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ABSTRACT

As global oil exploration ventures into deeper and more complex territories, drilling bit wear and damage
have emerged as significant constraints on drilling efficiency and safety. Despite the publication of official
bit wear evaluation standards by the International Association of Drill Contractors (IADC), the current
lack of quantitative and scientific evaluation techniques means that bit wear assessments rely heavily on
engineers' experience. Consequently, forming a standardized database of drilling bit information to
underpin the mechanisms of bit wear and facilitate optimal design remains challenging. Therefore, an
efficient and quantitative evaluation of bit wear is crucial for optimizing bit performance and improving
penetration efficiency.

This paper introduces an automatic standard workflow for the quantitative evaluation of bit wear and
the design of a comprehensive bit information database. Initially, a method for acquiring images of worn
bits at the drilling site was developed. Subsequently, the wear classification and grading models based on
computer vision were established to determine bit status. The wear classification model focuses on the
positioning and classification of bit cutters, while the wear grading model quantifies the extent of bit
wear. After that, the automatic evaluation method of the bit wear is realized. Additionally, bit wear
evaluation software was designed, integrating all necessary functions to assess bit wear in accordance
with IADC standards. Finally, a drilling bit database was created by integrating bit wear data, logging
data, mud-logging data, and basic drilling bit data.

This workflow represents a novel approach to collecting and analyzing drilling bit information at
drilling sites. It holds potential to facilitate the creation of a large-scale information database for the
entire lifecycle of drilling bits, marking the inception of intelligent analysis, design, and manufacture of
drilling bits, thereby enhancing performance in challenging drilling conditions.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

1. Introduction

and wear resistance, which can significantly increase the rate of
penetration (ROP) for drilling deep and high-pressure wells (Capik

Nowadays, roller cone bits and polycrystalline diamond and Yilmaz, 2021; Xiong et al, 2020). To optimize PDC bits,

compact bits (PDC bits) are ubiquitously employed in the domain
of oil drilling. With the continuous optimization and improvement
of PDC bit structure design and cutter manufacturing technology,
PDC bits have been propelled to an increasingly prominent position
within the petroleum drilling market. Compared with traditional
roller cone bits, PDC bits offer significant advantages such as high
rock-breaking efficiency, long service lifetime, excellent impact,
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numerous experiments have been conducted to simulate the force
response, rock breaking mechanism and wear condition of PDC bit
during the drilling process. These efforts aim to enhance the ma-
terial and structural design of PDC bits, ultimately improving their
impact and wear resistance (Xiong et al., 2020; Dai et al., 2023).
Despite the high impact and wear resistance of PDC bits, cutter
wear remains inevitable. When the bit wear reaches a certain
threshold, or if any damage occurs to the bit, drilling efficiency
significantly decreases, affecting both the duration and cost of
drilling operations. Therefore, efficient, and quantitative evaluation
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of bit wear condition is crucial for understanding the wear mech-
anisms and optimizing bit design to ensure efficient and safe dril-
ling (Timonin et al., 2017).

According to the wear characteristics of PDC bits, wear can be
categorized into two types: normal wear and abnormal wear.
Normal wear occurs when the bit cutter and formation produce
continuous or intermittent friction to break the rock. This friction
results in micro-cutting, scratching, and rubbing, leading to bit
wear and dullness. Typical features of normal wear include
continuous groove-like marks on the side and tooth column of the
PDC layer in contact with the formation, with cracks being
extremely rare in these grooves. Moreover, other PDC layers do not
exhibit this delamination phenomenon. Abnormal wear, on the
other hand, includes broken cutters (BT), chipped cutters (CT), and
lost cutters (LT). These anomalies are primarily caused by factors
such as the formation conditions during drilling, design and
manufacturing flaws in the bit, or operational errors that result in
improper bit functioning (Mazen et al., 2021). Images of various
types of worn cutters are shown in Fig. 1.

At present, although the International Association of Drill Con-
tractors (IADC) has established official evaluation standards for
drilling bit condition, for the pulled-out bit, the abrasion evaluation
and damage analyses still rely on manual measurement and per-
sonal experience. Due to the lack of quantitative and scientific
evaluation techniques, the results of evaluation are often time-
consuming, delayed, subjective, and prone to error. There is a
clear need for an innovative, efficient, and intelligent method to
assist on-site staff in accurately identifying bit conditions.

Computer vision, as a research field, focuses on endowing ma-
chines with the ability to interpret images and videos in a manner
analogous to human perception. It involves using cameras and
computers to perform tasks such as target identification, tracking,
and measurement, effectively replacing human eyes for various
graphic tasks. As a scientific discipline, computer vision explores
theories and techniques for building artificial intelligence systems
that can extract information from images or multidimensional data.
Al algorithms in computer vision mimic human vision to interpret,
read, and understand visual data, offering automation, high preci-
sion, strong universality, and cost-effectiveness. Computer vision
has emerged as a crucial constituent in the research of intelligent
systems and finds extensive application in manufacturing, trans-
portation, medical, and military fields. However, in the petroleum
industry, while computer vision is employed for monitoring site
staff behavior and safety detection, its application for recognizing
the status of drilling tools is not as prevalent. Specifically, for dril-
ling bits, the unique nature of bit wear and the complexity of
evaluation criteria have resulted in a lack of mature, intelligent, and
automated methods for identifying bit wear conditions.

In the petroleum industry, a number of companies and univer-
sities have embarked on the development of computer vision
models with the aim of executing tasks that were conventionally
accomplished by human labor. These models find extensive utility
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(a) Broken cutters (BT) (b) Chipped cutters (CT)
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in diverse applications, including determining the condition of
drilling rigs and enhancing the safety of rig sites.

Chatar et al. (2021) developed a computer vision model capable
of determining the status of a drilling rig in real time. Due to the
susceptibility of rig sensors to failure, in conjunction with the
substantial costs entailed in their maintenance and installation,
relying solely on sensor data to ascertain rig status becomes
problematic. By proposing a machine learning model that utilizes
videos collected from the rig floor to infer rig states, Chatar suc-
cessfully implemented an effective machine learning pipeline for
detecting rig states.

