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a b s t r a c t

We present a newmethodology to statistically determine the net present value (NPV) and internal rate of
return (IRR) as financial estimators of shale gas investments. Our method allows us to forecast, in a fully
probabilistic setting, financial performance risk and to understand the importance of the different factors
that impact investment. The methodology developed in this study combines, through Monte Carlo
simulation, the computational modeling of gas production from shale gas wells with a stochastic
simulation of gas price as a geometric Brownian motion (GMB). To illustrate the methodology's validity,
we apply it to an analysis of investments in shale gas wells. Our results show that gas price volatility is a
key variable in the performance of an investment of this type, in such a way that at high volatilities, the
potential return on an investment in shale gas increases significantly, but so do the risks of economic
loss. This finding is consistent with the history of shale gas operations in which huge investment suc-
cesses coexist with unexpected investment failures.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Shale gas wells are facilities that allow the extraction of light
hydrocarbons trapped in ultra-impermeable formations (Curtis,
2002). These types of wells have led to a boom in the oil and gas
(O&G) industry, completely transforming the energy landscape
(Wang et al., 2014). The development of shale gas wells has relied
on the refinement of two technologies: directional drilling and
hydraulic fracturing.

Directional drilling allows wells to be drilled at great depths
(1500 to 3000 m) and along great horizontal lengths (1000 to
5000m). Hydraulic fracturing refers to the injection of water mixed
with other compounds at high pressures, which fractures the shale-
type formation, creating a network of fractures that allows the
y Elsevier B.V. on behalf of KeAi Co
release of the trapped gas (Osborn et al., 2011).
Shale gas operations involve very large financial investments,

which require thorough financial studies to make adequate in-
vestment decisions.

Making rational financial decisions requires having tools that
rank investments based on their potential profitability and risk
level (Barro, 2015; Dittmar and Yuan, 2008; Haley and Schall, 1973;
Levy and Sarnat, 1978; Mentel and Horv�athov�a, 2016).

For investments made in movable assets such as bonds, analysts
use static methodologies to calculate the value of financial esti-
mators (e.g., return of equity, ROE) and compare investments
(Poggensee and Poggensee, 2021). These are called static methods
due to the fact that the variation in the investment over time is not
taken into consideration. More specifically, investments are studied
assuming that financial aspects such as revenues, costs or amorti-
zations are constant throughout their life (Damodaran, 2008;
Mangiero andMichael, 2017). Other types of financial analysis tools
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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are based on dynamic methodologies that take into account the
evolution of an investment over time (Perez, 2014). This type of
approach to financial indicators improves decision-making, giving
more precise information to the analyst (Melcher and Melcher,
1980; Hacura et al., 2001). Investments made in non-movable
capital (e.g., real estate assets) are usually analyzed using dy-
namic methods. The most commonly used investment estimators
for these types of investments are the net present value (NPV) and
the internal rate of return (IRR) (Bhandari, 1985; Dorfman, 1981;
Gallo, 2014; Le�on, 2012; Ross, 1995).

In this study, we propose a methodology for the development of
dynamic financial analysis tools for shale gas investments that
include an estimate of the probability of the occurrence or financial
risks or their quantification. We numerically generate probability
density functions (PDFs) of the financial estimators NPV and IRR.
The numerical procedure that we use combines numerical calcu-
lations of the production of natural gas from shale gas wells with
stochastic processes of the natural gas market price as a geometric
Brownian motion (GBM). Through Monte Carlo simulation, we
calculate different values of NPV and IRR, to which we numerically
fit a PDF of Gaussian kernels using the numerical kernel density
estimation (KDE) method. Finally, we analyze the goodness of fit
using the KolmogoroveSmirnov test (K-S test) (Massey, 1951;
Sheather and Jones, 1991).

According to (Energy Information Administration, 2016), in the
USA, the costs of onshore O&G wells range from 4.9 to 8.3 million
US dollars, whereas the costs of deep offshore wells range from 120
to 230 million US dollars per well. Investments of such magnitude
require evaluation tools that enable appropriate decision making.
The NPV and IRR are the financial estimators most commonly used
to analyze the viability of investments in the O&G industry, in
particular shale gas wells (Bas, 2013; Eshkalak et al., 2014; Hong
et al., 2020; Lake et al., 2013; Nguyen-Le and Shin, 2019; Soage
et al., 2021; Weijermars, 2013; Yu and Sepehrnoori, 2013).

Financial risk quantification is essential when calculating the
NPV or IRR for making long-term and high-cost investments
(Ranasinghe and Russell, 2006). We address this issue in the shale
gas industry by considering the sources of uncertainty. These
sources of uncertainty in shale gas wells can be categorized into
two main types:

� Uncertainty from processes of a financial nature: This cate-
gory includes the uncertainty of the gas price's evolution
throughout the project and the evolution of inflation.

� The uncertainty in gas production throughout the well's
lifetime: An uncertainty which has two simultaneous
sources:

, Uncertainty of the shale gas well's petrophysical properties,
such as its porosity.

, Uncertainty in the actual outcome of the well's design pa-
rameters, such as the geometry of the stimulated fractured
volume.

In this work, we address the inherent uncertainty of gas price
variation considering the price evolution of this asset as a process
which follows a GBM (Cano and Andr�es, 2010; Gimeno, 2018;
Lind�en, 2018). We base the selection of this calculation method on
the assumption of the efficient market hypothesis (EMH) in its
weak form (Fama, 1970; Malkiel, 2013; Stein, 1989). According to
the EMH, all market players act rationally, and the valuation of an
asset instantly considers all information pertaining to the asset. The
weak version of this hypothesis assumes the existence of certain
randomness in the valuation of an asset, due to the existence of
unexpected news that can affect the price of an asset. When
applying the weak EMH, econometric methods are no longer valid
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when predicting the gas price. We must use stochastic methods for
forecasting the gas price value. Stochastic methods are combined
with Monte Carlo simulation to obtain multiple gas price trajec-
tories (Hacura et al., 2001; Papadopoulos and Yeung, 2001; Ye and
Tiong, 2000).

We forecast gas production using calculations of the numerical
model of shale gas wells described previously (Soage, 2021; Soage
et al., 2021). In this paper, the authors implement numerical sim-
ulations with parametric sweeping of the variables considered
most important in the economic performance of shale gas.

