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a b s t r a c t

Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing
reservoirs. Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack
inversion. However, multi-parameter inversion may bring coupling effects on the parameters and
destabilize the inversion. In addition, the lateral recognition accuracy of geological structures receives
great attention. To address these challenges, a multi-task learning network considering the angle-gather
difference is proposed in this work. The deep learning network is usually assumed as a black box and it is
unclear what it can learn. However, the introduction of angle-gather difference can force the deep
learning network to focus on the lateral differences, thus improving the lateral accuracy of the prediction
profile. The proposed deep learning network includes input and output blocks. First, angle gathers and
the angle-gather difference are fed into two separate input blocks with ResNet architecture and Unet
architecture, respectively. Then, three elastic parameters, including P- and S-wave velocities and density,
are simultaneously predicted based on the idea of multi-task learning by using three separate output
blocks with the same convolutional network layers. Experimental and field data tests demonstrate the
effectiveness of the proposed method in improving the prediction accuracy of seismic elastic parameters.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Seismic data is a comprehensive response to the subsurface
reservoir characteristics (Mora, 1987; Zong et al., 2015). Seismic
inversion is commonly used in hydrocarbon-bearing reservoir
exploration (Zhou et al., 2017; Wang et al., 2022). For example, for
post-stack seismic inversion, P-wave impedance is predicted to
describe the subsurface geological structure, and for pre-stack
seismic inversion, P- and S-wave velocities and density are ob-
tained, which are mostly adopted for lithology identification and
fluid discrimination (Russell et al., 2003; Kolbjørnsen et al., 2020).
d Info-Physics, Central South
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Thus, the study of seismic data is essential for exploring subsurface
reservoirs. Seismic angle gathers show the seismic amplitude
versus incident angle (AVA). The AVA characteristics vary depend-
ing on the elastic parameters of the subsurface reservoir. The elastic
parameters are determined by the petrophysical properties (Zhao
et al., 2021; Pan et al., 2022). Thus, different AVA patterns corre-
spond to different hydrocarbon-bearing properties, which is the
theoretical basis for the AVA simulation and inversion. Compared
with post-stack seismic inversion, AVA inversion can predict mul-
tiple parameters, thus providing more detailed reservoir informa-
tion (Zong et al., 2018; Yuan et al., 2018). However, angle gathers
show the AVA characteristics of a single trace and the AVA inversion
is usually a trace-by-trace inversion, which may cause lateral
discontinuity of inversion results and limit the lateral identification
accuracy of subsurface geological structure. To highlight the lateral
difference, Wang et al. (2020a) introduced the angle-gather
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Fig. 1. P-wave velocity (Vp) profile of the Marmousi2 model.
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difference and proposed a seismic AVA inversion method con-
strained by the angle-gather difference. For AVA inversion, the
coupling relationship between elastic parameters is also a highly
noteworthy problem (Zhi et al., 2016). Besides, the seismic wave
propagation theories, such as Zoeppritz's equation, are usually
nonlinear, which brings challenges to seismic inversion (Guo et al.,
2021). Thus, for high-precise reservoir prediction, the conventional
AVA inversion has limitations.

