¢1+303 > 0, the fracture volume density and linear den-
sity were calculated through Egs. (9) and (10):

1
Dy = ST {0% + 03 + 03 — 2u(0103 + 0203 + 0103) — af]
9)
Dy — 2D sL1L3 sin 6 cos 6 — Ly sin 6 — L3 cos 0 (10)

L2 sin” § + L2 cos? f

where ¢, shows the rock tensile strength, MPa.
When ¢1+303 < 0, the fracture volume density and linear den-
sity were obtained through Eq. (11).

Dy¢ = Dy¢
1 2, .2, 2 2
= 200 L 03b) 01 + 05 + 05 — 21(0102 + 0203 + 0103) — 0%
(11)
The fracture aperture was calculated through Eq. (12).
les| — leo
b="—"—"—"+ (12)
D¢

where ¢ refers to the maximum elastic strain of rock affordability.

According to the calculated results (Fig. 13), in the vertical lith-
ologic stratification by single cluster perforation, the fracture
aperture indicated higher values (0.12—0.25 mm) in the argilla-
ceous siltstone and lower values (0.00—0.15 mm) in the mudstone
with siltstone and silty mudstone (Fig. 13a). The fracture linear
density showed relatively higher values (0.30—0.50 fractures/m) in
the silty mudstone and lower values (0.00—0.30 fractures/m) in the
mudstone with siltstone and argillaceous siltstone. The significant
difference in fracture aperture and linear density near the cluster
perforations indicated two optimized directions for rupture. For the
transverse lithologic segment model, the fracture aperture indi-
cated larger magnitudes (0.10—0.25 mm) in the mudstone with
siltstone and silty mudstone (Fig. 13b). Relatively lower values
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Fig. 13. The 3-D distribution characteristics of fracture aperture and linear density in different lithological combinations during the hydraulic fracturing physical experiment by
different cluster perforations. (a) is the fracture aperture and linear density of vertical lithologic stratification by single cluster perforation; (b) shows the fracture aperture and linear
density of transverse lithologic segment by single cluster perforation; (c) refers to the fracture aperture and linear density of argillaceous siltstone by single cluster perforation; (d)
shows the fracture aperture and linear density of vertical lithologic stratification by double cluster perforations; (e) is the fracture aperture and linear density of transverse lithologic
segment by double cluster perforations; (f) refers to the fracture aperture and linear density of argillaceous siltstone by double cluster perforations.

(0.00—0.10 mm) of fracture aperture were distributed in the argil-
laceous siltstone. The relatively higher fracture linear density
(0.05—0.30 fractures/m) was primarily concentrated in the
mudstone with siltstone, while the largest values (0.40—0.50 frac-
tures/m) of fracture linear density were distributed in the silty
mudstone, with the least value in the middle part of the argilla-
ceous siltstone and silty mudstone. Similarly, the area near the
cluster perforations indicated a good capacity to generate new
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hydraulic fractures due to the abrupt variation of fracture aperture
and linear density. In the argillaceous siltstone model, higher
fracture apertures (0.18—0.25 mm) were primarily concentrated in
the middle part, with lower fracture apertures (0.00—0.18 mm)
distributed in the upper and lower sides (Fig. 13¢). The area near the
cluster perforations indicated the largest fracture linear density
(0.40—0.50 fractures), showing the capacity to easily form new
fractures.
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The fracture aperture within the vertical lithologic stratification,
as influenced by double cluster perforations, demonstrated larger
values (0.12—0.25 mm) in proximity to the cluster perforations
(Fig. 13d). Within the mudstone with siltstone, a relatively higher
aperture range (0.08—0.18 mm) was observed, while a relatively
lower aperture range (0.00—0.05 mm) was primarily concentrated
in the argillaceous siltstone and silty mudstone. The highest frac-
ture linear density (0.40—0.50 fractures/m) was found in the silty
mudstone. Moreover, the significant variation in fracture aperture
and linear density near the cluster perforations indicated a notable
propensity for rupture. In the transverse lithologic segment model,
fracture aperture was notably larger (0.18—0.25 mm) around the
cluster perforations, signifying a greater propensity for rupture
(Fig. 13e). Siltstone exhibited the largest disparity in fracture
aperture, with relatively higher values in its middle section. Frac-
ture linear density showed relatively higher values (0.10—0.50
fractures/m) in the mudstone with siltstone and mudstone, with
the region near the cluster perforations demonstrating particularly
high density (0.40—0.50 fractures/m). Furthermore, in the argilla-
ceous siltstone model, fracture aperture was notably high
(0.10—0.25 mm) in the upper part, peaking near the cluster per-
forations (0.20—0.25 mm) (Fig. 13f). Similarly, fracture linear den-
sity indicated high values (0.05—0.30 fractures/m) around the
cluster perforations. The substantial differences and abrupt varia-
tions near the cluster perforations underscored the notable po-
tential for generating new fracturing fractures.