Aldossary et al. (2023) proposed the use of computer vision at
drilling sites to enhance the safety of field personnel. Their
approach employs real-time object detection techniques in com-
puter vision to detect eight classes of objects: person, helmet colors
(red, yellow, blue, and white), head, vest, and glasses. This system
automates the real-time detection and monitoring of personal
protective equipment (PPE) and employee behavior on-site. By
reducing the time required for tracking and creating a safer work
environment, this automation can increase worker productivity
and safety, while also lowering operational costs.

Furthermore, many companies and universities are developing
2D and 3D computer vision models to understand the relationship
between drilling bit design and bit wear.

Taurex Company (Devers et al., 2022) has established an Auto-
matic Metering Laboratory (AML) to implement a digital model and
corresponding workflow for analyzing PDC bit wear. Located in the
company's central repair and maintenance facility, this system
utilizes an automated robotic 3D scan program to scan drilling bits.
The scan results are then transmitted to a remote server accessible
to engineers for quantifying bit wear. Simultaneously, the results
are archived in a relational database to correlate bit wear trends
with operation, design, event data recorder (EDR) and other rele-
vant datasets. This comprehensive approach permits an exploration
of the intricate relationships among bit design angles, axial and
tangential forces, and cutter damage. It enables the identification of
inefficient drilling practices underground, thereby promoting en-
hancements in bit performance.

Halliburton's Oculus system (Forrester, 2022) conducts a
comprehensive 3D scan of the drilling bit, which is then uploaded
to the bit database. Leveraging bit photos, wear data, and down-
hole performance data, collected through extensive big data
analysis, the system provides a thorough evaluation of the bit. This
evaluation is further correlated with the design characteristics of
the bit to optimize its performance, including the selection of
cutter types at specific locations and the adjustment of cutter
angles. Additionally, Halliburton's Cerebro sensors embedded
within the bit capture critical downhole data such as lateral and
axial vibration, torsional resonance, rotation, stick-slip, weight on
bit (WOB), torque, and buckling. These data are instrumental in
comprehensively understanding the drilling environment and
determining the root causes of bit damage.

(c) Lost cutters (LT) (d) Wear cutters (WT)

Fig. 1. Various types of worn cutters.
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Trax Electric Company (Alalsayednassir et al., 2022) has devel-
oped a digital system called grA + de for the automatic evaluation
of drilling bit wear. The core of the system is machine-controlled,
Al-enhanced photogrammetry. Users place the bit into a scanner,
approximately a 4-foot cube in size, enabling the system to conduct
automatic analysis of the bit. The scanner transforms the physical
object into a digital 3D point cloud image. Leveraging this 3D image
of the bit, the system offers high precision in assessing the wear of
individual cutters on the PDC bit.

UT Austin's automated bit damage evaluation process (Chu et al.,
2022) utilizes intelligent algorithms to analyze drilling bit photos
captured at rig sites, effectively identifying the root cause of bit
damage. Initially, the software uploads a series of photos presenting
each blade of the bit, allowing it to identify all the cutters. Subse-
quently, the software leverages a database of surface sensors and
downhole vibration data, alongside rock strength information ob-
tained from adjacent wells, to quantify the damage incurred by
each cutter. Finally, employing a classification algorithm, the soft-
ware determines the average damage for each section of the blade,
enabling it to infer the root cause of the bit damage.

Furthermore, computer vision technology is emerging as a
valuable tool in various aspects of geological analysis, including
rock thin-section identification, rock classification, and particle
segmentation. Liu et al. (2022) proposed an intelligent clastic rock
thin-section identification technology by constructing a multi-
objective recognition network based on CNN + RNN. Xu et al.
(2020) utilized convolutional neural networks, specifically
ResNet-18, to automatically classify images of metamorphic rocks,
igneous rocks, and sedimentary rocks, including clastic and car-
bonate. In particle segmentation, image processing technology or
deep-learning algorithm are employed to segment and extract rock
particles while identifying their edge contours (Budennyy et al.,
2017; Buono et al., 2019; Pattnaik et al., 2020).

While these methods effectively integrate computer vision into
petroleum operations, they do come with limitations. Specifically,
the necessity for specialized equipment presents a significant
obstacle. For instance, laser scanners, despite their effectiveness,
suffer from drawbacks such as heavy weight, large size, and high
costs. This impedes their universal deployment at every rig site,
especially considering that many rig sites may lack sufficient power
and suitable environmental conditions to support such smart
equipment.

This paper proposes an automatic standard workflow for
quantitative evaluation bit wear and designing a comprehensive bit
information database. Initially, the paper develops an image
acquisition method for worn bits at drilling sites. Subsequently,
leveraging computer vision technology and IADC bit standards, the
paper establishes the bit wear classification model and bit wear
grading model. These models enable the automatic analysis of bit
images, swiftly identifying the degree of wear and type of damage,
thereby providing standardized bit status results. Furthermore, the
paper translates the developed algorithm into automated software,
facilitating quick application at rig sites. This software allows
anyone with a phone or camera to capture bit images at the rig site
and obtain evaluation results.

This paper introduces a novel approach to collecting and
analyzing drilling bit information at rig sites. Through this method,
this paper opens up technical prospects to establish a large-scale
information database encompassing the entire life cycle of the
drilling bit. Such a database can provide data support for
researching bit wear mechanisms and personalized optimization
designs. Furthermore, this methodology marks the inception of
intelligent analysis, design, and manufacturing of drilling bits,
thereby enhancing the potential for accelerating progress in drilling
challenging formations.
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2. The establishment of PDC bit wear evaluation

In this paper, the bit wear classification model and bit wear
grading model have been set up. The wear types of bit wear are
classified according to IADC standards, defining the criteria for
judging the grade of bit wear. For the wear classification model,
three types of object detection algorithms are implemented to
identify all the cutters on each bit blade, determining their loca-
tions and classifying their types. This approach enables the evalu-
ation of the drilling bit condition based on visual cues. The wear
classification model can detect various wear characteristics of
drilling bits, including no wear feature cutters (NO), wear cutters
(WT), broken cutters (BT), chipped cutters (CT), and lost cutters
(LT). Regarding the wear grading model, image processing methods
are employed to analyze the NO and WT cutters obtained from the
preceding algorithms. By analyzing the edge and area of each cut-
ter, the wear grade of the entire drilling bit is identified. The wear
grade of each cutter is computed by the cutter's residual diameter
according to the IADC standards. In this paper, the cutter wear
grading model defines the wear grade by comparing the current
area to the original area, with two distinct processing methods
outlined.