In recent years, a variety of machine learning approaches are
applied to geophysical exploration and reservoir prediction (Chai
et al., 2020; Yu and Ma, 2021; Li et al., 2023). For example, Mar-
kov chain Monte Carlo methods are used to evaluate the reliability
of the results by posterior probabilities (Grana, 2016; Conjard and
Grana, 2021), the Hidden Markov model is used to extract the
hidden properties to improve the prediction (Feng et al., 2018;
Wang et al., 2020b), and the random forest method is used for
classification and regression problems in reservoir studies (Ao et al.,
2020). Among them, the deep learning approaches are of great
interest. They are widely adopted for fault interpretation (Wu et al.,
2019), geological structure identification (Gao et al., 2021), lithol-
ogy discrimination (Zhang et al., 2018), etc. Deep learning ap-
proaches have a strong nonlinear mapping ability. It can fully
exploit the information underlying the data, which helps to
describe the relationship between seismic data and reservoir pa-
rameters (Li et al., 2022). To handle the problems of AVA inversion
mentioned above, a multi-task learning network considering the
angle-gather difference is proposed in this paper. Since deep
learning approaches are data-driven methods, the diversity of the
training data has a significant impact on prediction accuracy. The
deep learning network is often considered to be a black box, and it
is difficult to capture the focus of training and the ability of
learning. In this paper, the interpretability of the network is
increased by expanding the input data. To highlight the lateral
difference, the angle-gather difference is used, and they serve as
input data together with angle gathers. By using this approach, the
deep learning network is forced to learn lateral variation charac-
teristics. Thus, it is possible to understand what a deep learning
network has learned by changing or increasing the types of input
data. This can enhance the physical meaning of deep learning ap-
proaches. In addition, to weaken the coupling relationship between
elastic parameters, the idea of multi-task learning is adopted.
Multi-task learning configures different output blocks for different
tasks, and they are trained to obtain their respective optimization
parameters. The total loss function is obtained by summing the
contributions of the loss functions of each task. In the deep learning
network architecture, the shared network part is for extracting
commonalities, while the separate network part is for extracting
differences. Thus, multi-task learning can be adopted to improve
the prediction accuracy of the multi-parameter inversion based on
AVA data.

In this paper, the angle-gather difference is first analyzed. Then,
the construction of the multi-task learning network considering
the angle-gather difference is introduced in detail. Finally, the
experimental and field data tests are presented.

2. Theory

In this section, the difference angle gathers are analyzed to
illustrate their ability to reveal lateral differences, and a multi-task
learning network considering difference angle gathers is
constructed.

2.1. Angle-gather difference analysis

According to Wang et al. (2020a), the angle-gather difference
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represents the difference of angle gathers between different traces.
Thus, they can be used to depict the lateral variation of reservoir
parameters. In this paper, we first set the reference trace, and then
constrain the seismic parameter prediction by considering the
differences between the reference trace and the other traces. The
angle-gather difference is expressed as

Dd¼di � dref (1)

where Dd refers to the matrix consisting of angle-gather difference.
d is the matrix of angle gathers. The subscript i indicates the i-th
trace and ref indicates the reference trace. For the field data, the
reference trace can be set to the well-side trace.

A set of synthetic data is applied to analyze the angle-gather
difference. The 1500th trace is set as the reference trace. Fig. 1
shows the P-wave velocity profile of the Marmousi2 model. The
synthetic angle gathers shown in Fig. 2(a) and (c) are obtained
using the P- and S-wave velocities and density at traces 1500 and
1000. The forward modeling operator is the convolution of reflec-
tion coefficient and the Ricker wavelet:

GðmiÞ¼RPPðmiÞ*W (2)

where Gð �Þ refers to the forward modeling operator. The main
frequency of the Ricker wavelet W is about 35 Hz. m indicates the
elastic parameters, including P- and S-wave velocities and density.
RPPðmiÞ refers to the reflection coefficient by using Zoeppritz's
equation. Based on the matrix by Aki and Richards (1980), the P-
wave reflection coefficient is explicitly given as follows:

RPP ¼
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Fig. 2. (a) and (c) are the seismic angle gathers at traces 1500 and 1000, (b) and (d) are the angle-gather difference between trace 1500 and itself and the angle-gather difference
between traces 1000 and 1500.
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where q1, q2, 41 and 42 are the incident and transmitted angle of P-
wave, the reflected and transmitted angle of S-wave respectively;
r1, VP1 and VS1 are the density, the velocity of P-wave and the ve-
locity of S-wave of the upper layer; r2, VP2 and VS2 are the density,
the velocity of P-wave and the velocity of S-wave of the lower layer;
p is the ray parameter.

For synthetic data, Eq. (1) is re-expressed by using the following
equation based on the forward modeling theory:

DGðmiÞ¼GðmiÞ � G
�
mref

�
(4)

According to the study of Wang et al. (2020a), the difference of
angle gathers can be used to improve the elastic parameter pre-
diction by using the Bayesian inversion framework. In this work, we
investigate the improvement of lateral accuracy by proposing a
new deep network. It should be pointed out that increasing lateral
accuracy means not only the improvement of lateral connectivity,
but also a clearer delineation of the lateral boundaries of the sub-
surface geologic bodies.