We estimate the cash flow of the basic shale gas well described
previously (Soage et al., 2021) by combining gas production sim-
ulations for different parameters with stochastic gas price simula-
tions. We consider all the economic data (e.g., CAPEX, inflation, or
taxes) to calculate the NPV and IRR distributions for each parameter
and all price simulations.

We obtain the distribution of NPV or IRR values, applying a PDF
to the outputs of both financial estimators. We also calculate the
cumulative density function (CDF) and determine the 10%, 50%, and
90% percentiles. We determine the valuation of these investments
with a certain risk or probability of occurrence. This quantitative
assessment enables shale gas investors to be aware of different NPV
or IRR values for the well, along with the associated probability of
this value occurring (Armeanu and Lache, 2009; Johar et al., 2010).

Several methodologies have already been proposed for the
study of financial investments in shale gas. A general block of
studies analyze NPV and IRR as financial indicators taking constant
or quasi-constant values of costs and incomes. Income is deter-
mined by the price of gas and the total gas production from the
wells. The costs are associated with the initial investment made
(CAPEX) and the costs of time-dependent operations (OPEX).
Additionally, the costs of taxation, currency depreciation, and the
amortization of the investment can be incorporated into the ex-
penses, and government implementation subsidies can even be
considered as a cost reduction. This approach has proven to be very
useful, especially in macro-scale financial studies at the level of
basins or regions (Chen et al., 2015; Cooper et al., 2018; Liu et al.,
2020; Nguyen-Le and Shin, 2019).

Another set of studies seeks to incorporate uncertainty in the
study of financial feasibility (i.e., “uncertainty approximations”).
Some of these studies assume that the price of gas is known since it
is regulated or is considered constant as hypothesis. In these
studies, gas production, petrological parameters, or fracture sys-
tems are subject to high uncertainty, and it is thus necessary to
model them using stochastic approaches (Bai et al., 2013; Li et al.,
2018; Naraghi and Javadpour, 2015; Rammay and Awotunde,
2016; Wu et al., 2021). There are other studies within the field of
“uncertainty approximations” that focus on the random and sto-
chastic nature of the gas price and well execution costs. They are
based on the use of Monte Carlo simulation and its variants,
applying it to the characterization of these financial indicators
(Chebeir et al., 2017; Drouven et al., 2017; Kaiser, 2012; Liu et al.,
2022; Yuan et al., 2015).

Our approach would fit into the class of studies with uncertainty
but with a new angle, combining the random nature of both the gas
price and methane production in shale-type formations. We per-
formed parametric scans of the porosity and kerogen amount
(petrological variables). We also conducted parametric sweeps of
fracture permeability in the stimulated shale volume and the ge-
ometry of the fractured volumes (geomechanical variables). These
sweeps were carried out via numerical simulation, and from them
we obtain different gas production curves. For its part, we carry out
gas price simulations considering different drift and volatility
values. All of this information is grouped together in the determi-
nation of sets of values of the financial estimators and their
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adjustment to a probability function.
The aim of this article is to seek an almost purely probabilistic

approach that deals with the uncertainty of both price and pro-
duction. With this objective, we obtain the value of the NPV and the
IRR of an investment in shale gas in a probabilistic and non-
deterministic way and using a novel methodology.

In this study, we do not consider the uncertainty of cost, and we
perform parametric combinations of production considering the
rest of the constant parameters. In future studies, and as an addi-
tional step in this work, total statistical variability of the set of
relevant aspects in the financial performance of investments in
shale gas could be included.

2. Materials and methods

2.1. Introduction

In this first subsection, we give an overview of the methodology
that we follow in this study.

First, we develop a 3D numerical model of a standard-design
shale gas well.

Next, using this numerical model, we perform calculations of
methane production curves over an exploitation period of 10 years.
These curves are calculated for different values of porosity,
amounts of kerogen, induced permeabilities in the stimulated
volume, and geometries of the effectively fractured and propped
ellipsoids.

In addition to these gas production considerations, we analyze
the historical price of gas. We study it under the hypothesis that the
price trajectories respond to a geometric Brownian motion. Using
Monte Carlo simulation, we generate thousands of synthetic gas
price series over a 10-year time period. We vary the drift and
volatility of the stochastic process and generate four different price
scenarios.

Finally, we combine the gas price series with the gas production
series. Thus, we obtain a probability density function of the finan-
cial indicators NPV and IRR.

2.2. Numerical simulation of shale gas production

In this subsection, we briefly describe the numerical model of
shale gas production that was extensively explained in a prior study
(Soage et al., 2021, 2024). This numerical model is based on other
previous studies (Kazmouz et al., 2016; Patzek et al., 2013; Silin and
Kneafsey, 2012; Yao et al., 2013).

In this study, we carry out the analysis of shale gas production
through numerical simulation. We consider a shale gas well with
standard characteristics. The well is located at a depth of 3000 m in
themiddle layer of a 90-m-thick shale stratum. The lateral length of
the well is 1500 m, and it has 7 hydraulic fractures executed every
200m. Each of the hydraulic fractures produces a highly stimulated
ellipsoidal zone with high permeability. These ellipsoidal zones
have axes with the following dimensions: 300 � 40 � 70 m. The
mathematical formulations that describe gas production in a well
with these characteristics are as follows:

a
vP
vt

þ
�
V ,

�
cg,k
m

�
PðVPÞ

�
¼0; (1)

a¼
�
cgfþ r0rkSkcf

�
; (2)

Pðx;0Þ ¼ Pr in U; Pðx; tÞ ¼ Pbhp in G; (3)
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m

P
�
VP$ndG: (5)

A schematic representation of the shale gas well described in
this section appears in Fig. 1. In Table 1, we list all the variables
appearing in Eqs. (1)e(5), along with their definition and param-
eter values.

This mathematical model allows us to calculate the evolution of
the pressure field. During the variation of the pressure field, we
calculate the flow of methane gas.