2.1. The establishment of PDC bit wear classification model

Object detection stands as a fundamental challenge in computer
vision, tasked with identifying objects within images and videos,
and providing information on their types and positions (Fischler
and Rlschlager, 1973). Serving as a cornerstone in computer
vision, object detection underpins various other vision tasks, for
instance, instance segmentation, image labeling and object
tracking. The evolution of object detection algorithms can be
delineated into two distinct periods: the period of traditional object
detection algorithms (from 1998 to 2014) and the period of deep
learning object detection algorithms (from 2014 to present). The
progression of object detection algorithms from 2001 to the pre-
sent is shown in Fig. 2.

Traditional object detection algorithms primarily rely on
manual feature extraction, and consist of three main components:
region selection, feature extraction and classifier. Initially, candi-
date regions containing potential objects are selected from the
image. Subsequently, object features are extracted from these re-
gions, and the classifier is trained by using these features. However,
the region selection strategy based on the sliding window approach
requires redundant search, resulting in high computational costs.
Moreover, manually designed features limit the model's ability to
adapt to complex conditions, leading to suboptimal detection per-
formance and poor model robustness. In recent years, deep
learning has revolutionized object detection by automatically
extracting data-driven features with robust universality, thus sup-
planting traditional methods and emerging as the dominant algo-
rithm in the field of object detection.

The object detection algorithms based on deep learning
currently include two frameworks: two-stage (Girshick et al., 2014;
Girshick, 2015; Ren et al., 2017; He et al., 2017; Cai and Vasconcelos,
2018) and one-stage (Redmon et al., 2016; Redmon and Farhadi,
2018; Bochkovskiy et al., 2020; Solawetz, 2023). In the former
framework, candidate boxes of samples are first determined during
processing, followed by the utilization of convolutional neural
networks (CNNs) for sample classification. The latter framework
performs object detection based on specific regression analysis
without generating candidate boxes during processing. Compara-
tive analysis shows that the characteristics of these two methods
are obviously different. The former is more accurate but exhibits
poorer real-time performance, whereas the latter excels in
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Fig. 2. The progression of object detection algorithms.

detection speed. In recent years, researchers have attempted to
migrate Transformer models from nature language process (NLP)
into computer vision (CV). Compared with CNNs, Transformer
(Dosovitskiy et al., 2020; Liu et al., 2021) can capture internal de-
pendencies within images and leverage contextual information
more effectively. Demonstrating versatility across various CV tasks
such as image classification, object detection, and image segmen-
tation, Transformer models have showcased significant potential.

For PDC bits, evaluating the type of bit wear involves assessing
the condition of each individual bit cutter. Leveraging computer
vision, we construct an object detection model to identify and
evaluate the condition of each cutter in the bit image. This allows us
to determine the wear type of the PDC bit based on the IADC
classification standards.

In this experiment, three kinds of PDC bit wear classification
models are established based on one-stage, two-stage, and self-
attention frameworks. The effectiveness of each model is tested
individually. Specifically, these three PDC bit wear classification
models respectively refer to the structure of YOLO (Redmon et al.,
2016; Redmon and Farhadi, 2018; Bochkovskiy et al., 2020;
Solawetz, 2023)-a representative algorithm for the one-stage
model, Faster RCNN (Ren et al., 2017)-a representative algorithm
for the two-stage model, and Swin transformer (Liu et al., 2021)-a
representative algorithm for self-attention models.

The PDC bit wear classification model using the one-stage
structure addresses the object detection problem by treating it as
a bounding box and classification probability regression task. This
model comprises four key components: Input, Backbone, Neck, and
Prediction. Input is the module which imports the image and per-
forms initial image processing. Backbone is a convolutional neural
network segment that aggregates and synthesizes image features
from various fine-grained images. Neck consists of a series of
network layers that blend and merge image features before passing
them to the prediction layer. Prediction utilizing the image features
to predict and generate bounding boxes while classifying cate-
gories. The PDC bit wear classification model employing the one-
stage structure integrates all modules into a branchless CNN,
forming an end-to-end framework. Consequently, the network
simplifies due to the absence of branches, leading to significantly
faster detection speeds compared to methods relying on candidate
regions. The structure of the one-stage PDC bit wear classification
model is shown in Fig. 3.

In the one-stage PDC bit wear classification model, the Focus
layer and CSP structures are integrated into the Backbone and Neck
components. The Focus layer employs a slicing operation to parti-
tion a high-definition image (feature map) into multiple low-
definition images (feature map). For instance, an original image of
640 x 640 x 3 is input into the Focus structure, which slices it into a
320 x 320 x 12 feature map. Following concatenation, the feature
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map undergoes another convolution operation, resulting in a
320 x 320 x 64 feature map. The Focus layer converts the w-h
plane to the channel dimension and subsequently extracts various
features through 3 x 3 convolution. This approach minimizes the
information loss caused by down-sampling. On the other hand, the
CSP structure improves the performance of deep neural networks
by splitting the input features into two parts and then establishing
cross connections between them. This technique effectively im-
proves the feature representation of the model, consequently
enhancing its accuracy and generalization ability.

The PDC bit wear classification model using the two-stage
structure comprises four key components: Conv layers, Region
Proposal Network (RPN), ROI Pooling, Classification and Regression.
Conv layers is a feature extraction network that extracts feature
maps from images through a sequence of Conv + Relu + Pooling
layers, preparing them for subsequent RPN layers and proposals.
RPN generates candidate regions, with the aid of bounding box
regression, refines these to obtain accurate candidate regions. Then,
ROI Pooling gathers the input feature map and candidate regions,
synthesizes the information to derive proposal feature maps, and
sends them into the subsequent fully connected layer for category
determination. Classification and Regression uses the proposal
feature maps to classify specific categories and re-applies the
bounding box regression to determine the exact final location of
the bounding box. The structure of the two-stage PDC bit wear
classification model is shown in Fig. 4.