Fig. 2(b) shows the angle-gather difference at the reference trace
obtained by subtracting the angle gathers of the reference trace
from themselves, and they are all zero. This is a limit case,
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representing no differences in the lateral direction. Fig. 2(d) shows
the angle-gather difference between traces 1000 and 1500. Similar
to the angle gathers, the angle-gather difference also varies with
the incident angle. They are sensitive to subsurface formations with
lateral variations and large differences between the upper and
lower layers. Thus, the introduction of angle-gather difference
helps to explore the hidden relationship between seismic data and
elastic parameters.

From Fig. 2(a) and (c), the angle gathers represent the vertical
differences of the elastic parameters at traces 1500 and 1000. Since
the deep learning network is a black box, it is not clear from the
user's perspective whether the deep learning network can capture
the lateral difference between them if only angle gathers are used.
Thus, the angle-gather difference shown in Fig. 2(b) and (d) can be
used to expand the input data, which allows for better learning of
lateral differences. This helps to depict the lateral boundaries of
subsurface geological bodies with high accuracy.
2.2. Network architecture of multi-task learning considering angle-
gather difference

In pre-stack seismic inversion, the seismic data generally refers
to angle gathers only. To improve the lateral prediction accuracy,
the angle-gather difference is used to expand the input data. First,
angle gathers and the angle-gather difference are fed into two
separate input blocks, Input Block 1 and Input Block 2, in Fig. 3.
Deep networks are widely used to uncover the intrinsic relation-
ships between different sets of data. However, the complexity of
these relationships is uncertain. Therefore, excessive network
layers may cause overfitting and thus local minima, as well as
degradation problems and convergence slowdowns. Residual net-
works (ResNets) are alternative methods to ensure the convergence
and accuracy of multilayer networks (Wu et al., 2020). Skip con-
nections are the key to deep ResNets, which allow simple network
blocks or direct connections to weaken the degradation problem. In
this paper, we build a new deep network as shown in Fig. 3, where
the ResNet architecture given in Fig. 4 is used as the input block for
the angle gathers. From Fig. 4, a simple convolutional layer (sub-
block B) is taken as the skip connection to avoid the gradient
vanishing due to using multiple sets of sub-block A. In addition,
another block, the Unet architecture given in Fig. 5, is used as the
input block for the angle-gather difference, where the skip



Fig. 3. The deep learning network architecture for multi-parameter seismic prediction
with two input blocks. Vp, Vs and Den indicate P- and S-wave velocities and density,
respectively; Initial Vp, Initial Vs and Initial Den are low-frequency initial models of P-
and S-wave velocities and density.

Fig. 4. The network architecture and network parameters of Input Block 1. Before
feeding data, the input data length is extended from 3 to 64.

Fig. 6. The network architecture and network parameters of Output Blocks 1, 2, and 3.
The output data length is 3.

Fig. 7. Expansion process of input data.
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connection is implemented by copying and cropping, which can
preserve large-scale features coming from the upper layers, thus
highlighting lateral structural variations and maintaining lateral
continuity. In this work, the ResNet and Unet architectures are
adopted to learn the vertical details and horizontal geologic
Fig. 5. The network architecture and network parameters of Input Block 2. Before
feeding data, the input data length is extended from 3 to 64.
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structural variations separately.
Then, the outputs of these two input blocks are fused and passed

to three separate output blocks to accomplish the multitask
learning of P- and S-wave velocities and density. The output block is
shown in Fig. 6, which includes several convolutional layers and
dense layers. By combining Figs. 3e6, the final network architecture
is built. The network parameters are given in Figs. 4e6. They are
adjusted following the arguments of Wu et al. (2020) and Meng
et al. (2021). In this work, the input data is set longer than the
output data in order to account for the wavelet effect. To consider
the influence of wavelet, the input data are extended. This is
Fig. 8. The deep learning network architecture for multi-parameter seismic prediction
with one input block.