To solve Eqs. (1)e(5), we used the COMSOL Multiphysics 6.1
simulator (COMSOL Multiphysics, 2018). We carried out the simu-
lation with the finite element method in a volume of stimulated
shale rock. This volume is called the stimulated recovery volume
(SRV). In this case, it has a prismatic shape and dimensions of
1800 � 600 � 90 m. We generated a mesh of tetrahedral elements
within the SRV. We consider that the horizontal section of the well
is an internal domain boundary along most of its length. To ensure
an accurate numerical solution, we generated a finer mesh in the
EPVs. The outer boundaries of the SRV are considered to be no-flow
boundaries. We consider that the initial pressure in the reservoir is
30 MPa, and once hydraulic fracturing occurs, an imposed pressure
of 5 MPa is reached at the intersection of the centroid of the EPVs
with the well. These points correspond to the well perforations for
fracturing the rock. These perforations are also the areas through
which methane flows into the well. The evolution of pressure and
gas production was analyzed over 10 years of simulation. Fig. 1
includes an illustration of the 3D mesh to carry out the simula-
tions of this study.

It is worth highlighting the most relevant petrological aspects of
this study. The porosity of the shale-type formation is assumed to
be 3%, with an initial permeability of 1 nanodarcy (1 nD), equivalent
to 10�21 m2. After hydraulic stimulation, the SRV reaches a
permeability of 0.01 millidarcy (0.01 md), which can be expressed
as 10�17 m2. The volumes of the EPVs, having been subjected to a
very high fluid pressure, reach a permeability of 2
md z 2 � 10�15 m2. The porosity and permeability values are
assumed to be constant over time, homogeneous and isotropic
throughout the study domain (Kazemi and Takbiri-Borujeni, 2015;
Song et al., 2016; Zhang et al., 2019; Zhao et al., 2018; Zhou et al.,
2021). The amount of kerogen is assumed to be 10%. This distri-
bution is considered to remain constant throughout the entire shale
formation. The adsorption of methane to kerogen is described by
the Langmuir isotherm (Cristancho-Albarracin et al., 2017; Psarras
et al., 2017; Wang et al., 2017; Yu et al., 2016). Furthermore, we
consider that the volume of highly fractured rock due to the effect
of the fluid injected at high pressure has an ellipsoidal geometry.
For the same type of injected fluid and a given pressure, it is the
tensional state of the shale rock and its geomechanical properties
that determine the degree of flatness or sphericity of the EPVs. We
consider that these rock properties have a constant distribution in
the volume of the SRV (Nassir et al., 2017; Wei et al., 2016; Zhang
et al., 2017).

In this study, we carried out a parametric scan of the petrolog-
ical values (porosity and amount of kerogen), as well as the pa-
rameters that mark the efficiency of hydraulic fracturing (induced
permeability and flatness of the EPVs). The two parameters related
to fracturing efficiency are closely linked to the geomechanical
parameters of the formation. A parametric sweep was performed
by varying one parameter of every four study parameters while
maintaining the initial value of the other three. The total number of



Fig. 1. Representation of the shale gas well used in this article. Three-dimensional finite element mesh used to carry out the simulations. Results of production curves and pressure
states of the SRV after 10 years of simulated sweeping of different porosity values.

Table 1
Variables and parameters.

Variable Meaning Value

P (x, t) Gas pressure, MPa 30e5
Pr Initial reservoir pressure, MPa 30
P
bhp Bottom hole pressure, MPa 5
cg Gas compressibility, s2/m2 3.979 � 10�6

cf Langmuir isotherm slope, m4 � s2/kg2 e

f Porosity 1%e5%
r0 Methane density at standard conditions, kg/m3 0.717
rk Kerogen density, kg/m3 1250
Sk Kerogen relative volume 10%
Va Langmuir isotherm, m3/kg e

VL Langmuir volume, m3/kg 0.00264
PL Langmuir pressure, MPa 3
k Fractured shale permeability, m2 10�18e10�17 (z1e10 mD)
k
EPV EPV permeability, m2 2 � 10�15, (z2 mD)
m Methane viscosity, 10�4 Pa$s e

q Methane flux, Mscf/montha e

U Stimulated volume e

n Normal vector to contour G e

a Mscf/month (1 m3 ~ 0.0353 Mscf).
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variations of the four parameters across all their values generates
an extremely high calculation time cost that it is not possible to
address in this study. The porosity was varied between 1% and 5%
by performing gas production calculations every 0.5 porosity
points. We varied the permeability of the SRV between 10�18 and
10�17 m2, with an increase in permeability of 1.9� 10�18 m2 in each
production study. The amount of kerogenwas scanned between 1%
and 15%, with an increment of 2% for each production curve. Finally,
to analyze the impact of the flatness of the EPVs on gas production,
we carried out 17 studies. We started with a length of the semi-axis
of the EPVs contained in the plane of the well and perpendicular to
it of 235 m and a semi-axis contained in the plane of the well and
longitudinal to it of 12.77 m. In each study of the scan, the major
axis was reduced by 15 m and the minor axis increased in a cor-
responding proportion to keep the volume of the EPVs constant. In
this way, we went from flat EPVs perpendicular to the well to a
4500
spherical shape and, finally, to EPVs that are longitudinal to thewell
and intersect each other. We assume as a hypothesis that as long as
the volume of highly fractured rock (EPVs) remains constant, the
cost of hydraulic fracturing will also remain constant.
2.3. Geometric brownian motion (GBM) applied to gas price
forecasting

Firstly, we study the characteristics of the natural gas price time
series. For simplicity, we refer to natural gas and methane, CH4,
interchangeably.

We take the Henry Hub Spot Price (HHSP) as a reference for the
natural gas price. The Henry Hub is a gas pipeline hub located in
Erath, Louisiana (USA), property of the company Sabine Pipe Line
LLC. Due to the importance of this gas pipeline hub, the spot price of
this natural gas asset and its futures listed on the New York
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Mercantile Exchange are given the same name. The price is defined
in USD per millions of British Thermal Units (USD/MMBTU), and its
value strongly correlates with all other prices, regulated or unreg-
ulated, of natural gas on other markets or at other positions in the
network, such as at the head well (Lake et al., 2013).

The U.S. Energy Information Administration (EIA) website pro-
vides HHSP data at different frequencies (daily, weekly, monthly, or
yearly) from the 6th of January 1997 to the 16th of April 2020. We
show these data at a daily frequency in Fig. 2, which also includes
the most relevant statistical data of this time series.

Modeling gas prices as a geometric Brownianmotion (GBM), the
governing equation over time is as follows:

Pt ¼ P0$e

��
m�1

2

�
stþsεt

ffiffi
t

p
�

(6)

In Eq. (6), a reference price value P0 is used to calculate the gas
price, Pt, at time t. The parameter m is the drift or trend of the
process, s is the volatility of the asset, and xt is a white-noise-type
random process with distribution xt ~ N(0,1).