In order to increase the speed of generating proposals in the
two-stage model, the RPN is employed to generate proposals
directly. The RPN is divided into two parts, one for classifying an-
chors by softmax to obtain positive and negative classifications, and
the other one is used to compute the bounding box regression
offsets for anchors to generate accurate proposals. The final pro-
posal layer synthesizes the positive anchors and their corre-
sponding bounding box regression offsets to generate the
proposals, Additionally, this layer eliminates proposals that are too
small or out of bounds, ensuring that only viable proposals are
considered for further processing.

The PDC bit wear classification model using the self-attention
with moving windows conspires one patch partition and four
stages. Patch partition involves dividing the obtained image into
chunks. The four stages are following the patch partition, and each
of these stages includes two parts, namely Patch Merging and Swin
transformer Block, however, the Patch Merging in the first stage is
replaced by a linear layer. Patch Merging is similar to pooling but
does not result in information lose that polling does. The Swin
transformer Block employs window multi-head self-attention (W-
MSA) and shifted-window multi-head self-attention (SW-MSA) to
extract information. The structure of the self-attention PDC bit
wear classification model is shown in Fig. 5.
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The method of dividing windows limits the calculation of self-
attention (Vaswani et al., 2017) to a local window, and the
shifted-window mechanism enhances the relationship between
adjacent windows. This approach not only achieves global attention
capabilities, but also reduces the computational complexity from a
quadratic relationship with image size to a linear relationship. This
method significantly reduces the computational load and increases
the model speed. In addition, thorough feature fusion, a down-
sampling is performed after each feature extraction stage,
increasing the receptive field for the subsequent window attention
operation on the original image. This allows for multi-scale feature
extraction from the input image and hierarchical computation of
the feature map, enhancing the model's ability to capture detailed
and contextual information.

The commonly used performance evaluation indexes in the field
of object detection include accuracy, precision (P), recall (R),
confusion matrix, average precision (AP), mean average precision
(mAP), precision-recall curve (PR), etc.

P and N indicate that the predicted value is positive sample and
negative sample respectively, while T and F indicate that the pre-
dicted value is the same or different from the real value. The
Confusion Matrix is shown in Table 1.

The precision represents the proportion of positive samples for
which the predicted value is correct. Precision is used to measure
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the accuracy of classifying positive samples by classifier, and the
calculation expression is Eq. (1):

TP
“TP 1 FP

To evaluate the performance of a classifier, it's essential to
consider not only the precision, but also another evaluation index:
recall. Recall measures the proportion of all positive samples
correctly predicted by the classifier, reflecting its ability to identify
positive samples accurately. The corresponding calculation
expression is presented in Eq. (2):

P x 100% (1

TP

R:TP+FN

x 100% )

Precision and Recall often exhibit a trade-off relationship, requiring
careful consideration to identify the optimal network model during
the training process. In general, the precision-recall (PR) curve is
used to illustrate the trade-off between precision and recall of the
classifier. This curve provides a visual representation of how
adjusting the classification threshold affects the precision and
recall values, enabling practitioners to select the optimal operating
point based on their specific requirements and constraints. By
analyzing the PR curve, practitioners can make informed decisions
that ultimately optimizing the performance of the classifier for
their particular application.

For assessing localization accuracy, this paper uses Intersection
over Union (IoU) as an indicator to evaluate the performance of the
object detection algorithm. IoU quantifies the degree of overlap
between the object prediction frames detected by the algorithm
and the real prediction frames labeled within the dataset. It is
calculated as the ratio of the area of the overlapping region to the
total area encompassed by both frames. The higher the overlap
between these two frames, the higher the IoU index. The figure and
calculation of IoU is shown in Fig. 6 and Eq. (3).

AnB TP

loU = 20B~FN TP 1 FP

(3)

In Eq. (3), A represents the prediction frame, B represents the true
frame, the n symbol represents the intersection between the two
regions of the object prediction frame and the label frame, and the
u symbol represents the union of the two regions of the prediction
frame and the label frame. TP represents the true positive samples,
FP represents the false positive samples, TN represents the True
Negative samples and FN represents the False Negative samples.
The mAP refers to mean average precision. It is a crucial indi-
cator used to evaluate the performance of object detection
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Table 1
Confusion matrix.

Confusion matrix

Predict
P

N

Real

=

True positive, TP
False positive, FP

False negative, FN
True negative, TN

Fig. 6. The figure of Intersection over Union (IoU).

algorithms. In general, mAP represents a comprehensive weighted
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average of the average accuracy (AP) across all classes of object
detection. The corresponding calculation expression for AP is pre-
sented in Eq. (4):

AP— J; P(R)d(R) x 100% (4)

In Eq. (4), R is the recall, P is the precision.
The corresponding calculation expression for mAP is presented
in Eq. (5):

mAP:l

1
NJ P(R)AR x 100% (5)

0

In Eq. (5), N is the total number of categories, R is the recall, P is the
precision.
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The mAP@0.5 refers to the mean average precision calculated by
all images of all categories when the Intersection over Union (IoU)
of the model is set to 0.5. The mAP@0.5:0.95 represents the average
value of different IoU threshold ranging from 0.5 to 0.95, with a step
size of 0.05. These thresholds include 0.5, 0.55, 0.6, 0.65, 0.7, 0.75,
0.8, 0.85, 0.9 and 0.95, respectively. In this paper, the mAP@0.5 and
the mAP@0.5:0.95 will be used as the main indexes to evaluate the
performance of the PDC bit wear classification model.

The primary purpose of the object detection model utilized in
this paper is to precisely locate and classify the bit cutters by
scanning the provided bit images. To enhance the detection accu-
racy of the models, particularly improving the mean average pre-
cision (mAP), the anchor box design has been optimized. This
optimization aims to better enable the models to detect the cutters
in the images with increased focus and precision.

In the object detection algorithms, anchor box refers to that the
algorithm's selection of specific anchor points within an image,
using a predetermined step size. Based on these anchor points,
reference boxes of varying sizes are generated. Each anchor box
encapsulates both the presence possibility and category likelihood
of an object. Examples of different anchor box structures are shown
in Fig. 7.

Since the size and position of the bit cutters tends to remain
relatively consistent within a single drilling bit image, selecting
size-matched anchor boxes can enhance both the convergence and
accuracy of the model. During the training process, the optimal
anchor box size is automatically calculated based on the charac-
teristics of the training set, enabling the model to adaptively
determine the length and width of the anchor box.