Fig. 9. Predicted elastic parameter profiles by using the DGMRL and GMRL approaches. (a), (d) and (g) are the true elastic parameters of the Marmousi2 model; (b), (e) and (h) are
the predicted elastic parameters by using the DGMRL approach; (c), (f) and (i) are the predicted elastic parameters by using the GMRL approach.
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because that the wavelet has a certain length in time. The output
data length is set to 3 and the input data length is extended from 3
to 64 by using proximity points (Fig. 7). Each sample in a channel is
generated by setting the window length to 64 and the move step to
1. Different channels are fed with different angles.

The deep learning of angle gathers helps to depict the vertical
variation of reservoir parameters, while the deep learning of angle-
gather difference helps to reveal the lateral variation. Thus, they are
considered to be combined in this paper. To highlight the differ-
ences between these two sets of data, they are fed into separate
input blocks. In addition, the multi-task learning idea is adopted to
weaken the multi-parameter coupling. The loss function follows
that the sum of the mean square errors of different outputs is
minimum. The parameters in the network are optimized by using
the Adam algorithm. To improve the nonlinearity of the deep
network, the rectified linear unit (ReLU) is used. To prevent the
deep network from overfitting, the dropout layer is adopted in
output blocks.
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3. Application

In this section, two sets of synthetic data are first used to test the
proposed deep network. The angle gathers are generated by using
the Ricker wavelet with the main frequency of 35 Hz and the elastic
parameters of the Marmousi2 and Overthrust models. The angle
ranges from 0� to 30� with an interval of 15�. Then, the proposed
approach is tested by using the field data from a work area in
Eastern China. The effective angle range is 3

�
e45

�
.

In our study, only several wells are used to analyze the predic-
tion effects using small sample sets. The Marmousi2 model is
trained with a sample set of four traces, 200, 800, 2000 and 3000.
For the Overthrust model, two traces, 300 and 600, are used for
training. These extracted traces are regarded as pseudo-wells. To
reveal the lateral variation, the 800th trace of the Marmousi2
model is considered as the reference trace, and for the Overthrust
model, the reference trace is the 600th trace. The reference trace
can be specified arbitrarily, with the premise that the angle-gather



Fig. 10. Predicted elastic parameter curves by using the DGMRL and GMRL approaches
at trace 2500. The initial model is the low-frequency model.

Fig. 12. Changes in the loss functions of different parameters during training. Vp, Vs
and Den indicate P- and S-wave velocities and density, respectively.
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difference between the reference trace and itself as shown in
Fig. 2(b) must be trained. Then the angle-gather difference between
other traces and the reference trace are fed into the proposed deep
learning network. When angle gathers and the angle-gather dif-
ference are input, different angles are assigned to different chan-
nels, where three channels are assigned.

We compare the proposed approach in Fig. 3 with the deep
network architecture without considering the angle-gather differ-
ence as shown in Fig. 8. Here, the proposed approach is named
DGMRL (difference angle gather constrained multi-task residual
deep learning approach), and the approach shown in Fig. 8 is
named GMRL (angle gather-based multi-task residual deep
learning approach).