We use Eqs. (7) and (8) to estimate the drift and volatility based
on the gas price historical data:

bm¼ 1
N$Dt

XN
i¼1

�
Pi

Pi�1
� 1
�
; (7)

bs2 ¼ 1
N$Dt

XN
i¼1

�
Pi

Pi�1
� 1� bmDt�2

: (8)

In these equations, Pi is the price of gas at instant i, Pi�1 is the
price of gas at instant i�1, Dt is the time step between two natural
gas price observations, and N is the number of observations
considered to carry out the estimate. Both expressions come from
the application of the Maximum Likelihood Estimation to the es-
timate of the parameters (m,s) of a GBM-type stochastic model.

We can simplify Eqs. (7) and (8) because there is a temporary
data series for gas price at a daily frequency, and the time step
considered to estimate the parameters (m, s) is 1 day, then Dt ¼ 1.
Likewise, we can understand the expression inside the sum of Eq.
(7) as the return of the day-to-day gas price normalized to a unit
basis. That is, this expression states the gas price's increase or
decrease over time expressed on a unit basis. Based on these con-
siderations, we rewrite Eqs. (7) and (8) as follows:
Fig. 2. Gas price listed (HHSP) from the 6th of January 1997 to the 16th of April 2020
(5861 trading days).
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Ri ¼
�

Pi
Pi�1

� 1
�
; (9)

bm¼ 1
N

XN
i¼1

Ri; (10)

bs¼ 1
N

XN
i¼1

ðRi � bmÞ2: (11)

From Eqs. (10) and (11), we conclude that the Maximum Like-
lihood Estimation for drift and volatility can be used to simulate the
gas price using GBM in a relatively straight-forward manner. We
accomplish this by calculating the arithmetic mean of the unitary
returns of the gas price and its variance for a price time series with
N data.

The estimation of these parameters using Eqs. (10) and (11)
implies that both drift and volatility are constant over time,
which entails the time series of the normalized unitary returns
being stationary. A time series becomingmathematically stationary
means that the mean and variance are constant over time. We
analyze the stationary hypothesis of the historical series of the gas
price unitary returns in Fig. 3.

The drift or mean of returns appears to be quite stable and close
to zero, without the unit returns showing a trend. However, the
volatility or standard deviation of returns is quite variable and
depends on the lapse of time considered. The series cannot be
considered stationary in the strict sense of the term, as in fact the
time series of the returns displays heteroscedasticity or variability
in variance, as illustrated in Fig. 3.

Given the characteristics of the structure of the historical data,
in order to carry out gas price evolution simulations using GBM, we
consider four different scenarios (Si). These include three theoret-
ical scenarios, which consider zero drift, very close to the real
average drift, which is found to be in the range of 10�4, and vola-
tilities for 0.5% (on 80.95% of occasions, the gas price returns are
greater than or equal to j0.5j%), 1% (on 69.01% of occasions, the gas
price returns are greater than or equal to j1j%), and 1.5% (on 57.76%
of occasions, the gas price returns are greater than or equal to
j1.5j%), respectively; these scenarios are named S1, S2, and S3.
Lastly, we include a fourth scenario where we apply the Boot-
strapping resampling technique to determine a drift and volatility
that are statistically fitted to the historical price series and whose
characteristics are covered in further detail in Soage et al. (2024).
This scenario is hereinafter referred to as S4 or as the real scenario.
Fig. 3. Gas price daily returns (HHSP) from the 6th of January 1997 to the 16th of April
2020 (5861 trading days).
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2.4. Monte carlo simulation combined with GBM to determine
numerical gas price distributions

We applied theMonte Carlo simulation combined with the GBM
theory to the synthetic generation of gas price trajectories in three
scenarios, S1 to S3, inwhich the drift and volatility remain constant
(Hacura et al., 2001; Papadopoulos and Yeung, 2001).

In the historical series, the drift tends to zero and the volatility
assumes a low (S1), intermediate (S2) or high (S3) value. The level
of the historical appearance of these estimated values is quite high.
In other words, scenarios S1 to S3, being theoretical gas price sce-
narios, are scenarios that are not far from reality. This enabled us to
conduct a simpler initial approximation to gas price simulations
using GBM.

For each pair of values (m, s), we carried out 1000 price simu-
lations. We used a starting price of P0 ¼ USD 2.61/MMBTU, corre-
sponding to the closing gas price on the 17th of May 2019 and
which corresponds with the price USD 2.71/Mscf. The time step
considered is 36.5 days, which involves carrying out 101 calcula-
tions (including t ¼ 0 or start price) for each of the simulated tra-
jectories, in order to finish the 10-year period.

We applied Eq. (6) to the indicated gas price and the drift and
volatility parameters appearing in Fig. 4, which also shows the
outputs obtained for the three proposed scenarios.

We can see in Fig. 4 that if we take an elevated daily volatility,
the price values tend to disperse as time evolves. However, for low
daily volatilities, the prices tend to concentrate close to the initial
value of the simulation when assuming zero drift.

On the other hand, we used the Bootstrapping technique to
perform statistical sampling in the HHSP price series and numeri-
cally generate a PDF of the P0, the drift, and the volatility using Eqs.
(7) and (8), or more directly, Eqs. (9)e(11) based on HHSP gas price
unit returns. The methodology is described in Soage (2021). With
this technique, we created an S4 price scenario in which 1000 price
trajectories were generated with a behavior that we consider to be
more in line with reality based on historical gas price data (Fig. 5).

We used this set of simulations as a basis for the calculations of
the dynamic financial indicators for investment selection that are
developed in the following sections of this paper.

2.5. Impact of inflation on dynamic financial indicators for shale
gas investments

In economics, inflation is considered as the increase in the price
of goods and services over a certain time period. This can be
interpreted as a loss in purchasing power of the population in a
region caused by a decrease in the value of money (Barro,1995). It is
clear that the value, understood as the purchasing power, of USD
100 in 2022 is very different to the value of the same amount of
money in 1980. The difference in the purchasing power to acquire
products associated with the same amount of money in the same
currency is known as inflation (Sarel, 1996).