2.2. The establishment of PDC bit wear grading model

For PDC bit, evaluating the bit wear grade involves measuring
the amount of wear on each cutter. At present, the on-site method
for determining the grade of wear primarily relies on the height of
the worn cutter as the grading basis. According to the IADC stan-
dards, the diameter of the cutter is divided into eight segments,
using the relative length of the worn diameter to determine the
wear grade. Field workers typically use the Vernier caliper to
measure the height, which is inefficiency and lacks accuracy. The
specific way for PDC bit wear grading based on the diameter is
shown in Fig. 8.

In this paper, based on the results from the bit cutter object

Fig. 7. The different structures of anchor boxes.
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detection, the precise position of each cutter on the bit blade can be
determined. By cropping the image, individual pictures of each
cutter can also be obtained. Each individual cutter image is then
preprocessed to calculate its current area. Using the wear area,
rather than height, to assess the cutter's wear level which allows for
more accurate results. Image preprocessing mainly includes image
graying, filtering and denoising, threshold segmentation, edge
detection, area calculation and so on.

Image graying refers to converting the three-channel color
values of each image pixel into a single gray value.

Filtering and denoising refers to the process of removing noise
from digital images using filtering algorithm. This reduces the
impact of noise and preserves the essential details of the image,
resulting in a cleaner and more accurate representation.

Threshold segmentation refers to the division of the image pixel
set based on gray levels. Each segmented area corresponds to a
region in the actual scene, ensuring that each area has consistent
attributes while adjacent areas do not. This process enables the
segmentation and classification of image pixels effectively.

Edge detection involves identifying pixels where there is a
sudden change in grayscale and then connecting these contiguous
edge pixels to form the edges of objects in the image. This process
helps in highlighting the boundaries and shapes within the image.

Area calculation refers to the process of determining the size of a
closed region in an image by counting the number of pixels within
that region. This measurement provides a quantifiable represen-
tation of the object's area.

Based on this process, the current area of a single cutter can be
obtained. The wear grade of the current cutter can then be calcu-
lated by comparing the area with the initial state of the cutter.
There are two methods to determine the initial state of the cutter
area.

In the first method, during the stage of image acquisition,
meticulous control is required to guarantee the acquisition of the
original cutter image under the conditions of an identical picture
shooting angle and a consistent distance between the camera and
the bit. Through the calculation of the digital area of the original
cutter and a subsequent comparison with the area of the worn
cutter, the current wear grade can be determined. This method
emphasizes the significance of standardized imaging conditions for
the accurate quantification of cutter wear, as any variation in the

Fig. 8. The diameter wear evaluation criteria according to IADC standards.
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shooting angle or camera-bit distance could potentially introduce
errors or inaccuracies in the determination of the original cutter
area and, consequently, the wear grade.

At the actual rig site, it would be ideal if the original state of the
cutter area can be obtained simply and directly by managers. In
such instances, the ratio of the initial area to the final area can be
calculated by the first method directly. However, there may be
cases where the rig site is unable to obtain or overlook obtaining
the original state of the cutter. In such scenarios, an alternative
method is required to get the original state of the cutter, which is
the reason for establishing the second method.

The second method implicates the approximation of an external
original ellipse by means of ellipse fitting, which is based on the
digital image sample points of the edge of current wear condition.
This process aims to deduce the original condition from the current
wear state. Through the computation of the area of the fitted ellipse
and a subsequent comparison with the area of the calculated worn
cutter, the wear grade can be determined. This approach capitalizes
on the geometric properties and mathematical relationships
inherent in ellipse fitting to reconstruct an approximation of the
original cutter, thereby providing an alternative means for assess-
ing cutter wear that is potentially less reliant on direct access to the
actual original cutter image.

The area results of the initial cutter and the current cutter ob-
tained by the above two methods are compared to derive the ratio
of the current area to the initial area, serving as the residual ratio of
the cutter. The residual ratio, in conjunction with the IADC stan-
dards, correlates with the eight grades judged by cutter diameter.
Consequently, the final wear grade of the current cutter is obtained.
By calculating the loss area ratio corresponding to the diameter
loss, the wear grade of the specific cutter can be determined by this
residual ratio. Thus, the model can provide the results of the bit
cutter wear grade evaluation. The wear grades judged by both
diameter and area ratio of the cutter are shown in Table 2.

3. Experiment
3.1. Data acquisition and labeling

3.1.1. PDC bit image acquisition process

To ensure the model can be effectively applied, it is crucial to
build a dataset that reflects the real conditions of the rig site for
training purposes. In this paper, we conducted real-time image
acquisition of PDC bits directly at drilling sites. These on-site images
were then used to create a comprehensive PDC bit dataset for
model training. During the dataset creation process, we aimed to
capture a wide variety of bit images, encompassing different types
and states, to guarantee the dataset's diversity and robustness.

For PDC bits, determining the wear type and wear degree relies
on assessing the state of each bit cutter. From the computer vision
perspective, the primary requirement is to capture a clear image of

Table 2
The wear grades judged by cutter diameter and cutter area ratio.

Wear grade Judged by cutter diameter Judged by cutter area ratio
0 1 diameter 100%

1 7/8 diameter 92.79%—100%

2 3/4 diameter 80.45%—92.79%

3 5/8 diameter 65.75%—0.45%

4 1/2 diameter 50%—65.75%

5 3/8 diameter 34.25%—50%

6 1/4 diameter 19.55%—34.25%

7 1/8 diameter 7.21%—19.55%

8 0 diameter 0-7.21%
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the bit that distinctly shows each blade, enabling the algorithm to
accurately identify and analyze all the cutters.

During the image acquisition process, the staff are required to
use mobile phones, cameras, or any suitable image acquisition tools
to capture images of the PDC bit blade under good lighting condi-
tions and from the proper angle. To ensure high-quality images, it is
recommended that the picture be taken perpendicular to each bit
blade, which allows for a clear view of the bit profile and the overall
cutting shape. Additionally, ensure that the entire blade is fully
illuminated by a normal light source to avoid any shadows that
could obscure specific details.