We first test our approach on the Marmousi2 model. The total
number of training sets is 4800.With GPU acceleration, the training
time for 1000 iterations is about 600 s. Fig. 9 shows the predicted
Fig. 11. Relative errors of P-wave velocities at trace 2500 by us
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elastic parameter profiles by using the DGMR and GMRL ap-
proaches. By comparison, the vertical resolution of the elastic pa-
rameters in Fig. 9(b), (e) and (h) is higher and the lateral continuity
is better due to the consideration of the angle-gather difference,
especially for the areas indicated by the red arrows. In addition,
more lateral details are presented with the proposed approach and
the underground anomalies are described more clearly compared
with the GMRL approach. To better highlight the superiority of the
proposed approach, the P- and S-wave velocities and density at
trace 2500 are extracted and their curves are compared in Fig. 10. It
is observed that the results obtained by the proposed approach are
closer to the underground truth, and they are more stable and less
fluctuating than those by using the GMRL approach. In this work,
low-frequency model is used as the initial model to improve the
results. The initial model helps to avoid the solution falling into a
local minimum. Fig. 11 shows the relative errors of P-wave veloc-
ities by using the DGMRL approach and the GMRL approach. It can
be seen that the relative error of the proposed approach (Fig. 11(a))
is smaller and is more concentrated within 5%. The changes in the
loss functions for multitask training are shown in Fig. 12, which
indicates the proposed approach has a good convergence rate. For
ResNets, the skip connection allows the residual network to
converge efficiently but may bring fluctuations in the results. The
incorporation of several sets of residual blocks in Fig. 4 enables the
deep learning network to focus on more details, which can weaken
the fluctuation of prediction results. However, this enhancement is
not sufficient in terms of the prediction results of the GMRL
method. In this work, the introduction of angle-gather difference
can provide more reservoir details, and the Unet architecture in
ing the DGMRL approach (a) and the GMRL approach (b).



Fig. 13. Predicted elastic parameter profiles and curves by using the proposed DGMRL approach for the Overthrust model. (a), (c) and (e) are the true elastic parameters of the
Overthrust model; (b), (d) and (f) are the predicted elastic parameters by using the DGMRL approach; (g) is the predicted curves of elastic parameters at trace 350.
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Fig. 5 brings large-scale attributes that help to weaken the lateral
discontinuities caused by the commonly used trace-by-trace
inversion, thus improving the prediction accuracy and stability.
Thus, both lateral and vertical details are highlighted by using the
proposed approach.

We then test our approach on the Overthrust model. Since the
geological structure of this model is not as complex as that of the
Marmousi2 model, the accuracy of the predicted results may be
higher. Here, only the proposedmethod is applied and its validity is
illustrated by comparison with the true values. The predicted pro-
files of elastic parameters by using the DGMRL approach are given
in Fig. 13(b) and (d) and (f), and the curve comparisons at trace 350
are shown in Fig. 13(g). It can be seen that the predicted results by
using the proposed approach match well with the true values.

We also test our approach on the field data. The stack profile of
the angle gathers is shown in Fig. 14(h). Only two wells are used
here, one of which is treated as the reference trace. For the field
data, the seismic data at well-side trace is used as the training
sample set. The initial models are also used here, which are low-
frequency models obtained through logging and horizon inter-
pretation. Fig. 14(a), (c) and (e) show the profiles of P- and S-wave
velocities and density by using the GMRL approach. The predicted
profiles of elastic parameters by using the DGMRL approach are
given in Fig. 14(b), (d) and (f), and the curve comparisons at CDP 41
are displayed in Fig. 14(g). The comparison of predicted profiles
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shows that the proposed approach can obtain more details of the
reservoir. Both vertical and horizontal resolutions are improved.
From Fig. 14(b), (d) and (f), the inclined events indicated by the red
arrows are maintained and become more continuous. The areas
indicated by the black arrows have more horizontal detail and can
highlight small elastic changes, which helps to distinguish small
geologic anomalies. From Fig. 14(g), it can be seen that the pre-
dicted results by using the proposed approach match better with
the well-logging curves. As in the previous analysis, the same
conclusion can be drawn that the introduction of angle-gather
difference can assist seismic inversion to yield high-precise
elastic parameters, which is crucial for the fine description of res-
ervoirs, as well as for lithology identification and fluid discrimi-
nation. Note that enhancing lateral accuracy does not only refer to
improving lateral continuity, but also to highlighting the lateral
contact relationships of subsurface anomalies. From Fig. 14(b), (d)
and (f), the large events are still maintained andmore lateral details
are present.

From the above three tests, it can be seen that the proposed
multi-task learning network using residual blocks and Unet block,
and considering the angle-gather difference helps to improve the
prediction accuracy of seismic elastic parameters. In our further
study, noise suppression will be considered by feeding different
noises into the network.