There are different interpretations of the effect of inflation on
the economy of a country or region. In general, high or very high
inflation, known as hyperinflation, generates a loss in purchasing
power for the population of the affected region and hence its
impoverishment (Hanke and Bushnell, 2017). There are many
causes of hyperinflation, such as a political decision to issue large
amounts of currency, a market imbalance that results in drastic
downward trends in demand, or an increase in the price of goods
and services due to a strong increase in production costs. On the
other hand, very low or negative inflation, known as deflation, is
usually the result of a fall in market demand, i.e., a downward trend
in the economy that attempts to compensate for falling market
trends by decreasing the prices of goods and services, which, just
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likewith hyperinflation, leads to the general impoverishment of the
population (Mastromatteo and Rossi, 2015).

There is a general consensus among experts on economics and
currency theory that the best scenario is growing but contained
inflation, which is indicative of both a balanced and constant
expansion of both the market and the economy (L�opez-
Villavicencio and Mignon, 2011).

Inflation analysis involves different metrics and calculations.
The most commonly accepted is the Consumer Price Index (CPI)
(Bryan and Cecchetti, 1993). This indicator is calculated by taking a
set of frequently consumed goods and services and calculating their
value at a given time. At a later time, the value of this set of goods
and services is recalculated, and the increase in value is also
calculated (positive or negative). This variation is usually expressed
as a percentage of annual variation for a given country (Diewert,
1998). The CPI is used as an indicator to estimate inflation,
although it is a financial indicator with certain limitations.

For example, it does not consider the variation in the quality of
the goods and services, or whether newgoods or services should be
included, and hence the price comparison loses uniformity.
Furthermore, depending on the country, the composition and
weighting of sectors fromwhich the goods and services are derived
(transport, food, housing, etc.) vary considerably (Lebow and Rudd,
2003). However, despite all of these considerations, it is unani-
mously adopted as the indicator for measuring a country's inflation
(Blinder et al., 1980).

We used inflation data from the USA in this paper for the pur-
pose of analyzing the NPV and IRR (Fama and Gibbons, 1982;
Shahsavar et al., 2010). When calculating these two financial in-
dicators (NPV and IRR), inflation is used as a depreciation factor
over time for investment cash flow (Goldfajn and Werlang, 2000;
Egilsson, 2020).

In Fig. 6, we show the evolution of the annual inflation in the
USA from 1914 to 2019 (U.S. Bureau of Labor Statistics, 2022),
expressed as a percentage. The annual inflation has remained quite
stable since 1990, in the range of 2%e3%, with some downward
corrections, like the one in 2009 caused by the financial crisis
which resulted in the country entering a period of deflation with a
year-on-year inflation value of �0.4% (McKibbin and Stoeckel,
2009).

The Bureau of Labor Statistics (BLS) in the USA calculates infla-
tion on a monthly basis, although Fig. 6 shows yearly data. In Fig. 6,
we also display the statistical characteristics of this time series. The
time period considered is from 1914 to 2019, which involves 106
CPI data (Bryan and Cecchetti, 1993).

We assume that the gas price itself has a certain correlationwith
inflation, given that this raw material is a listed asset of growing
importance within the USA consumables market, especially
because of its use in generating electricity (Energy Information
Administration (EIA), 2016). In line with this idea, we correlated
gas price variations (gas inflation) between 1997 and 2019 with the
inflation data from the USA for the same time period. To carry out
this correlation analysis, we took HHSP quote data on a yearly basis,
and the year-to-year gas price inflation was calculated.

The best polynomial fit that we obtained correlates global
inflation and gas inflation with a Pearson coefficient of R2 ¼ 0.5012
(Fig. 7(a)). Although this correlation is weak, it is not negligible. This
correlation is stronger for larger or smaller rates of gas price
inflation. It makes sense that periods of extreme gas prices coincide
with extremes of overall inflation, as gas prices can be used as a
proxy for energy consumption and economic output (Fig. 7(a)).

According to the U.S. Energy Information Administration (EIA),
in 2021, gas became themain source of electricity production in the
USA, reaching 38.3% of total production, followed by coal at 21.8%
and nuclear power at 18.9% (Energy Information Administration



Fig. 4. (a) 10 of the 1000 price evolution simulations for scenario S3 are shown: maximum value, minimum value, and 8 random intermediate trajectories. A price density map is
also presented, with trajectory concentrations indicated by warm colors; dark red indicates high concentration and bright yellow indicates low concentration. (b) Histogram of price
frequencies for scenario S3 at the end of the 10-year period. (c) Price density map for 1000 realizations of price evolution in scenario S2. (d) Histogram of price frequencies for
scenario S2 at the end of the 10-year period. (e) Price density maps for 1000 realizations of price evolution in scenario S1. (f) Histogram of price frequencies for scenario S1 at the
end of the 10-year period.
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(EIA), 2022a, 2022b). This trend indicates that the importance of
gas tends to increase over time, given that in 2001 gas consumption
for electricity generation was up 17.11% (Energy Information
Administration, 2022a). These data suggest that this general infla-
tion vs. gas inflation correlation will be increasingly strong (Energy
Information Administration, 2016).

Based on the price series we generated for scenarios S1 to S4, the
annual gas inflation can be calculated using Eq. (12), expressed as a
percentage. The calculation is carried out on an annual basis, as the
time step of the generated series or Dt is 1.2 months or 36.5 days, so
in order to annualize the calculation, the gas returns must be raised
to the power of 10 (10 � 1.2 months ¼ 12 months or 1 year;
10 � 36.5 days ¼ 365 days or 1 year).

Using Eqs. (13) and (14), as well as values of the stochastic gas
price trajectories, we can obtain the daily inflation. This derivation
process combines concepts of compound interest with empirical
data obtained from the corresponding regression.
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In Eqs. (12)e(14), the term CPIgas y refers to yearly gas inflation,
CPId refers to daily US global inflation, and CPIy to yearly US global
inflation. This mathematical approach for each time interval of the
different price simulations carried out in scenarios S1 to S4 pro-
vides a daily inflation that correlates with the gas price data. This
enables dynamic financial estimators to be calculated for shale gas
wells, thereby providing a realistic approximation for the natural
gas market.