The PDC bit pictures of different conditions were obtained from
Henan, China. With the right lighting and angles, we photographed
approximately 100 drilling bits, resulting in 556 PDC blade images
with varying types and states, saved as JPG files. The images were
randomly divided into the training set and the test set in an 8:2
ratio, with the training set containing 444 images and the test set
containing 112 images. The pictures taken with appropriate lighting
and angles at the rig site are shown in Fig. 9.

3.1.2. Data annotation

Training object detection algorithms requires manual annota-
tion of the training images. By marking the position and type of the
corresponding objects in the images, a set of labeled data can be
generated, which is subsequently employed to train the object
detection algorithms. This process involves drawing bounding
boxes around each object and assigning a label to indicate its class,
ensuring that the algorithm learns to recognize and classify objects
accurately.

For the obtained bit pictures of different types and states,
manual annotation was performed on these pictures using the
online tool Make Sense. Each object in the pictures was assigned a
bounding box to indicate its location, and corresponding type in-
formation was added. Because of the vision sense, for the wear
characteristics of drilling bits, our focus in detection was centered
around the following cutter conditions: no wear feature cutters
(NO), wear cutters (WT), broken cutters (BT), chipped cutters (CT),
and lost cutters (LT). The annotations were saved in VOC format,
and the storage file format is .xml.

The manual annotation is based on visual eye discrimination
and the results of each corresponding drill bit evaluation report
provided by the field managers and bit factories, following the IADC
standards. However, in combination with the IADC standards, the
evaluation of the bit wear characteristics relies on artificial rules,
and there is no digital drill bit classification standard. Consequently,
it is inevitable that the manual marking dataset of bit wear may
contain some flaws. To achieve a more professional labeling of the
cutter wear type, the final dataset labels were developed in
consultation with experts in the drilling bit field and aligned with
the wear regulations in IADC standards. The pictures labeled by
Make Sense of cutter positions and wear types are shown in Figs. 10
and 11.

During the data annotation process, an issue known as sample
imbalance was identified in the classification of drill wear types,
especially for the LT (lost cutters). Sample imbalance refers to the
disproportionate quantity of samples across various categories
during model training. If this dataset is used to train the model
directly without addressing this issue, the model may predomi-
nantly focus on classes with more reference labels. Consequently,
the network parameters are primarily optimized based on the loss
from these abundant classes, leading to low detection accuracy for
the underrepresented class with fewer reference labels.

In the current mainstream object detection algorithms, partic-
ularly those designed for classification problems, the detection
process typically involves generating regions using methods like
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Fig. 10. The pictures after labeled by Make Sense.

Insert label
LT

Insert label
NO

Insert label

CT

Insert label
WT

Insert label
BT

Fig. 11. The colors in the pictures correspond to the wear labels in Make Sense.

RPN (Region Proposal Network), followed by classification and
regression for localization within these regions. The presence of
sample imbalance issue can significantly diminish the training ef-
ficiency and detection accuracy of these models.

To solve this problem, image enhancement methods are intro-
duced to augment the input data, enabling the network model to
focus more on learning object features during training process.
Common methods include flipping, rotation, and brightness vari-
ation, etc., which serve to enrich the dataset and enhance the
network’s learning capability. Another approach is to overlay in-
formation on the image, such as adding noise can enhance the
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network’s ability to detect objects in the presence of interference
and poor image quality. These methods effectively mitigate data
imbalance problems while simultaneously expanding the dataset
and enhancing the model's robustness. The images undergoing the
image enhancement methods are shown in Fig. 12.

3.2. The experiment of object detection model

In this paper, all PDC bit images used for model training are
sourced from the dataset built previously. In order to facilitate
object detection of bit cutters, the dataset comprising 556 images is
randomly subjected to the image enhancement methods
mentioned above and utilized to train three algorithms established
by one-stage, two-stage, and self-attention structures. Throughout
the training process, all algorithms undergo 200 epochs with
learning rate of 0.005 and batch size of 8, while optimization is
performed using the Stochastic Gradient Descent (SGD) method.

In this paper, GPU acceleration is utilized for training. The
configurations of both hardware and software resources are shown
in Table 3 and Table 4.

All models were implemented using the Pytorch framework,
with GPU acceleration facilitating swift training. Here, the mAP@0.
5 and mAP@0.5:0.95 values of these three models are shown in
Table 5, and the mAP@0.5 curves of these three models with 200
epochs are shown in Fig. 13.

From the mAP@0.5 and mAP@0.5:0.95 of 200 epochs above, it is
observed that the one-stage model achieves the highest mAP@0.5,
whereas the self-attention model achieves the highest mAP@0.95.
Moreover, through the analysis of the mAP@0.5 curves corre-
sponding to each model, it has been determined that the one-stage
model manifests a consistently and progressively ascending
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Fig. 12. The images undergoing image enhancement methods.

Table 3

Hardware resource configuration.
Name Version
CPU Inter i7 7700K
GPU GTX1080
RAM 32GB

trajectory over the 200 epochs and ultimately emerges as the top-
performing model with mAP@0.5 value of 70.9. In contrast, when
considering the mAP@0.5 results of the two-stage and self-
transformer models, which are documented as 64.0 and 67.7
respectively upon the completion of 200 epochs, it can be discerned
from the corresponding curves that the principal growth phase
predominantly occurs during the incipient stage of training, with
the results of 63.78 and 68.952 in merely 25 epochs, implies that
the two-stage and self-transformer models might experience a
paucity of new information acquisition during the subsequent stage
of training.

Therefore, we additionally trained these three models for only
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Graying Blur Noisy

Table 4

Software resource configuration.
Name Version
oS Window 10
CUDA 10.2
Mmdet 2.11.0
Numpy 1.243
OpenCV 4.5.4.58
Pillow 9.0.1
Pycharm 2021.2.2
Python 3.8
Pytorch 1.10.2 + cu102
Torchvision 0.11.3 + cul02
Wheel 0.36.2

50 epochs. The mAP@0.5 and mAP@0.5:0.95 values of these three
models are shown in Table 6, and the mAP@O0.5 curves of these
three models with 50 epochs are also enlarged in Fig. 14.