Fig. 14. Predicted elastic parameter profiles and curves by using the GMRL approach and the proposed DGMRL approach. (a), (c) and (e) are the predicted elastic parameters by
using the GMRL approach; (b), (d) and (f) are the predicted elastic parameters by using the DGMRL approach; (g) shows the predicted and well-logging curves of elastic parameters
at CDP 41; (h) is the stack profile of the angle gathers.
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4. Conclusion

Reservoir parameter prediction is the key to seismic exploration.
However, the pre-stack AVA inversion is usually a trace-by-trace
inversion, which may cause lateral discontinuities. To address this
problem, we propose a multi-task deep learning network by
considering the angle-gather difference. The network architecture
contains two separate input blocks for vertical and lateral con-
straints by inputting angle gathers and angle-gather difference, and
three output blocks for multi-parameter prediction of P- and S-
wave velocities and density. The input blocks have two different
compositions, the ResNet architecture and the Unet architecture,
which help to ensure convergence and prediction accuracy. The
output blocks can effectively avoid the coupling between multiple
parameters. The introduction of angle-gather difference can in-
crease the interpretability of deep learning by forcing the network
to learn lateral characteristics, which is a key point of the paper.
Experimental and field data tests demonstrate the feasibility of our
approach.
Declaration of interests

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
CRediT authorship contribution statement

Pu Wang: Writing e original draft, Methodology. Yi-An Cui:
Validation. Lin Zhou: Investigation. Jing-Ye Li: Data curation. Xin-
Peng Pan:Methodology. Ya Sun: Writing e original draft. Jian-Xin
Liu: Funding acquisition.
4008
Acknowledgments

This work was financially supported by the National Natural
Science Foundation of China (Grant Nos. 42130810, 42204135,
42174170, and 42074165) and the Natural Science Foundation of
Hunan Province (Grant No. 2023JJ40716).
References

Aki, K., Richards, P.G., 1980. Quantitative Seismology: Theory and Methods. W. H.
Freeman and Co, San Francisco, CA.

Ao, Y., Lu, W., Hou, Q., Jiang, B., 2020. Synthesize nuclear magnetic resonance T2
spectrum from conventional logging responses with spectrum regression for-
est. Geosci. Rem. Sens. Lett. IEEE 18 (10), 1726e1730. https://doi.org/10.1109/
LGRS.2020.3008183.

Chai, X., Tang, G., Wang, S., Lin, K., Peng, R., 2020. Deep learning for irregularly and
regularly missing 3-D data reconstruction. IEEE Trans. Geosci. Rem. Sens. 59 (7),
6244e6265. https://doi.org/10.1109/TGRS.2020.3016343.

Conjard, M., Grana, D., 2021. Ensemble-based seismic and production data assimi-
lation using selection Kalman model. Math. Geosci. 53 (7), 1445e1468. https://
doi.org/10.1007/s11004-021-09940-2.

Feng, R., Luthi, S.M., Gisolf, D., Angerer, E., 2018. Reservoir lithology classification
based on seismic inversion results by hidden Markov models: applying prior
geological information. Mar. Petrol. Geol. 93, 218e229. https://doi.org/10.1016/
j.marpetgeo.2018.03.004.

Gao, H., Wu, X., Liu, G., 2021. ChannelSeg3D: channel simulation and deep learning
for channel interpretation in 3D seismic images. Geophysics 86 (4),
IM73eIM83. https://doi.org/10.1190/GEO2020-0572.1.

Grana, D., 2016. Bayesian linearized rock-physics inversion. Geophysics 81 (6),
D625eD641. https://doi.org/10.1190/GEO2017-0463.1.

Guo, Q., Ba, J., Fu, L.Y., Luo, C., 2021. Joint seismic and petrophysical nonlinear
inversion with Gaussian mixture-based adaptive regularization. Geophysics 86
(6), R895eR911. https://doi.org/10.1190/GEO2021-0017.1.

Kolbjørnsen, O., Buland, A., Hauge, R., Røe, P., Ndingwan, A.O., Aker, E., 2020.
Bayesian seismic inversion for stratigraphic horizon, lithology, and fluid pre-
diction. Geophysics 85 (3), R207eR221. https://doi.org/10.1190/GEO2019-
0170.1.