Consequently, a comparison between the hydraulic fracturing
physical experiment and finite element numerical simulation was
undertaken (Fig. 14). In the vertical lithologic stratification model
with single cluster perforation, the rock tended to generate frac-
tures towards the base layer at a low to middle angle (30—60°)
(Fig. 14a). The rupture direction observed during the physical
experiment exhibited a similar characteristic to that in the FENS. In
the transverse lithologic segment model with double cluster per-
forations, rupture was inclined to be generated along a low to
middle angle (15—60°) towards the base layer from the lower
cluster perforation area (Fig. 14b). In the argillaceous siltstone

- Rupture.diréction
Rupture direction =

: a3 Rupture dirction

(a) Vertical lithologic stratification model

(b) Transverse lithologic segment model
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model, hydraulic fractures were inclined to form along a middle
angle (30—60°) towards the upper layer from the lower cluster
perforation area (Fig. 14c). In summary, the calculated results of
FENS exhibited good agreement with those observed during the
hydraulic fracturing physical simulation. Ruptures were prone to
form near the cluster perforations, with the rupture direction
indicating a low to middle angle (15—60 °).

5.2. Dynamic evolution of the fracturing fracture system during the
physical experiment

In order to analyze the dynamic evolution of the fracturing
fracture system, AE testing (sensor) was conducted on all physical
experiment samples. Unfortunately, only six specimens succeeded,
and the corresponding fracturing fracture characteristics are
depicted in Figs. 15—20. Due to the constraint imposed by the single
cluster perforation in the middle layer, the fracturing fracture
ruptured in the central area of the rock, indicating a fracturing di-
rection along the minimum principal stress (Fig. 15a). Subse-
quently, the fracturing fracture gradually extended towards the
upper-left direction in the X-Z plane, revealing better rupture
ability in the upper layer compared to the lower layer (Fig. 15b).
Moreover, conjugate shear fractures developed, predominantly
extending along the NW-SE (300°—330°) direction and weakly
along the NE-SW (40°—60°) direction in the X-Z plane (Fig. 15¢). As
a result, a complex network of fracturing fractures was formed,
indicating good rupture ability in layers with relatively higher
Young's modulus and large extension distance along the X-Z plane
(Fig. 15d).

Similarly, controlled by the double cluster perforations in the
upper and lower layers, fracturing fractures were generated
throughout the entire rock, indicating a fracturing direction along
the acute angle with the minimum principal stress (Fig. 16a). Sub-
sequently, an optimized fracturing fracture along the NW-SE
(310°—330°) direction in the X-Z plane was formed, indicating a
strong rupture capacity throughout the layer (Fig. 16b). This was
followed by the sequential development of fracturing fractures and

Rupture direction

(c) Argillaceous siltstone model

Fig. 14. The comparison of the physical experiment and finite element numerical simulation. (a) is the vertical lithologic stratification model by single cluster perforation; (b) shows
the transverse lithologic segment model by double cluster perforations; (c) refers to the argillaceous siltstone model by double cluster perforations.
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Fig. 15. The testing results of acoustic emission in Model I-1 in Fig. 8. (a) is the initial rupture stage; (b) and (c) show the intermediate rupture stage (0.5 and 0.75); (d) refers to the
final rupture stage.
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Fig. 16. The testing results of acoustic emission in Model I-2 in Fig. 8. (a) is the initial rupture stage; (b) and (c) show the intermediate rupture stage (0.5 and 0.75); (d) refers to the

final rupture stage.
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Fig. 17. The testing results of acoustic emission in Model I-3 in Fig. 8. (a) is the initial rupture stage; (b) and (c) show the intermediate rupture stage (0.5 and 0.75); (d) refers to the

final rupture stage.
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Fig. 18. The testing results of acoustic emission in Model II-2 in Fig. 8. (a) is the initial rupture stage; (b) and (c) show the intermediate rupture stage (0.5 and 0.75); (d) refers to the
final rupture stage.
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Fig.19. The testing results of acoustic emission in Model IlI-1 in Fig. 8. (a) is the initial rupture stage; (b) and (c) show the intermediate rupture stage (0.5 and 0.75); (d) refers to the

final rupture stage.
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Fig. 20. The testing results of acoustic emission in Model IlI-2 in Fig. 8. (a) is the initial rupture stage; (b) and (c) show the intermediate rupture stage (0.5 and 0.75); (d) refers to the