From the mAP@0.5 and mAP@0.5:0.95 of 50 epochs above, it's
evident that the self-attention model outperforms the others.
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Table 5
The mAP@0.5 and mAP@0.5:0.95 values of three PDC bit wear classification models
trained by 200 epochs.

Model mAP@0.5 mAP@0.5:0.95
One-stage model 70.9 55.4
Two-stage model 64.0 52.9
Self-attention model 67.7 56.5

Eval mAP

0.8

0.7 4

0.6 -

0.5 -

0.4

mAP, %

— One-stage model
— Two-stage model
—— Self-attention model

75 100 125 150 175 200

Epoch

Fig. 13. The curves of mAP@0.5 with epoch change for three models trained by 200
epochs.

Additionally, when observing the mAP@0.5 curves for each model,
it's noticeable that while the mAP@0.5 scores of the two-stage and
self-attention models stabilize, the one-stage model's mAP@0.5
continues to rise, indicating ongoing learning at this moment.

Simultaneously, data pertaining to the temporal requirements
for training the three models over 50 and 200 epochs, along with
the time expended for object detection within 100 pictures, were
collected. The training and detection time of three models are
shown in Table 7 and Table 8.

From the above graphs, it's evident that the one-stage model
exhibits the fastest performance in both training and detecting
across both 50 and 200 epochs.

Overall, the one-stage model has the highest accuracy and ex-
hibits the fastest training and detecting speeds, especially at high
levels of epochs. While the self-attention and two-stage models can
attain high mAP in a relatively small number of epochs, and the
self-attention model exhibits superior detection results compared
to the two-stage model.

After completing the training of these three models, we need to
assess the generalization of our model using the test set. We utilize
the parameter obtained from the last epoch training on the training
set to evaluate its detection capabilities on the test set. Several
images were selected and the model was applied to identify the
positions and types of bit cutters. The test results are shown in
Fig. 15.

Through the test, it is determined that these models can accu-
rately detect the positions of the cutters. While there are slight

Table 6
The mAP@0.5 and mAP@0.5:0.95 values of three PDC bit wear classification models
trained by 50 epochs.

Model mAP@0.5 mAP@0.5:0.95
One-stage model 393 26.2
Two-stage model 53.8 39.1
Self-attention model 70.4 431
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Fig. 14. The curves of mAP@0.5 with epoch change for three models trained by 50
epochs.

variations in the predicted cutter types among the three models,
the main results are generally correct. In addition, these models
demonstrate the ability to accurately detect cutters across various
types, angles, and colors of PDC bits, indicating their robust
universality.

In conclusion, the one-stage model demonstrates superior ac-
curacy in both position and type detection, especially under high-
epoch training, while also exhibiting the fastest training and
detection times. Although the two-stage model exhibits slower
training, it still produces good detection results. Moreover, the self-
attention model, while the slowest in detecting, achieves
commendable detection results. Therefore, each model has its own
strengths, but considering practical application in the rig site,
prioritizing algorithm efficiency is advisable. Based on this crite-
rion, the one-stage model emerges as the preferred algorithm for
bit wear evaluation. However, all three algorithms remain viable
options and yield accurate results in real applications.

3.3. The experiment of wear grading model

Firstly, we crop the bit cutter images obtained from the above
object detection models according to the detect positions relative
to their pictures, resulting in individual cutter images. Then, the
PDC bit wear grading model pipeline is utilized to determine the
wear grade of each cutter. In this part, the calculation of the cutter
area is only performed for two types: no wear feature cutters (NO)
and wear cutters (WT), excluding other types such as CT, BT, and LT
because they represent abnormal wear. Furthermore, the NO cut-
ters indicate that the cutter remained unworn during this drilling
trip. So all NO cutters are assigned to grade 0. Through the image of
a single cutter, an image preprocessing pipeline is applied: image
graying, filtering and denoising, threshold segmentation and edge
detection. This process gives rise to a binary image that distinctly
presents the single cutter and its boundary. Through the calculation
of the boundary of the single cutter within this binary image, the
cutter edge is precisely identified and is then utilized to calculate
the current area of the cutter. The cutter images produced by the
image preprocessing pipeline are shown in Fig. 16.

After obtaining the current state of the single cutter, we need to
estimate its initial state of this cutter using external ellipse fitting.
By calculating the wear area of the initial state and comparing it
with the current state, we determine the wear proportion. Corre-
sponding to the predefined area grades setting, we can smoothly
determine the wear grade of the bit cutter. For example, in Fig. 17,
we obtained the current area and the initial area through the
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Table 7
The training time of three PDC bit wear classification models.

Petroleum Science 21 (2024) 4376—4390

Training time of 50 epochs, h

Training time of 200 epochs, h

Model

One-stage model 0.5
Two-stage model 2.8
Self-attention model 13

2
11
5

Table 8
The detecting time of three PDC bit wear classification models.

Model Detecting time of 100 pictures, s
One-stage model 491

Two-stage model 40.65

Self-attention model 62.85

external ellipse fitting, allowing us to determine the wear propor-
tion and the wear grade of this cutter through the ratio of the two
areas.

Alternatively, during the image acquisition process, we can
obtain pictures of the original and current cutter by ensuring
consistent picture shooting angles and camera distances from the
same bit. By calculating the digital picture area of the original and

worn cutters, the current wear grade can be determined through
comparison. For instance, in Fig. 18, we captured the initial and
current pictures of the bit using the same shooting angle and
lighting conditions to capture each cutter's change. From these
pictures, we can calculate the ratio of the two areas to obtain the
wear proportion and determine the wear grade of each cutter.

Through the procedures of image processing and area compu-
tation, the area of the current cutter is measured to be 40645.5.
When the ellipse fitting method is applied, the fitting area of the
original cutter is 49875.92. When the direct comparison method is
applied, the actual area of the original cutter is 49163.5. By con-
ducting a comparison of the area of the current cutter with the two
aforementioned areas of the original cutter, it is found that the wear
grade derived from both methods is uniformly 2.

(a) The one-stage model

(b) The two-stage model

(c) The self-attention model

Fig. 15. Test results of three models.

i

-y

—y

Fig. 16. The cutter pictures through the image preprocessing pipeline.
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(a) The current photo

(b) Graying
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(d) Origin fitting

SN0

(c) Edge detection

Fig. 17. The results of the ellipse fitting method pipeline.