Li, D., Peng, S., Guo, Y., Lu, Y., Cui, X., Du, W., 2022. Progressive multitask learning for
high-resolution prediction of reservoir elastic parameters. Geophysics 88 (2),
M71eM86. https://doi.org/10.1190/GEO2022-0275.1.

Li, D., Guo, Y., Peng, S., Li, C., Lin, P., 2023. Time-lapse seismic matching for CO2
plume detection via correlation-based recurrent attention network. IEEE Trans.
Geosci. Rem. Sens. 61, 1e10. https://doi.org/10.1109/TGRS.2023.3308966.

http://refhub.elsevier.com/S1995-8226(24)00168-7/sref1
http://refhub.elsevier.com/S1995-8226(24)00168-7/sref1
https://doi.org/10.1109/LGRS.2020.3008183
https://doi.org/10.1109/LGRS.2020.3008183
https://doi.org/10.1109/TGRS.2020.3016343
https://doi.org/10.1007/s11004-021-09940-2
https://doi.org/10.1007/s11004-021-09940-2
https://doi.org/10.1016/j.marpetgeo.2018.03.004
https://doi.org/10.1016/j.marpetgeo.2018.03.004
https://doi.org/10.1190/GEO2020-0572.1
https://doi.org/10.1190/GEO2017-0463.1
https://doi.org/10.1190/GEO2021-0017.1
https://doi.org/10.1190/GEO2019-0170.1
https://doi.org/10.1190/GEO2019-0170.1
https://doi.org/10.1190/GEO2022-0275.1
https://doi.org/10.1109/TGRS.2023.3308966


P. Wang, Y.-A. Cui, L. Zhou et al. Petroleum Science 21 (2024) 4001e4009
Meng, J., Wang, S., Cheng, W., Wang, Z., Yang, L., 2021. AVO inversion based on
transfer learning and low-frequency model. Geosci. Rem. Sens. Lett. IEEE 19,
1e5. https://doi.org/10.1109/LGRS.2021.3132426.

Mora, P., 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic
data. Geophysics 52 (9), 1211e1228. https://doi.org/10.1190/1.1442384.

Pan, X., Lu, C., Zhang, G., Wang, P., Liu, J., 2022. Seismic characterization of naturally
fractured reservoirs with monoclinic symmetry induced by horizontal and til-
ted fractures from amplitude variation with offset and azimuth. Surv. Geophys.
43 (3), 815e851. https://doi.org/10.1007/s10712-022-09709-0.

Russell, B.H., Hedlin, K., Hilterman, F.J., Lines, L.R., 2003. Fluid-property discrimi-
nation with AVO: a Biot-Gassmann perspective. Geophysics 68 (1), 29e39.
https://doi.org/10.1190/1.1543192.

Wang, P., Chen, X., Li, J., Wang, B., 2020a. Lateral constrained prestack seismic
inversion based on difference angle gathers. Geosci. Rem. Sens. Lett. IEEE 18
(12), 2177e2181. https://doi.org/10.1109/LGRS.2020.3014815.

Wang, P., Chen, X., Wang, B., Li, J., Dai, H., 2020b. An improved method for lithology
identification based on a hidden Markov model and random forests. Geophysics
85 (6), IM27eIM36. https://doi.org/10.1190/GEO2020-0108.1.

Wang, P., Cui, Y., Liu, J., 2022. Fluid discrimination based on inclusion-based method
for tight sandstone reservoirs. Surv. Geophys. 43 (5), 1469e1496.

Wu, B., Meng, D., Wang, L., Liu, N., Wang, Y., 2020. Seismic impedance inversion
using fully convolutional residual network and transfer learning. Geosci. Rem.
Sens. Lett. IEEE 17 (12), 2140e2144. https://doi.org/10.1109/LGRS.2019.2963106.

Wu, X., Liang, L., Shi, Y., Geng, Z., Fomel, S., 2019. Multitask learning for local seismic
image processing: fault detection, structure-oriented smoothing with edge-
preserving, and seismic normal estimation by using a single convolutional
neural network. Geophys. J. Int. 219 (3), 2097e2109. https://doi.org/10.1093/gji/
4009
ggz418.
Yu, S., Ma, J., 2021. Deep learning for geophysics: Current and future trends. Rev.