CPIgas yðtÞ¼
 �

Pgasðt þ DtÞ
PgasðtÞ

�100

� 1

!
� 100 (12)

CPIy ¼ 2:374þ 0:009475� CPIgas y � 0:000424� CPI2gas y

þ 5:27� 10�6$CPI3gas y



Fig. 5. (a) Examples of realizations and price density maps for 1000 realizations of price evolution in scenario S4. 10 of the 1000 simulations are shown: maximum value, minimum
value, and 8 random intermediate values. Concentration of trajectories is indicated using warm colors; dark red for high concentration and bright yellow for low concentration. (b)
Histogram of price frequencies for scenario S4 at the end of the 10-year period.

Fig. 6. USA year-on-year inflation (1994e2019); 106 CPI values, data expressed as
percentages. Source: Bureau of Labor Statistics (BLS), USA.
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CPId ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ CPIy � 1365

q
(13)

In Fig. 7(b), we show the history of 10 inflation trajectories taken
randomly from the 1000 realizations for scenario S3. We also draw
the frequency distribution for the 1000 realizations on a warm
color scale.
Fig. 7. (a) Polynomial correlation between gas price inflation and global inflation in the
Annualized global inflation expressed as % for 10 outputs of 1000 totals simulated in scenar
color scale indicates where the higher concentration of inflation trajectories is located.
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2.6. NPV and IRR as statistical financial estimators applied to shale
gas

2.6.1. Introduction
We used two financial indicators in this study, each one having

its advantages and disadvantages when it comes to making finan-
cial decisions (Ranasinghe and Russell, 2006; Weijermars, 2013).
The net present value (NPV) is one of the most commonly used
financial indicators in the world of energy, O&G, and, in particular,
shale gas (Bas, 2013). This indicator calculates the final value of an
investment after a defined period of time, considering the cash
flows produced by the investment, the depreciation in the value of
money, the operational expenditures (OPEX), royalties and taxes,
and the initial investment or CAPEX. It is a financial indicator that is
very commonly used to evaluate investments involving fixed as-
sets, large sums of money, and long useful lifespans.

The NPV can have the following values:

� NPV>0 indicates a feasible investment, meaning that its value at
the end of the operating lifespan will be positive. In general, the
higher the NPV, the more attractive the investment.

� NPV ¼ 0 indicates a financially neutral investment.
� NPV <0 indicates an unprofitable investment that should not be
undertaken.
The internal rate return or IRR is the discount rate value that
yields an NPV of zero. Another way to define it is to consider it as
USA (22 years of data, from 1998 to 2019). The year is indicated for some data. (b)
io S3. Black lines represent 10 of the 1000 generated Annual CPI trajectories. The warm
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the interest rate at which the cash flows equal the value of the
investment made. It is possibly the closest financial indicator to
the commonly used concept of the profitability of a financial
product like an investment fund or government bond. Any IRR of
an investment that exceeds that expected for a financial product
considered safe makes the investment appear attractive.
Another way to analyze this indicator is to check if the IRR ob-
tained in the investment analysis is greater than the expected
depreciation. If this is the case, it can also be considered a viable
investment.

Both the NPV and IRR have been used in the study of shale gas
investments (Lake et al., 2013; Yu and Sepehrnoori, 2013).
2.6.2. Methodology to obtain statistical net present value (NPV)
The NPV is a dynamic financial indicator defined by studies as

the cash flow value for a determined investment, updated to the
present moment in time (Soage et al., 2021).

We may express the NPV mathematically as shown in Eq. (14).
This formula uses classical terminology in the O&G industry
regarding asset evaluation:

NPV¼
XN
i¼1

ð1� RateTÞ$	PgasðiÞ$MscfðiÞ$ð1� RoyÞ � OPEX

	

1þ CPId
	
CPIgas yðiÞ



i
� CAPEX:

(14)

The terms appearing in Eq. (14) are defined as follows:

� CAPEX, or “capital expenditure”, is the financial value of the
investment in the shale gas well expressed in US dollars. In this
model, we consider a shale gas well with a CAPEX of USD
4.8 MM.

� i is the time step.
� N is the total number of time steps.
� Pgas(i) is the gas price in the time step i; value is expressed in
USD/Mscf.

� Mscf(i) is the flow rate at time step i; value is expressed in Mscf/
d. When this value is multiplied by Pgas(i), the gross cash flows
for time step i are obtained.

� Roy refers to royalties, expressed on a unit basis, paid to the
owner of the land and other agents such as county adminis-
trations in some cases. We assume a flat rate of 15% of the gross
economic flow.

� OPEX, or “operational expenditures”, are the well's operating
costs. We consider a constant day-to-day cost value of USD 150/
day. It is sometimes expressed in units of USD/Mscf, showing
that its importance decreases as gas production drops.

� CPIgas y(i) is the annualized gas price inflation expressed on a
unit basis and varies with each time step.

� CPId reflects daily inflation and depends on the annualized gas
price inflation.

� RateT represents the profit taxes expressed on a unit basis. We
apply a 21% tax rate, which is the current gross rate for corporate
tax in the USA.

� We assume that all costs are included in the mathematical
formulation reflected in Eq. (14).

We usedMonte Carlo simulation to estimate the PDF of the NPV.
We applied Eq. (14) by combining the price trajectories of each
scenario (S1eS4) with the gas production curves of the parametric
sweep performed in (Soage, 2021) and (Soage et al., 2021). This
generated, for each value of the parameter studied (e.g.,
porosity ¼ 2.5%) and for a specific scenario (e.g., S2), 1000 different
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NPVs. This means that the gas price data series obtained were
paired with consecutive production data. It is not possible to match
price data with production data in a random manner since the gas
price series has a certain internal structure that must be preserved.
Finally, we fitted a non-parametric PDF to each set of NPVs using
the kernel density estimation (KDE) method.

To be precise, the methodology used is as follows:

� We take the base case of a shale gas well (Soage, 2021; Soage
et al., 2021), along with the production curves calculated
deterministically via numerical modeling, based on the math-
ematical model that describes the phenomenon of shale gas
production.

� We select one of the parameters that was subject to analysis,
e.g., porosity, and we take production curves for each value of
this studied parameter.

� We combine price scenarios S1 to S4with each production curve
obtained for each parameter value.

� For each parameter value and each price scenario, we use 1000
price realizations to calculate 1000 NPVs.

� With the distribution of NPVs for a specific value of a parameter
and a specific scenario, we adjust a non-parametric PDF of
Gaussian kernels using the KDE method. We perform a K-S test
to check for an acceptable significance level (in general above
5%) and enable probabilistic NPVs the be calculated.