(a) The current photo

(b) Edge detection of the current cutter

(d) Edge detection of the original cutter

(c) The original photo

Fig. 18. The results of the direct comparison method pipeline.

3.4. Software implementation

When evaluating the wear condition of the PDC bit, several
operations like model selection, parameter setting, input selection,
and result display are often necessary. However, object detection
algorithms typically consist of code and lack a visual operation
interface, making it challenging to perform these operations simply
and efficiently. Hence, it is necessary to design a system software
that integrates multiple functions. Such software would facilitate
automatic and intelligent evaluation of the PDC bit's wear condi-
tion, thereby enhancing user operational efficiency.

Based on the analysis of PDC bit wear status process, the system
is divided into the following modules.

1 Model selection module: Based on various scenarios and re-
quirements, users may need to choose different algorithm with
different accuracy and speed. To accommodate diverse user
needs, the model selection module is incorporated, enabling
users to select different models according to different re-
quirements and enhancing the universality of the system.
Parameter setting module: To accommodate different usage
scenarios, the parameters of the network model need to be
adjusted accordingly. However, object detection algorithms
typically require modification of code files and do not allow for
quick parameter adjustment. Therefore, a parameter setting
module is designed to enable users to set the model parameters
according to different requirements. This simplifies user oper-
ations and enhances overall efficiency.

Input selection module: To facilitate real-time model calculation

based on acquired data, the input selection module allows users

to easily and quickly import pictures for model calculation.

4 Result display module: To provide users with a clear view of the
model detection and evaluation results, various result display
components are integrated. Results are presented using pie
charts and other visualizations to facilitate user interpretation.

The PDC bit wear status software interface design and software
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workflow are shown in Fig. 19 and Fig. 20.

With this software, managers only need to capture pictures of
each blade of the drilling bit and import them into the software. The
software will then automatically evaluate the wear condition and
wear grade of the drilling bit. Through this software and the
automatic workflow, wear status results can be obtained at any
time using the acquired pictures from the field. This software was
tested in Xinjiang, China, and it was found to provide accurate bit
wear evaluation results.

4. The design of the drilling bit information database

In this paper, following the acquisition of bit wear evaluation
results, a PDC bit lifecycle usage database is designed by integrating
bit wear data, logging data, mud-logging data, and drilling bit basic
data.

The bit wear data obtained through the above automatic
workflow, which corresponds to the IADC standards.

The logging data consists of drilling parameter data for the bit
from the beginning to the end of the drilling process. Specific pa-
rameters included in the database are Depth, ROP, Hookload, WOB,
RPM, PCS, Torque, Inflow_density, Outflow_density, Inflow_rate,
Outflow_rate, and Total_pool_volume. All logging data parameters
are shown in Table 9.

The mud-logging data corresponds to drilling formation, well
track and drilling fluid data during the bit drilling process. Specific
parameters included in the database are AZIM, DEVI, GR, RT, SP, AC,
DEN, Drilling_fluid_density, and Drilling_fluid_viscosity. All mud-
logging data parameters are shown in Table 10.

The drilling bit basic data refers to the type and design param-
eters of the bit itself. Specific parameters included in the database
are Bit_type, Bit_diameter, Footage, Nozzle number, Nozzle diam-
eter, Blade number, and Cutter number. All drilling bit basic data
parameters are shown in Table 11.

After obtaining the result of the drilling bit condition, the data is
integrated with the logging data, mud-logging data, and drilling bit
basic data to obtain PDC bit lifecycle usage data, which is then saved
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Fig. 19. The software of PDC bit wear status.
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Self-attention Image Size
model Setting
Fig. 20. The software workflow.
Table 9 Table 11 ) . ) )
The parameters in logging data. The parameters in drilling bit basic data.
Parameter Type Unit Parameter Type Unit
Depth float m Bit_t)'/pe string Null
ROP float m/hr Bit_diameter float mm
WOB float kN Footage ﬂoat m
RPM float r/min Nozzle n}meer int Null
PCS float st/min Nozzle diameter ﬂoat Null
Hookload float kN Blade number int Null
Torque float KN-m Cutter number int Null
Inflow_density float g/cm?
Outflow_density float g/cm?
Inflow_rate float L/s . . .
- / into the database. This database synthesizes the usage records of all
Outflow_rate float L/s

Total_pool_volume float m3 drilling bits, providing data support for subsequent intelligent se-
lection, analysis, design, and manufacturing of the drilling bits. This
contributes to further unleashing the potential for accelerating

Table 10 progress in drilling challenging formations.

The parameters in mud-logging data.
Parameter Type Unit 5. Conclusion
AZIM float °
DEVI float ° PDC bit wear evaluation is an essential method for enhancing
g_l]? gg:E gpin drilling site efficiency, improving bit evaluation accuracy, reducing
Ssp float mv labor _costs, and acquiring relev_ant data. )
AC float umys This paper achieves the entire workflow of the bit wear evalu-
DEN float g/em? ation, implementing both the PDC bit wear classification model and

o . . 3 . ;

Drilling_fluid_density float glcm PDC bit wear grading model. By the structure of one-stage, two-
Drilling_fluid_viscosity float Pa-s

stage, and self-attention, three object detection algorithms are
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established to classify bit wear characteristics. Furthermore, two bit
wear grading models are devised utilizing the ellipse fitting
method and the direct comparison method, leveraging computer
vision techniques. With the data acquisition method designed in
this paper and the bit image dataset created based on this method,
along with the image processing methods, all models demonstrate
robust adaptability to various environments and bit types.

In addition, based on the models and algorithms, this paper
designs and implements a bit wear status software. This software
integrates the above wear classification and wear grading model
and has been successfully deployed in Xinjiang, China. It is capable
of providing high-quality PDC bit wear evaluation results, thereby
fulfilling the requirements of drilling sites. Moreover, based on the
obtained PDC bit wear evaluation results, in conjunction with the
logging data, mud-logging data, and drilling bit basic data, a PDC bit
lifecycle usage database is established. This database will facilitate
intelligent selection, analysis, design, and manufacturing of sub-
sequent drilling bits, thereby unleashing the potential for acceler-
ation in drilling challenging formations.
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