final rupture stage.
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the formation of a conjugate fracture system (Fig. 16c). Notably,
earlier formed fracturing fractures indicated long extension dis-
tances, while later fracturing fractures (restricted by the earlier
ones) showed relatively smaller extension lengths. Consequently, a
complex fracturing fracture system was formed, demonstrating
good rupture capacity throughout the layer and extensive exten-
sion distance (Fig. 16d). Significantly, with an increase in confining
pressure, later-formed fracturing fractures were further extended,
with some penetrating the earlier ones. Additionally, constrained
by the single cluster perforation throughout the layer, the frac-
turing fracture initially developed in the central area of the rock,
revealing the largest rupture capacity in the middle layer (Fig. 17a).
Gradually, a medium-high angle fracturing fracture was generated
along the NE-SW (30°—50°) direction in the Y-Z plane, indicative of
single group fractures (Fig. 17b). As the rupture area enlarged, the
fracturing fracture extended further (Fig. 17c). Consequently, the
fracturing fracture primarily distributed in the right lower quadrant
of the rock, revealing the development of single group fracturing
fractures (Fig. 17d). Overall, the fracturing fracture system was more
developed in rocks with double cluster perforations compared to
those with single cluster perforation.

Additionally, constrained by the double cluster perforations in
Model II-2 (Fig. 8), the fracturing fracture initially ruptured in the
medium and lower layers of the rock (Fig. 18a). The predominant
direction of fracturing fracture was along the NE-SW (50°—70°)
direction in the Y-Z plane. Subsequently, the fracturing fracture
extended longer, and the rupture area enlarged (Fig. 18b). The
rupture points along the predominant direction increased, and the
fracturing fracture extended throughout the entire layer. Sequential
development of the fracturing rupture led to the formation of two
conjugate shear fractures, resulting in a complex fracturing fracture
system (Fig. 18c). Consequently, the fracturing rupture increased
significantly, and the complex fracturing fracture system was
formed, indicating high angle fracturing fractures along the
maximum principal stress direction (Fig. 18d). Similarly, restricted
by the triple cluster perforations in Model III-1 (two perforations in
each layer), the fracturing rupture was initially generated in the
middle layer of the rock, indicating a rupture direction of NW-SE
(320°—340 °) in the X-Y plane (Fig. 19a). Gradually, the fracturing
fracture extended throughout the entire layer, and the rupture
points increased (Fig. 19b). The predominant direction of the frac-
turing fracture was mainly along the NW-SE (300°—340°) direc-
tion, with the rupture direction of NE-SW (40°—60°) initially
formed. Subsequently, the fracturing rupture was sequentially
developed, with the earlier fracturing fracture extending longer
(Fig. 19c¢). The later-formed fracturing fracture was restricted by the
earlier one. Consequently, the complex fracturing fracture system
was generated, with the rupture points primarily distributed in the
middle area of the rock (Fig. 19d). Some of the later-formed frac-
turing fractures penetrated the earlier fracturing fracture, indi-
cating a strong compressive stress environment. Additionally,
constrained by the triple cluster perforation in Model IlI-2 (four
perforations in each layer), the fracturing fracture initially ruptured
in the upper and medium layers, indicating a good capacity to
generate fractures (Fig. 20a). Gradually, the fracturing rupture was
sequentially developed, and conjugate shear fractures were initially
formed (Fig. 20b). One of the fracturing fracture systems was pri-
marily along the NW-SE (300°—340°) direction, and the other was
mainly in the NE-SW (30°—60°) direction. Subsequently, the frac-
turing fracture extended longer, and a conjugate fracturing fracture
system was initially developed (Fig. 20c). Consequently, the rela-
tively complex fracturing fracture system was formed, with the
rupture points primarily distributed in the upper layer (Fig. 20d).
The testing results from the AE showed good agreement with the
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physical experiment and numerical simulation results.