� We calculate the 10%, 50%, and 90% percentiles of the NPV (P10,
P50, and P90) for every density function.

� We show the percentages indicated on a graph according to the
studied parameter as its value changes.

We illustrate this methodology in Fig. 8. In Fig. 8(a), we show 10
sample realizations (of the 1000 carried out) for the cash flow of a
well with 3% porosity considering scenario S3. We also include the
time evolution of the NPV for 10 sample realizations of 1000
calculated based on the previous cash flows (Fig. 8(b)). Further-
more, we present the probability distribution to NPV for each
porosity value studied within scenario S3 and with their corre-
sponding P10, P50, and P90 (Fig. 8(c)). The NPV frequency distri-
butions overlap for porosities of 1% and 3% (insets in Fig. 8(c)).

Fig. 9 summarizes the results obtained by combining the para-
metric variations in porosity, induced permeability, kerogen con-
tent, and ellipsoidal fracture volume or effective propped volume
(EPV) geometry with each of the analyzed scenarios, S1 to S4. The
insets in the figure indicate the statistical significance levels ob-
tained for each non-parametric function adjusted using the KDE
method and the corresponding bandwidth of each Gaussian kernel.
The bandwidth is normalized by dividing its value by the invest-
ment CAPEX, resulting in a bandwidth normalized to a scale of 0e1.
The aspect ratio (AR) is a dimensionless value that relates the two
horizontal axes of the hydrofractured ellipsoid. AR values range
from 0.05 to 7.50. In this figure, in order to improve the under-
standing of the graphics, we represent AR according to the value of
the semi-axis a. The calculation of the semi-axis a with the value of
the AR is explained in (Soage et al., 2021).
2.6.3. Methodology to obtain statistical internal rate return (IRR)
The mathematical formula to calculate the IRR applied in the

analysis carried out in this paper is presented in Eq. (15). The
formulation of this equation aligns conceptually with the idea that
the IRR is the maximum discount rate, after which an investment is
no longer profitable. Hereinafter, we consider the IRR the value of
profitability in its most commonly used sense.



Fig. 8. (a) Cash flow evolution over time for 10 price trajectories. Warm colors represent areas with the greatest accumulation of cash flow trajectories. This calculation is for the gas
production curve with 3% porosity and price scenario S3. (b) Time evolution of NPVs corresponding to the cash flows in (a). The relevant NPV is at the end of the 10-year operating
period of the shale gas well. (c) Results of P10, P50, and P90 NPV percentiles at 10 years for the base case in scenario S3. Areas with the greatest accumulation of realizations are
shown using warm colors. NPV histograms for porosities of 1% and 3% are inset to illustrate graph design.
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0¼
XN
i¼1

ð1� RateTÞ$	PgasðiÞ$MscfðiÞ$ð1� RoyÞ � OPEX



ð1þ IRRÞi

� CAPEX: (15)

An important mathematical aspect of the IRR's calculation is
that it can take multiple values depending on the cash flow's evo-
lution. The origin of this mathematical phenomenon is that the IRR
is a polynomial expression with multiple roots (as many as the
degree of the polynomial). These roots can be real or complex. The
most common and desirable situation is that there is only one real
root, and the remaining roots are complex. However, the poly-
nomial coefficient structure does not always provide this result. In
the event of multiple roots, we take the lowest positive real root as
the IRR. If there are no positive roots, we take the greatest negative
value. In the case where there are no real roots, it is considered that
the IRR does not exist for the mathematical structure that defines
the investment.

For the statistical calculation of the IRR, we used the same
methodology described in Section 2.6.2 of this article. Fig. 10 shows
a summary of the results for different simulations where the pro-
duction curves of the parametric sweeps cross with the gas price
data considered for the different theoretical price scenarios S1eS4.
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3. Results and discussion

In this study, we generally consider the value of the financial
indicator for the P90 percentile as a measure of success. Likewise,
we consider as a riskmeasure the value of the financial indicator for
the P10 percentile.

3.1. Statistical net present value results

In Fig. 9, we show the results obtained for the calculation of the
NPV in shale gas investments. We point out our key findings below.

As the volatility increases going from scenario S1 to S4, the
dispersion of the NPVs increases considerably with the increase in
the parameter values. In the shale gas extraction sector, success
during periods of high volatility is strongly dependent on having
suitable petrological and design parameters. As an example, for a
permeability of 10 md, we obtain an NPV of USD 2.7 MM (Fig. 9
permeability vs. S4). As the volatility increases, so does the finan-
cial risk, so for the previous example, the P10 falls to a negative NPV
of nearly USD �4 MM. The most relevant parameters for the
financial viability of a shale gas well as defined in the base case of
(Soage et al., 2021) are in the following order: porosity, induced
permeability, ellipsoidal fracture geometry (EPV shape), and
kerogen content. We establish relevance based on the sensitivity of
the NPV percentiles to the variation in the parameters.



Fig. 9. NPV (USD) results are presented in matrix form. The vertical axis shows variations in gas production parameters, and the horizontal axis shows different price scenarios (S1
to S4). The P10, P50, and P90 percentiles are shown for each result, with higher concentration areas in red and lower concentration areas in yellow using a warm color scale. Each
result includes a graph with the statistical significance of the nonparametric PDF adjustment (blue dots) on a 0 to 1 scale and the bandwidth normalized by the CAPEX of the
Gaussian kernels used to adjust the PDF (red dots).
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3.2. Statistical internal rate return value results

We observe similar results to those of the NPV case study.
Increasing dispersion was observed in the IRR values with an

increase in volatility and/or in the production parameters, a growth
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in the risk of investment failure (i.e., a fall in the IRR P10 value), and
an increase in the probability of success (increase in IRR P90 value).
The most relevant parameters for the financial viability of a shale
gas well, as defined in the base case (Soage et al., 2021), are in the
same order as in the NPV study: porosity, induced permeability,



Fig. 10. IRR (%) results. Analysis presented in matrix form. The vertical axis represents the variations in the gas production parameters. The horizontal axis represents the different
price scenarios, S1 to S4. The P10, P50, and P90 percentiles are represented for each result, and the areas with a higher concentration (red) and lower concentration (yellow) of
realizations are shown using a warm color scale. Each result includes a graph with the statistical significance of the nonparametric PDF adjustment (blue dots) on a 0 to 1 scale and
the bandwidth normalized by the CAPEX of the Gaussian kernels used to adjust the PDF (red dots).
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EPV geometry, and kerogen content. We compared the results of
the percentiles of the NPVs with those of the percentiles of the IRRs,
and we observed that the behavior of both indicators is slightly
different. The IRR is a financial indicator that is more sensitive to
parametric variation, but less sensitive to price volatility.
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3.3. General discussion