Geophys. 59 (3), e2021RG000742. https://doi.org/10.1029/2021RG000742.
Yuan, S., Liu, Y., Zhang, Z., Luo, C., Wang, S., 2018. Prestack stochastic frequency-

dependent velocity inversion with rock-physics constraints and statistical
associated hydrocarbon attributes. Geosci. Rem. Sens. Lett. IEEE 16 (1), 140e144.
https://doi.org/10.1109/LGRS.2018.2868831.

Zhang, G., Wang, Z., Chen, Y., 2018. Deep learning for seismic lithology prediction.
Geophys. J. Int. 215 (2), 1368e1387. https://doi.org/10.1093/gji/ggy344.

Zhao, L., Wang, Y., Yao, Q., Geng, J., Li, H., Yuan, H., Han, D.H., 2021. Extended
Gassmann equation with dynamic volumetric strain: modeling wave dispersion
and attenuation of heterogeneous porous rocks. Geophysics 86 (3),
MR149eMR164. https://doi.org/10.1190/GEO2020-0395.1.

Zhi, L., Chen, S., Li, X., 2016. Amplitude variation with angle inversion using the
exact Zoeppritz equations - theory and methodology. Geophysics 81 (2),
N1eN15. https://doi.org/10.1190/GEO2014-0582.1.

Zhou, L., Li, J., Chen, X., Liu, X., Chen, L., 2017. Prestack amplitude versus angle
inversion for Young's modulus and Poisson's ratio based on the exact Zoeppritz
equations. Geophys. Prospect. 65 (6), 1462e1476. https://doi.org/10.1111/1365-
2478.12493.

Zong, Z., Wang, Y., Li, K., Yin, X., 2018. Broadband seismic inversion for low-
frequency component of the model parameter. IEEE Trans. Geosci. Rem. Sens.
56 (9), 5177e5184. https://doi.org/10.1109/TGRS.2018.2810845.

Zong, Z., Yin, X., Wu, G., 2015. Geofluid discrimination incorporating poroelasticity
and seismic reflection inversion. Surv. Geophys. 36 (5), 659e681. https://
doi.org/10.1007/s10712-015-9330-6.

https://doi.org/10.1109/LGRS.2021.3132426
https://doi.org/10.1190/1.1442384
https://doi.org/10.1007/s10712-022-09709-0
https://doi.org/10.1190/1.1543192
https://doi.org/10.1109/LGRS.2020.3014815
https://doi.org/10.1190/GEO2020-0108.1
http://refhub.elsevier.com/S1995-8226(24)00168-7/optaZjmOaHQPP
http://refhub.elsevier.com/S1995-8226(24)00168-7/optaZjmOaHQPP
http://refhub.elsevier.com/S1995-8226(24)00168-7/optaZjmOaHQPP
https://doi.org/10.1109/LGRS.2019.2963106
https://doi.org/10.1093/gji/ggz418
https://doi.org/10.1093/gji/ggz418
https://doi.org/10.1029/2021RG000742
https://doi.org/10.1109/LGRS.2018.2868831
https://doi.org/10.1093/gji/ggy344
https://doi.org/10.1190/GEO2020-0395.1
https://doi.org/10.1190/GEO2014-0582.1
https://doi.org/10.1111/1365-2478.12493
https://doi.org/10.1111/1365-2478.12493
https://doi.org/10.1109/TGRS.2018.2810845
https://doi.org/10.1007/s10712-015-9330-6
https://doi.org/10.1007/s10712-015-9330-6

	Multi-task learning for seismic elastic parameter inversion with the lateral constraint of angle-gather difference
	1. Introduction
	2. Theory
	2.1. Angle-gather difference analysis
	2.2. Network architecture of multi-task learning considering angle-gather difference

	3. Application
	4. Conclusion
	Declaration of interests
	CRediT authorship contribution statement
	Acknowledgments
	References