Comprehensively, four significant types of fracturing fractures
were distinguished during the physical experiment, labeled as
types I, I, III, and IV. In type I (Model I-1 and I-2), characterized by
good rock cementation and a single-layer cluster hole mode with
low angle or double layers with a middle angle, viscosity and
displacement were 39.00 mPa s and 0.27 mL/s, respectively. Inte-
grating AE testing results and visual observations from the physical
experiments revealed an initial rupture direction along the mini-
mum principal stress, with an arc turn towards the direction of the
maximum principal stress. The maximum extension length and
aperture of fracturing fractures were 40—50 mm and 0.50 mm,
respectively. Additionally, the fractures exhibited a medium-high
angle, indicating the ability to penetrate layers. Type II fractures,
also exhibiting good rock cementation, featured a whole layer
cluster hole model with a high angle (Model I-3 and Model 1V).
Viscosity and displacement were set at 39.00 mPa s and 0.27 mL/s,
respectively. The initial rupture direction and extension were both
along the maximum principal stress. The maximum extension
length and aperture of fracturing fractures were 50 mm and
0.50—2.00 mm, respectively. These fractures displayed linear
morphology and a medium-high angle, indicative of layer pene-
tration characteristics. Type III fractures, characterized by poor rock
cementation and a double layer or whole layer cluster hole model
with a high angle (Model 1I-2 and Model IlI-1), had viscosity and
displacement set at 228.00 mPa s and 1.33 mlL/s, respectively.
Fracturing fractures showed multidirectional initiation and exten-
sion, forming a more complex fracture system. The maximum
extension length could reach 65.00—70.00 mm, with fracture ap-
ertures ranging from 0.50—1.00 mm, indicating superior fracturing
performance. Similarly, type IV fractures, also featuring poor rock
cementation and a double layer or whole layer cluster hole model
with a high angle (Model II-1, 1I-3, and Model III-2), had viscosity
and displacement set at 228.00 mPa s and 1.33 ml/s, respectively.
The initial fracturing direction was along the maximum principal
stress, with fractures extending obliquely along a small angle with
the maximum principal stress. The maximum extension length and
aperture of fracturing fractures were 50.00—65.00 mm and
0.40—0.70 mm, respectively. These fractures were characterized by
intersection, arc, and radial morphology, exhibiting high or me-
dium angles.

In conclusion, the extension direction and length of fracturing
fractures were primarily controlled by the direction of maximum
principal compressive stress. Initially, fracturing fractures ruptured
at the minimum horizontal principal stress. If the stress intensity
within the fracture surpassed the minimum horizontal principal
stress in the adjacent formation, the fracture could penetrate the
layer; otherwise, it was restricted by the layer. Poor cementation
and compactness led to complex fracture morphology and the
generation of network fractures. Strata with high elastic modulus
increased the penetration ability of fracturing fractures, resulting in
narrow and elongated features along the extension direction. Small
Poisson's Ratio led to relatively larger fracture widths. Moreover,
the interlayer development of fracturing fractures was influenced
by strata occurrence. Fracture extension and development in ver-
tical strata indicated dislocation. Fracture density varied according
to the type of cluster perforation. Single-layer, low-angle, and
double-helical cluster perforations all indicated high fracture
density. Increased fracturing fluid displacement enlarged fracture
length and height, while fracture width increased continuously
before eventually leveling off. Low-cemented horizons and high-
displacement, high-viscosity fracturing fluids were prone to
generate more complex and extensively extended fractures.
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6. Conclusions

In order to analyze the evolution mechanism of the fracturing
fracture system, hydraulic fracturing physical experiments and
finite element numerical simulations were conducted. Concur-
rently, rock mechanical testing, logging calculations, and seismic
inversion technology were employed to obtain current in-situ
stress and rock mechanical parameters, such as Young's Modulus
and Poisson's Ratio. Additionally, Acoustic Emission (AE) testing
and Finite Element Numerical Simulation (FENS) were applied to
determine the internal characteristics of the fracturing fracture
system.

(1) The Young's modulus in the study area ranged between 12.00
and 50.00 GPa, while Poisson's ratio was distributed between
0.15 and 0.24. The horizontal maximum and minimum
principal stresses were concentrated in the ranges of
17.00—60.00 MPa and 11.00—40.00 MPa, respectively. Verti-
cal principal stress ranged from 20.00 to 50.00 MPa, exhib-
iting a good correlation with depth. Where stress intensity
was less than 5.00 MPa, effective fracturing occurred, easily
generating meshed fractures.

(2) Increasing the distance from the cluster hole, the magnitude
of the minimum principal stress initially increased and then
decreased. A similar variation tendency was identified
among stress intensity, equivalent elastic strain, and equiv-
alent (von-Mises) stress, indicating three predominant di-
rections to generate fracturing fractures. The largest values
were identified along the cluster perforations, indicating the
capacity to generate fracturing fractures.

(3) The extension direction and length of fracturing fractures
were significantly influenced by the direction of the
maximum horizontal principal stress. Increased fracturing
fluid displacement enlarged fracture length and height, with
fracture width continuously increasing before eventually
leveling off. Low-cemented horizons, high-displacement,
and high-viscosity fracturing fluids were prone to gener-
ating more complex and long extended fractures. This
research provides theoretical support and effective guidance
for hydraulic fracturing design in tight oil and gas reservoirs.
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