We studied different price scenarios. Scenarios S1 to S3 were
generated considering a constant drift and an increasing volatility
of 0.5% for S1, 1% for S2, and 1.5% for S3. On the other hand, S4 is a
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scenario based on statistical estimators whose PDF has been
calculated using the Bootstrapping statistical resampling method
applied to the historical gas price series. We observed that for a
greater price volatility, the P90 and P10 percentiles of the NPV and
IRR financial estimators tend to diverge. The greater the volatility,
the greater the dispersion between percentiles. This indicates a
greater success value (P90). However, there is also an increase in
risk as the P10 falls, entering into negative NPV or IRR values.

We also observed that the greater the expectation of a positive
result, statistically, the greater the risk. In this regard, shale gas well
investments respond to a riskeprofit balance that is characteristic
of classical financial products.

The comparison between the results obtained for S1eS3, in
which the constant gas price is considered throughout the life of
the investment, and for S4, in which the gas price varies during the
gas extraction, allow us to show that both the success and the risk
assumed in shale gas investments are underestimated.

The financial estimators' (NPV or IRR) percentile values increase
monotonically as the petrophysical and design parameters increase
in their values. The maximum P90, P50, or P10 are reached for the
maximum value of those parameters.

We used the final results of the financial estimators to analyze
shale gas investments. We could thus rank the economic impor-
tance of the parameters in shale gas economic performance. In
order of importance, the first factor is the gas price, which plays a
key role in the financial performance of a shale gas investment. The
price at the start of the investment, the volatility, and the drift price
are determining factors in the final result of the investment. In
second place are production parameters such as induced perme-
ability or EPV geometry. The least dominant parameters are the
petrological factors like porosity or kerogen content. We will
discuss the kerogen content parameter in more detail. The amount
of methane adsorbed in the kerogen is described by the Langmuir
isotherm model (Yu et al., 2016). This model consists of a rational
function that has two parameters that are determined experi-
mentally, i.e., Langmuir pressure and Langmuir volume. The value
of the parameters is intrinsically determined by the origin of the
organic matter from which the kerogen comes. We adopted pa-
rameters such that its contribution of methane is low in relation to
the methane contributed by the pore methane (Zhao et al., 2018).
The Langmuir pressure marks the pressure at which half of the
adsorbed gas has been released into the pore space of the rock
matrix. In this case, this pressure is 3 MPa, while the minimum
pressure reached by the SRV in the simulations does not go below
5 MPa. This indicates that most of the methane has not been
released. Although the amount of kerogen increases considerably,
the net contribution of gas is low, and for this reason, this petro-
logical parameter has little importance in financial performance.

We show some quantitatively noteworthy results. We focus this
analysis on NPV results of the scenario S4 andmaximum parameter
values. The P90 NPV oscillates between approximately USD 2.3 MM
and USD 4 MM. The CAPEX of the base case shale gas well is USD
4.8 MM. This explains the great expansion of this gas production
method. Likewise, the financial risk quantified for the P10 NPV
oscillates between approximately USD �3.8 MM and USD �4 MM.
Although this is a high-risk scenario, when compared with the
success value (P90), it is very acceptable for the indicated CAPEX
investment.

We studied the IRR from a quantitative perspective, as in the
previous analysis of the NPV. The IRR P90 values fall between 12%
and 21%. This is a profitable investment and high above the value
that any common financial product can offer. On the other hand, the
IRR P10 oscillates between �25% and �10%. This is a considerable
risk, albeit in agreement with the statistically expected success.

These results may be extended to more complex studies like
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optimizing shale gas well portfolios or purchasing shale gas wells
according to their statistical value.

Summarizing this discussion, it can be stated that a stochastic
approximation of the financial parameters of shale gas wells en-
ables a more complete analysis of these types of investments,
allowing a rigorous understanding of the economic values that can
be obtained with shale gas investments and the risks that these
investments entail. The trajectories of the companies that have
been dedicated to this business show a trend of behavior that re-
flects the results exposed in this discussion: great business suc-
cesses combined with tragic bankruptcies. In addition, as a result of
the study, it can be verified that the good petrophysical values (e.g.,
high porosity value) and a good well design (e.g., hydrofracturing
geometry) are essential, but not easy to achieve. This leads us to
intuit a scientific explanation for the so-called “sweet spot” theory,
according to which shale gas wells with good economic perfor-
mance tend to accumulate in certain areas of a play. This study
shows that this must be the case since the requirements to achieve
a good investment require a multiparametric combination
(porosity, induced permeability, kerogen content, and fracture ge-
ometry) that may be scarce in the reality of the geological plays and
requires numerical or data-analytics-based optimization tech-
niques for its determination in the field (Cristancho-Albarracin
et al., 2017; Psarras et al., 2017).

4. Conclusions

The most important conclusions for our study are as follows:

� We proposed a methodology that, using Monte Carlo simula-
tion, combines numerical modeling and stochastic process
modeling to obtain statistical financial estimators in PDF form.
This allows us to calculate the values of the estimators with a
probability of occurrence.

� The application of this methodology to shale gas investments
allows for determining the most relevant investment
parameters.

� The incorporation of the gas price variability during the life of a
shale gas well provides a better understanding of the high
profits and risks of this activity.

� Considering gas price variability as another key variable is
essential for industrial operators. In particular, price volatility is
the key factor that determines the profit/risk level of an
investment.

� At very high price volatilities, the profit percentiles rise, but so
do the loss percentiles. This result shows that investments in
shale gas behave like a classic investment: high riskehigh profit.
This conclusion is not intuitive since shale gas production is
governed by natural physical processes.

� We observe that for any of the financial parameters studied, the
loss percentile (P10) remains increasingly insensitive as the
petrological and design parameters improve. This result is not
evident and has its origin in the restriction that the prices of
commodities cannot take negative values.

� The NPV and IRR were calculated with a probability of occur-
rence. This is a new approach in shale gas investments, where
static price values are usually considered which do not allow the
quantification of investment risk.
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